Efficient Delivery of Hydrophilic Small Molecules to Retinal Cell Lines Using Gel Core-Containing Solid Lipid Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
H2020-MSCA-ITN-765441
European Union
Charlotte and Tistou Kerstan Foundation
Charlotte and Tistou Kerstan Foundation
PubMed
35056970
PubMed Central
PMC8780956
DOI
10.3390/pharmaceutics14010074
PII: pharmaceutics14010074
Knihovny.cz E-zdroje
- Klíčová slova
- drug delivery system, retinal pigment epithelium, rod photoreceptor, thermoresponsive polymer,
- Publikační typ
- časopisecké články MeSH
In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and composite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic polyester used in the composite shell mixture affected the particle surface charge, colloidal stability, and cell internalization profile. We validated SLNs as a drug delivery system by performing the encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously demonstrated to hold retinoprotective properties, and the best formulation resulted in particles with a size of ±250 nm, anionic charge > -20 mV, and an encapsulation efficiency of ±60%, criteria that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery of small hydrophilic active molecules into retinal cells.
Center for Neuroscience and Neurotechnology Via Campi 287 41125 Modena Italy
Department of Life Sciences University of Modena and Reggio Emilia 41125 Modena Italy
Research and Development Department InoCure s r o 11000 Prague Czech Republic
Zobrazit více v PubMed
Lechner J., O’Leary O.E., Stitt A.W. The pathology associated with diabetic retinopathy. Vision Res. 2017;139:7–14. doi: 10.1016/j.visres.2017.04.003. PubMed DOI
Mitchell P., Liew G., Gopinath B., Wong T.Y. Age-related macular degeneration. Lancet. 2018;392:1147–1159. doi: 10.1016/S0140-6736(18)31550-2. PubMed DOI
Swaroop A., Sieving P.A. The golden era of ocular disease gene discovery: Race to the finish. Clin. Genet. 2013;84:99–101. doi: 10.1111/cge.12204. PubMed DOI PMC
Chakravarthy U., Biundo E., Saka R.O., Fasser C., Bourne R., Little J.A. The Economic Impact of Blindness in Europe. Ophthalmic Epidemiol. 2017;24:239–247. doi: 10.1080/09286586.2017.1281426. PubMed DOI
Gallego I., Villate-Beitia I., Martínez-Navarrete G., Menéndez M., López-Méndez T., Soto-Sánchez C., Zárate J., Puras G., Fernández E., Pedraz J.L. Non-viral vectors based on cationic niosomes and minicircle DNA technology enhance gene delivery efficiency for biomedical applications in retinal disorders. Nanomed. Nanotechnol. Biol. Med. 2019;17:308–318. doi: 10.1016/j.nano.2018.12.018. PubMed DOI
Tolone A., Belhadj S., Rentsch A., Schwede F., Paquet-Durand F. The cGMP pathway and inherited photoreceptor degeneration: Targets, compounds, and biomarkers. Genes. 2019;10:453. doi: 10.3390/genes10060453. PubMed DOI PMC
Li Q., Li X., Zhao C. Strategies to Obtain Encapsulation and Controlled Release of Small Hydrophilic Molecules. Front. Bioeng. Biotechnol. 2020;8:437. doi: 10.3389/fbioe.2020.00437. PubMed DOI PMC
Himawan E., Ekström P., Buzgo M., Gaillard P., Stefánsson E., Marigo V., Loftsson T., Paquet-Durand F. Drug delivery to retinal photoreceptors. Drug Discov. Today. 2019;24:1637–1643. doi: 10.1016/j.drudis.2019.03.004. PubMed DOI PMC
Gorantla S., Rapalli V.K., Waghule T., Singh P.P., Dubey S.K., Saha R.N., Singhvi G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Adv. 2020;10:27835–27855. doi: 10.1039/D0RA04971A. PubMed DOI PMC
Peeters L., Sanders N.N., Braeckmans K., Boussery K., Van de Voorde J., De Smedt S.C., Demeester J. Vitreous: A Barrier to Nonviral Ocular Gene Therapy. Investig. Opthalmol. Vis. Sci. 2005;46:3553. doi: 10.1167/iovs.05-0165. PubMed DOI
Xu Q., Boylan N.J., Suk J.S., Wang Y.Y., Nance E.A., Yang J.C., McDonnell P.J., Cone R.A., Duh E.J., Hanes J. Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo. J. Control. Release. 2013;167:76–84. doi: 10.1016/j.jconrel.2013.01.018. PubMed DOI PMC
Tavakoli S., Kari O.K., Turunen T., Lajunen T., Schmitt M., Lehtinen J., Tasaka F., Parkkila P., Ndika J., Viitala T., et al. Diffusion and Protein Corona Formation of Lipid-Based Nanoparticles in the Vitreous Humor: Profiling and Pharmacokinetic Considerations. Mol. Pharm. 2021;18:699–713. doi: 10.1021/acs.molpharmaceut.0c00411. PubMed DOI PMC
del Amo E.M., Rimpelä A.K., Heikkinen E., Kari O.K., Ramsay E., Lajunen T., Schmitt M., Pelkonen L., Bhattacharya M., Richardson D., et al. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res. 2017;57:134–185. doi: 10.1016/j.preteyeres.2016.12.001. PubMed DOI
Apaolaza P.S., del Pozo-Rodríguez A., Solinís M.A., Rodríguez J.M., Friedrich U., Torrecilla J., Weber B.H.F., Rodríguez-Gascón A. Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials. 2016;90:40–49. doi: 10.1016/j.biomaterials.2016.03.004. PubMed DOI
Bisht R., Mandal A., Jaiswal J.K., Rupenthal I.D. Nanocarrier mediated retinal drug delivery: Overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018;10:e1473. doi: 10.1002/wnan.1473. PubMed DOI
Zariwala M.G., Bendre H., Markiv A., Farnaud S., Renshaw D., Taylor K.M.G., Somavarapu S. Hydrophobically modified chitosan nanoliposomes for intestinal drug delivery. Int. J. Nanomed. 2018;13:5837–5848. doi: 10.2147/IJN.S166901. PubMed DOI PMC
Khalkhali M., Mohammadinejad S., Khoeini F., Rostamizadeh K. Vesicle-like structure of lipid-based nanoparticles as drug delivery system revealed by molecular dynamics simulations. Int. J. Pharm. 2019;559:173–181. doi: 10.1016/j.ijpharm.2019.01.036. PubMed DOI
Severino P., Pinho S.C., Souto E.B., Santana M.H.A. Polymorphism, Crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B Biointerfaces. 2011;86:125–130. doi: 10.1016/j.colsurfb.2011.03.029. PubMed DOI
Yang R., Gao R.C., Cai C.F., Xu H., Li F., He H.B., Tang X. Preparation of gel-core-solid lipid nanoparticle: A novel way to improve the encapsulation of protein and peptide. Chem. Pharm. Bull. 2010;58:1195–1202. doi: 10.1248/cpb.58.1195. PubMed DOI
Chen C., Zhu X., Dou Y., Xu J., Zhang J., Fan T., Du J., Liu K., Deng Y., Zhao L., et al. Exendin-4 loaded nanoparticles with a lipid shell and aqueous core containing micelles for enhanced intestinal absorption. J. Biomed. Nanotechnol. 2015;11:865–876. doi: 10.1166/jbn.2015.1971. PubMed DOI
Xu Y., Zheng Y., Wu L., Zhu X., Zhang Z., Huang Y. Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin. ACS Appl. Mater. Interfaces. 2018;10:9315–9324. doi: 10.1021/acsami.8b00507. PubMed DOI
Martens T.F., Remaut K., Demeester J., De Smedt S.C., Braeckmans K. Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today. 2014;9:344–364. doi: 10.1016/j.nantod.2014.04.011. DOI
Dunn K.C., Aotaki-Keen A.E., Putkey F.R., Hjelmeland L.M. ARPE-19, A Human Retinal Pigment Epithelial Cell Line with Differentiated Properties. Exp. Eye Res. 1996;62:155–170. doi: 10.1006/exer.1996.0020. PubMed DOI
Tan E., Ding X.-Q., Saadi A., Agarwal N., Naash M.I., Al-Ubaidi M.R. Expression of Cone-Photoreceptor–Specific Antigens in a Cell Line Derived from Retinal Tumors in Transgenic Mice. Investig. Opthalmol. Vis. Sci. 2004;45:764. doi: 10.1167/iovs.03-1114. PubMed DOI PMC
Huang L., Kutluer M., Adani E., Comitato A., Marigo V. New In Vitro Cellular Model for Molecular Studies of Retinitis Pigmentosa. Int. J. Mol. Sci. 2021;22:6440. doi: 10.3390/ijms22126440. PubMed DOI PMC
Chen C., Fan T., Jin Y., Zhou Z., Yang Y., Zhu X., Zhang Z.R., Zhang Q., Huang Y. Orally delivered salmon calcitonin-loaded solid lipid nanoparticles prepared by micelle-double emulsion method via the combined use of different solid lipids. Nanomedicine. 2013;8:1085–1100. doi: 10.2217/nnm.12.141. PubMed DOI
Vighi E., Trifunovic D., Veiga-Crespo P., Rentsch A., Hoffmann D., Sahaboglu A., Strasser T., Kulkarni M., Bertolotti E., Van Den Heuvel A., et al. Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration. Proc. Natl. Acad. Sci. USA. 2018;115:E2997–E3006. doi: 10.1073/pnas.1718792115. PubMed DOI PMC
Firdessa R., Oelschlaeger T.A., Moll H. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems. Eur. J. Cell Biol. 2014;93:323–337. doi: 10.1016/j.ejcb.2014.08.001. PubMed DOI
Yang S.T., Zaitseva E., Chernomordik L.V., Melikov K. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys. J. 2010;99:2525–2533. doi: 10.1016/j.bpj.2010.08.029. PubMed DOI PMC
Foroozandeh P., Aziz A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018;13:339. doi: 10.1186/s11671-018-2728-6. PubMed DOI PMC
Kong B., Seog J.H., Graham L.M., Lee S.B. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine. 2011;6:929–941. doi: 10.2217/nnm.11.77. PubMed DOI PMC
He C., Hu Y., Yin L., Tang C., Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–3666. doi: 10.1016/j.biomaterials.2010.01.065. PubMed DOI
Kumari S., MG S., Mayor S. Endocytosis unplugged: Multiple ways to enter the cell. Cell Res. 2010;20:256–275. doi: 10.1038/cr.2010.19. PubMed DOI PMC
Bertolotti E., Neri A., Camparini M., Macaluso C., Marigo V. Stem cells as source for retinal pigment epithelium transplantation. Prog. Retin. Eye Res. 2014;42:130–144. doi: 10.1016/j.preteyeres.2014.06.002. PubMed DOI
Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC
Palocci C., Valletta A., Chronopoulou L., Donati L., Bramosanti M., Brasili E., Baldan B., Pasqua G. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant Cell Rep. 2017;36:1917–1928. doi: 10.1007/s00299-017-2206-0. PubMed DOI
Arana L., Bayón-Cordero L., Sarasola L., Berasategi M., Ruiz S., Alkorta I. Solid Lipid Nanoparticles Surface Modification Modulates Cell Internalization and Improves Chemotoxic Treatment in an Oral Carcinoma Cell Line. Nanomaterials. 2019;9:464. doi: 10.3390/nano9030464. PubMed DOI PMC
Belhadj S., Tolone A., Christensen G., Das S., Chen Y., Paquet-Durand F. Long-Term, Serum-Free Cultivation of Organotypic Mouse Retina Explants with Intact Retinal Pigment Epithelium. J. Vis. Exp. 2020;165:e61868. doi: 10.3791/61868. PubMed DOI