Efficient Delivery of Hydrophilic Small Molecules to Retinal Cell Lines Using Gel Core-Containing Solid Lipid Nanoparticles

. 2021 Dec 28 ; 14 (1) : . [epub] 20211228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35056970

Grantová podpora
H2020-MSCA-ITN-765441 European Union
Charlotte and Tistou Kerstan Foundation Charlotte and Tistou Kerstan Foundation

Odkazy

PubMed 35056970
PubMed Central PMC8780956
DOI 10.3390/pharmaceutics14010074
PII: pharmaceutics14010074
Knihovny.cz E-zdroje

In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and composite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic polyester used in the composite shell mixture affected the particle surface charge, colloidal stability, and cell internalization profile. We validated SLNs as a drug delivery system by performing the encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously demonstrated to hold retinoprotective properties, and the best formulation resulted in particles with a size of ±250 nm, anionic charge > -20 mV, and an encapsulation efficiency of ±60%, criteria that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery of small hydrophilic active molecules into retinal cells.

Zobrazit více v PubMed

Lechner J., O’Leary O.E., Stitt A.W. The pathology associated with diabetic retinopathy. Vision Res. 2017;139:7–14. doi: 10.1016/j.visres.2017.04.003. PubMed DOI

Mitchell P., Liew G., Gopinath B., Wong T.Y. Age-related macular degeneration. Lancet. 2018;392:1147–1159. doi: 10.1016/S0140-6736(18)31550-2. PubMed DOI

Swaroop A., Sieving P.A. The golden era of ocular disease gene discovery: Race to the finish. Clin. Genet. 2013;84:99–101. doi: 10.1111/cge.12204. PubMed DOI PMC

Chakravarthy U., Biundo E., Saka R.O., Fasser C., Bourne R., Little J.A. The Economic Impact of Blindness in Europe. Ophthalmic Epidemiol. 2017;24:239–247. doi: 10.1080/09286586.2017.1281426. PubMed DOI

Gallego I., Villate-Beitia I., Martínez-Navarrete G., Menéndez M., López-Méndez T., Soto-Sánchez C., Zárate J., Puras G., Fernández E., Pedraz J.L. Non-viral vectors based on cationic niosomes and minicircle DNA technology enhance gene delivery efficiency for biomedical applications in retinal disorders. Nanomed. Nanotechnol. Biol. Med. 2019;17:308–318. doi: 10.1016/j.nano.2018.12.018. PubMed DOI

Tolone A., Belhadj S., Rentsch A., Schwede F., Paquet-Durand F. The cGMP pathway and inherited photoreceptor degeneration: Targets, compounds, and biomarkers. Genes. 2019;10:453. doi: 10.3390/genes10060453. PubMed DOI PMC

Li Q., Li X., Zhao C. Strategies to Obtain Encapsulation and Controlled Release of Small Hydrophilic Molecules. Front. Bioeng. Biotechnol. 2020;8:437. doi: 10.3389/fbioe.2020.00437. PubMed DOI PMC

Himawan E., Ekström P., Buzgo M., Gaillard P., Stefánsson E., Marigo V., Loftsson T., Paquet-Durand F. Drug delivery to retinal photoreceptors. Drug Discov. Today. 2019;24:1637–1643. doi: 10.1016/j.drudis.2019.03.004. PubMed DOI PMC

Gorantla S., Rapalli V.K., Waghule T., Singh P.P., Dubey S.K., Saha R.N., Singhvi G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Adv. 2020;10:27835–27855. doi: 10.1039/D0RA04971A. PubMed DOI PMC

Peeters L., Sanders N.N., Braeckmans K., Boussery K., Van de Voorde J., De Smedt S.C., Demeester J. Vitreous: A Barrier to Nonviral Ocular Gene Therapy. Investig. Opthalmol. Vis. Sci. 2005;46:3553. doi: 10.1167/iovs.05-0165. PubMed DOI

Xu Q., Boylan N.J., Suk J.S., Wang Y.Y., Nance E.A., Yang J.C., McDonnell P.J., Cone R.A., Duh E.J., Hanes J. Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo. J. Control. Release. 2013;167:76–84. doi: 10.1016/j.jconrel.2013.01.018. PubMed DOI PMC

Tavakoli S., Kari O.K., Turunen T., Lajunen T., Schmitt M., Lehtinen J., Tasaka F., Parkkila P., Ndika J., Viitala T., et al. Diffusion and Protein Corona Formation of Lipid-Based Nanoparticles in the Vitreous Humor: Profiling and Pharmacokinetic Considerations. Mol. Pharm. 2021;18:699–713. doi: 10.1021/acs.molpharmaceut.0c00411. PubMed DOI PMC

del Amo E.M., Rimpelä A.K., Heikkinen E., Kari O.K., Ramsay E., Lajunen T., Schmitt M., Pelkonen L., Bhattacharya M., Richardson D., et al. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res. 2017;57:134–185. doi: 10.1016/j.preteyeres.2016.12.001. PubMed DOI

Apaolaza P.S., del Pozo-Rodríguez A., Solinís M.A., Rodríguez J.M., Friedrich U., Torrecilla J., Weber B.H.F., Rodríguez-Gascón A. Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials. 2016;90:40–49. doi: 10.1016/j.biomaterials.2016.03.004. PubMed DOI

Bisht R., Mandal A., Jaiswal J.K., Rupenthal I.D. Nanocarrier mediated retinal drug delivery: Overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018;10:e1473. doi: 10.1002/wnan.1473. PubMed DOI

Zariwala M.G., Bendre H., Markiv A., Farnaud S., Renshaw D., Taylor K.M.G., Somavarapu S. Hydrophobically modified chitosan nanoliposomes for intestinal drug delivery. Int. J. Nanomed. 2018;13:5837–5848. doi: 10.2147/IJN.S166901. PubMed DOI PMC

Khalkhali M., Mohammadinejad S., Khoeini F., Rostamizadeh K. Vesicle-like structure of lipid-based nanoparticles as drug delivery system revealed by molecular dynamics simulations. Int. J. Pharm. 2019;559:173–181. doi: 10.1016/j.ijpharm.2019.01.036. PubMed DOI

Severino P., Pinho S.C., Souto E.B., Santana M.H.A. Polymorphism, Crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B Biointerfaces. 2011;86:125–130. doi: 10.1016/j.colsurfb.2011.03.029. PubMed DOI

Yang R., Gao R.C., Cai C.F., Xu H., Li F., He H.B., Tang X. Preparation of gel-core-solid lipid nanoparticle: A novel way to improve the encapsulation of protein and peptide. Chem. Pharm. Bull. 2010;58:1195–1202. doi: 10.1248/cpb.58.1195. PubMed DOI

Chen C., Zhu X., Dou Y., Xu J., Zhang J., Fan T., Du J., Liu K., Deng Y., Zhao L., et al. Exendin-4 loaded nanoparticles with a lipid shell and aqueous core containing micelles for enhanced intestinal absorption. J. Biomed. Nanotechnol. 2015;11:865–876. doi: 10.1166/jbn.2015.1971. PubMed DOI

Xu Y., Zheng Y., Wu L., Zhu X., Zhang Z., Huang Y. Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin. ACS Appl. Mater. Interfaces. 2018;10:9315–9324. doi: 10.1021/acsami.8b00507. PubMed DOI

Martens T.F., Remaut K., Demeester J., De Smedt S.C., Braeckmans K. Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today. 2014;9:344–364. doi: 10.1016/j.nantod.2014.04.011. DOI

Dunn K.C., Aotaki-Keen A.E., Putkey F.R., Hjelmeland L.M. ARPE-19, A Human Retinal Pigment Epithelial Cell Line with Differentiated Properties. Exp. Eye Res. 1996;62:155–170. doi: 10.1006/exer.1996.0020. PubMed DOI

Tan E., Ding X.-Q., Saadi A., Agarwal N., Naash M.I., Al-Ubaidi M.R. Expression of Cone-Photoreceptor–Specific Antigens in a Cell Line Derived from Retinal Tumors in Transgenic Mice. Investig. Opthalmol. Vis. Sci. 2004;45:764. doi: 10.1167/iovs.03-1114. PubMed DOI PMC

Huang L., Kutluer M., Adani E., Comitato A., Marigo V. New In Vitro Cellular Model for Molecular Studies of Retinitis Pigmentosa. Int. J. Mol. Sci. 2021;22:6440. doi: 10.3390/ijms22126440. PubMed DOI PMC

Chen C., Fan T., Jin Y., Zhou Z., Yang Y., Zhu X., Zhang Z.R., Zhang Q., Huang Y. Orally delivered salmon calcitonin-loaded solid lipid nanoparticles prepared by micelle-double emulsion method via the combined use of different solid lipids. Nanomedicine. 2013;8:1085–1100. doi: 10.2217/nnm.12.141. PubMed DOI

Vighi E., Trifunovic D., Veiga-Crespo P., Rentsch A., Hoffmann D., Sahaboglu A., Strasser T., Kulkarni M., Bertolotti E., Van Den Heuvel A., et al. Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration. Proc. Natl. Acad. Sci. USA. 2018;115:E2997–E3006. doi: 10.1073/pnas.1718792115. PubMed DOI PMC

Firdessa R., Oelschlaeger T.A., Moll H. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems. Eur. J. Cell Biol. 2014;93:323–337. doi: 10.1016/j.ejcb.2014.08.001. PubMed DOI

Yang S.T., Zaitseva E., Chernomordik L.V., Melikov K. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys. J. 2010;99:2525–2533. doi: 10.1016/j.bpj.2010.08.029. PubMed DOI PMC

Foroozandeh P., Aziz A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018;13:339. doi: 10.1186/s11671-018-2728-6. PubMed DOI PMC

Kong B., Seog J.H., Graham L.M., Lee S.B. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine. 2011;6:929–941. doi: 10.2217/nnm.11.77. PubMed DOI PMC

He C., Hu Y., Yin L., Tang C., Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–3666. doi: 10.1016/j.biomaterials.2010.01.065. PubMed DOI

Kumari S., MG S., Mayor S. Endocytosis unplugged: Multiple ways to enter the cell. Cell Res. 2010;20:256–275. doi: 10.1038/cr.2010.19. PubMed DOI PMC

Bertolotti E., Neri A., Camparini M., Macaluso C., Marigo V. Stem cells as source for retinal pigment epithelium transplantation. Prog. Retin. Eye Res. 2014;42:130–144. doi: 10.1016/j.preteyeres.2014.06.002. PubMed DOI

Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC

Palocci C., Valletta A., Chronopoulou L., Donati L., Bramosanti M., Brasili E., Baldan B., Pasqua G. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant Cell Rep. 2017;36:1917–1928. doi: 10.1007/s00299-017-2206-0. PubMed DOI

Arana L., Bayón-Cordero L., Sarasola L., Berasategi M., Ruiz S., Alkorta I. Solid Lipid Nanoparticles Surface Modification Modulates Cell Internalization and Improves Chemotoxic Treatment in an Oral Carcinoma Cell Line. Nanomaterials. 2019;9:464. doi: 10.3390/nano9030464. PubMed DOI PMC

Belhadj S., Tolone A., Christensen G., Das S., Chen Y., Paquet-Durand F. Long-Term, Serum-Free Cultivation of Organotypic Mouse Retina Explants with Intact Retinal Pigment Epithelium. J. Vis. Exp. 2020;165:e61868. doi: 10.3791/61868. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...