Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Validation Study
PubMed
25957576
PubMed Central
PMC4432514
DOI
10.1186/s13071-015-0878-2
PII: 10.1186/s13071-015-0878-2
Knihovny.cz E-resources
- MeSH
- Entomology methods MeSH
- Insect Proteins analysis MeSH
- Molecular Sequence Data MeSH
- Psychodidae chemistry classification MeSH
- Electron Transport Complex IV genetics MeSH
- Sequence Analysis, DNA MeSH
- Sensitivity and Specificity MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods MeSH
- Temperature MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Validation Study MeSH
- Names of Substances
- Insect Proteins MeSH
- Electron Transport Complex IV MeSH
BACKGROUND: Rapid, accurate and high-throughput identification of vector arthropods is of paramount importance in surveillance programmes that are becoming more common due to the changing geographic occurrence and extent of many arthropod-borne diseases. Protein profiling by MALDI-TOF mass spectrometry fulfils these requirements for identification, and reference databases have recently been established for several vector taxa, mostly with specimens from laboratory colonies. METHODS: We established and validated a reference database containing 20 phlebotomine sand fly (Diptera: Psychodidae, Phlebotominae) species by using specimens from colonies or field-collections that had been stored for various periods of time. RESULTS: Identical biomarker mass patterns ('superspectra') were obtained with colony- or field-derived specimens of the same species. In the validation study, high quality spectra (i.e. more than 30 evaluable masses) were obtained with all fresh insects from colonies, and with 55/59 insects deep-frozen (liquid nitrogen/-80 °C) for up to 25 years. In contrast, only 36/52 specimens stored in ethanol could be identified. This resulted in an overall sensitivity of 87 % (140/161); specificity was 100 %. Duration of storage impaired data counts in the high mass range, and thus cluster analyses of closely related specimens might reflect their storage conditions rather than phenotypic distinctness. A major drawback of MALDI-TOF MS is the restricted availability of in-house databases and the fact that mass spectrometers from 2 companies (Bruker, Shimadzu) are widely being used. We have analysed fingerprints of phlebotomine sand flies obtained by automatic routine procedure on a Bruker instrument by using our database and the software established on a Shimadzu system. The sensitivity with 312 specimens from 8 sand fly species from laboratory colonies when evaluating only high quality spectra was 98.3 %; the specificity was 100 %. The corresponding diagnostic values with 55 field-collected specimens from 4 species were 94.7 % and 97.4 %, respectively. CONCLUSIONS: A centralized high-quality database (created by expert taxonomists and experienced users of mass spectrometers) that is easily amenable to customer-oriented identification services is a highly desirable resource. As shown in the present work, spectra obtained from different specimens with different instruments can be analysed using a centralized database, which should be available in the near future via an online platform in a cost-efficient manner.
Avia GIS Risschotlei 33 2980 Zoersel Belgium
Instituto de Microbiología Universidad San Francisco de Quito Diego de Robles S N Quito Ecuador
See more in PubMed
Schaffner F, Kaufmann C, Hegglin D, Mathis A. The invasive mosquito Aedes japonicus in central Europe. Med Vet Entomol. 2009;23:448–451. doi: 10.1111/j.1365-2915.2009.00825.x. PubMed DOI
Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12:435–447. doi: 10.1089/vbz.2011.0814. PubMed DOI PMC
Schaffner F, Mathis A. Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future. Lancet Infect Dis. 2014;14:1271–1280. doi: 10.1016/S1473-3099(14)70834-5. PubMed DOI
Jaenson TGT, Jaenson DGE, Eisen L, Petersson E, Lindgren E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit Vectors. 2012;5:8. doi: 10.1186/1756-3305-5-8. PubMed DOI PMC
Dergousoff SJ, Galloway TD, Lindsay LR, Curry PS, Chilton NB. Range expansion of Dermacentor variabilis and Dermacentor andersoni (Acari: Ixodidae) near their northern distributional limits. J Med Entomol. 2013;50:510–520. doi: 10.1603/ME12193. PubMed DOI
Nolan DV, Dallas JF, Piertney SB, Mordue Luntz AJ. Incursion and range expansion in the bluetongue vector Culicoides imicola in the Mediterranean basin: a phylogeographic analysis. Med Vet Entomol. 2008;22:340–351. doi: 10.1111/j.1365-2915.2008.00744.x. PubMed DOI
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI
Poeppl W, Obwaller AG, Weiler M, Burgmann H, Mooseder G, Lorentz S, et al. Emergence of sandflies (Phlebotominae) in Austria, a Central European country. Parasitol Res. 2013;112(12):4231–4237. doi: 10.1007/s00436-013-3615-9. PubMed DOI PMC
Medlock JM, Hansford KM, van Bortel W, Zeller H, Alten B. A summary of the evidence for the change in European distribution of phlebotomine sand flies (Diptera: Psychodidae) of public health importance. J Vector Ecol. 2014;39:72–77. doi: 10.1111/j.1948-7134.2014.12072.x. PubMed DOI
Schaffner F, Bellini R, Petrić D, Scholte E-J, Zeller H, Marrama Rakotoarivony L. Development of guidelines for the surveillance of invasive mosquitoes in Europe. Parasit Vectors. 2013;6:209. doi: 10.1186/1756-3305-6-209. PubMed DOI PMC
European Centre for Disease Prevention and Control: Guidelines for the surveillance of native mosquitoes in Europe. Stockholm: ECDC Technical Report; 2014. doi:10.2900/37227
Depaquit J, Bounamous A, Akhoundi M, Augot D, Sauvage F, Dvorak V, et al. A taxonomic study of Phlebotomus (Larroussius) perfiliewi s. l. Infect Genet Evol. 2013;20:500–508. doi: 10.1016/j.meegid.2013.10.006. PubMed DOI
Prudhomme J, Gunay F, Rahola N, Ouanaimi F, Guernaoui S, Boumezzough A, et al. Wing size and shape variation of Phlebotomus papatasi (Diptera: Psychodidae) populations from the south and north slopes of the Atlas Mountains in Morocco. J Vector Ecol. 2012;37:137–147. doi: 10.1111/j.1948-7134.2012.00210.x. PubMed DOI
Ready PD. Biology of phlebotomine sand flies as vectors of disease agents. Ann Rev Entomol. 2013;58:227–250. doi: 10.1146/annurev-ento-120811-153557. PubMed DOI
Dvorak V, Halada P, Hlavackova K, Dokianakis E, Antoniou M, Volf P. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasit Vectors. 2014;7:21. doi: 10.1186/1756-3305-7-21. PubMed DOI PMC
Depaquit J. Molecular systematics applied to Phlebotomine sandflies: Review and perspectives. Infect Genet Evol. 2014;28:744–756. doi: 10.1016/j.meegid.2014.10.027. PubMed DOI
Depaquit J, Ferte H, Leger N, Lefranc F, Alves-Pires C, Hanafi H, et al. ITS 2 sequences heterogeneity in Phlebotomus sergenti and Phlebotomus similis (Diptera, Psychodidae): possible consequences in their ability to transmit Leishmania tropica. Int J Parasitol. 2002;32:1123–1131. doi: 10.1016/S0020-7519(02)00088-7. PubMed DOI
Dvorak V, Votypka J, Aytekin A, Alten B, Volf P. Intraspecific variability of natural populations of Phlebotomus sergenti, the main vector of Leishmania tropica. J Vector Ecol. 2011;36:S49–57. doi: 10.1111/j.1948-7134.2011.00111.x. PubMed DOI
Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36:380–407. doi: 10.1111/j.1574-6976.2011.00298.x. PubMed DOI
Posteraro B, De Carolis E, Vella A, Sanguinetti M. MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomic. 2013;10:151–164. doi: 10.1586/epr.13.8. PubMed DOI
Mellmann A, Bimet F, Bizet C, Borovskaya AD, Drake RR, Eigner U, et al. High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J Clin Microbiol. 2009;47:3732–3734. doi: 10.1128/JCM.00921-09. PubMed DOI PMC
Campbell PM. Species differentiation of insects and other multicellular organisms using matrix-assisted laser desorption/ionization time of flight mass spectrometry protein profiling. Syst Entomol. 2005;30:186–190. doi: 10.1111/j.1365-3113.2004.00279.x. DOI
Feltens R, Gorner R, Kalkhof S, Groger-Arndt H, von Bergen M. Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. BMC Evol Biol. 2010;10:95. doi: 10.1186/1471-2148-10-95. PubMed DOI PMC
Hoppenheit A, Murugaiyan J, Bauer B, Steuber S, Clausen PH, Roesler U. Identification of Tsetse (Glossina spp.) using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. PLoS Negl Trop Dis. 2013;7 doi: 10.1371/journal.pntd.0002305. PubMed DOI PMC
Karger A, Kampen H, Bettin B, Dautel H, Ziller M, Hoffmann B, et al. Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks Tick Borne Dis. 2012;3:78–89. doi: 10.1016/j.ttbdis.2011.11.002. PubMed DOI
Kaufmann C, Schaffner F, Ziegler D, Pfluger V, Mathis A. Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasitology. 2012;139:248–258. doi: 10.1017/S0031182011001764. PubMed DOI
Kaufmann C, Ziegler D, Schaffner F, Carpenter S, Pfluger V, Mathis A. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for characterization of Culicoides nubeculosus biting midges. Med Vet Entomol. 2011;25:32–38. doi: 10.1111/j.1365-2915.2010.00927.x. PubMed DOI
Muller P, Pfluger V, Wittwer M, Ziegler D, Chandre F, Simard F, et al. Identification of cryptic Anopheles mosquito species by molecular protein profiling. PLoS One. 2013;8 doi: 10.1371/journal.pone.0057486. PubMed DOI PMC
Perera MR, Vargas RDF, Jones MGK. Identification of aphid species using protein profiling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Entomol Exp Appl. 2005;117:243–247. doi: 10.1111/j.1570-7458.2005.00353.x. DOI
Yssouf A, Flaudrops C, Drali R, Kernif T, Socolovschi C, Berenger JM, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of tick vectors. J Clin Microbiol. 2013;51:522–528. doi: 10.1128/JCM.02665-12. PubMed DOI PMC
Yssouf A, Socolovschi C, Flaudrops C, Ndiath MO, Sougoufara S, Dehecq JS, et al. Matrix-assisted laser desorption ionization–time of flight mass spectrometry: an emerging tool for the rapid identification of mosquito vectors. PLoS One. 2013;8 doi: 10.1371/journal.pone.0072380. PubMed DOI PMC
Yssouf A, Socolovschi C, Leulmi H, Kernif T, Bitam I, Audoly G, et al. Identification of flea species using MALDI-TOF/MS. Comp Immunol Microbiol Infect Dis. 2014;37:153–157. doi: 10.1016/j.cimid.2014.05.002. PubMed DOI
Yssouf A, Parola P, Lindstrom A, Lilja T, LAmbert G, Bondesson U, et al. Identification of European mosquito species by MALDI-TOF MS. Parasitol Res. 2014;113:2375–2378. doi: 10.1007/s00436-014-3876-y. PubMed DOI
Steinmann IC, Pfluger V, Schaffner F, Mathis A, Kaufmann C. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae. Parasitology. 2013;140:318–327. doi: 10.1017/S0031182012001618. PubMed DOI
Dieme C, Yssouf A, Vega-Rúa A, Berenger J-M, Failloux A-B, Raoult D, et al. Accurate identification of Culicidae at aquatic developmental stages by MALDI–TOF MS profiling. Parasit Vectors. 2014;7:544. doi: 10.1186/s13071-014-0544-0. PubMed DOI PMC
Schaffner F, Kaufmann C, Pfluger V, Mathis A. Rapid protein profiling facilitates surveillance of invasive mosquito species. Parasit Vectors. 2014;7:142. doi: 10.1186/1756-3305-7-142. PubMed DOI PMC
Alkan C, Bichaud L, de Lamballerie X, Alten B, Gould EA, Charrel RN. Sandfly-borne phleboviruses of Eurasia and Africa: epidemiology, genetic diversity, geographic range, control measures. Antiviral Res. 2013;100:54–74. doi: 10.1016/j.antiviral.2013.07.005. PubMed DOI
Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. WHO Leishmaniasis Control Team: Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7 doi: 10.1371/journal.pone.0035671. PubMed DOI PMC
Zapata S, Mejia L, Le Pont F, Leon R, Pesson B, Ravel C, et al. A study of a population of Nyssomyia trapidoi (Diptera: Psychodidae) caught on the Pacific coast of Ecuador. Parasit Vectors. 2012;5:144. doi: 10.1186/1756-3305-5-144. PubMed DOI PMC
Dedet JP, Addadi K, Belazzoug S. Les phlébotomes (Diptera, Psychodidae) d'Algérie. Cah ORSTOM, Sér Ent Méd Parasitol. 1984;22:99–127.
Lewis D. A taxonomic review of the genus Phlebotomus. Bull Brit Mus Nat Hist (Entomol) 1982;45:121–209.
Young DG, Duncan MA: Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Memoirs of the American Entomological Institute, vol. 54. Associated Publishers, Gainesville, Florida, USA; 1994, 881 pp. www.dtic.mil/dtic/tr/fulltext/u2/a285737.pdf
Marcondes CB. A proposal of generic and subgeneric abbreviations for Phlebotomine sandflies (Diptera: Psychodidae: Phlebotominae) of the World. Entomol News. 2007;118:351–356. doi: 10.3157/0013-872X(2007)118[351:APOGAS]2.0.CO;2. DOI
Wenk C, Kaufmann C, Schaffner F, Mathis A. Molecular characterisation of Swiss Ceratopogonidae (Diptera) and evaluation of real-time PCR assays for the identification of Culicoides biting midges. Vet Parasitol. 2012;184:258–266. doi: 10.1016/j.vetpar.2011.08.034. PubMed DOI
Esseghir S, Ready PD, Killick-Kendrick R, Ben-Ismail R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect Mol Biol. 1997;6:211–225. doi: 10.1046/j.1365-2583.1997.00175.x. PubMed DOI
Parvizi P, Ready PD. Molecular investigation of the population differentiation of Phlebotomus papatasi, important vector of Leishmania major, in different habitats and regions of Iran. Iranian Biomed J. 2006;10:69–77.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech. 1994;3:294–299. PubMed
Aransay AM, Scoulica E, Tselentis Y, Ready PD. Phylogenetic relationships of phlebotomine sandflies inferred from small subunit nuclear ribosomal DNA. Insect Mol Biol. 2000;9:157–168. doi: 10.1046/j.1365-2583.2000.00168.x. PubMed DOI
Kaufmann C, Steinmann IC, Hegglin D, Schaffner F, Mathis A. Spatio-temporal occurrence of Culicoides biting midges in the climatic regions of Switzerland, along with large scale species identification by MALDI-TOF mass spectrometry. Parasit Vectors. 2012;5:246. doi: 10.1186/1756-3305-5-246. PubMed DOI PMC
Hoppenheit A, Murugaiyan J, Bauer B, Clausen P-H, Roesler U. Analysis of Glossina palpalis gambiensis and Glossina tachinoides from two distant locations in Burkina Faso using MALDI TOF MS. Parasitol Res. 2014;113:723–726. doi: 10.1007/s00436-013-3701-z. PubMed DOI
Depaquit J, Muller F, Léger N. Phlebotomus (Euphlebotomus) barguesae n. sp. from Thailand (Diptera-Psychodidae) Parasit Vectors. 2009;2:5. doi: 10.1186/1756-3305-2-5. PubMed DOI PMC
Alby K, Gilligan PH, Miller MB. Comparison of matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry platforms for the identification of gram-negative rods from patients with cystic fibrosis. J Clin Microbiol. 2013;51:3852–3854. doi: 10.1128/JCM.01618-13. PubMed DOI PMC
Lohmann C, Sabou M, Moussaoui W, Prevost G, Delarbre J-M, Candolfi E, et al. Comparison between the Biflex III-Biotyper and the Axima-SARAMIS systems for yeast identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51:1231–1236. doi: 10.1128/JCM.03268-12. PubMed DOI PMC
GENBANK
KP763471, KP763472