Accelerated nitrogen cycling on Mediterranean seagrass leaves at volcanic CO2 vents

. 2024 Mar 19 ; 7 (1) : 341. [epub] 20240319

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38503855
Odkazy

PubMed 38503855
PubMed Central PMC11254932
DOI 10.1038/s42003-024-06011-0
PII: 10.1038/s42003-024-06011-0
Knihovny.cz E-zdroje

Seagrass meadows form highly productive and diverse ecosystems in coastal areas worldwide, where they are increasingly exposed to ocean acidification (OA). Efficient nitrogen (N) cycling and uptake are essential to maintain plant productivity, but the effects of OA on N transformations in these systems are poorly understood. Here we show that complete N cycling occurs on leaves of the Mediterranean seagrass Posidonia oceanica at a volcanic CO2 vent near Ischia Island (Italy), with OA affecting both N gain and loss while the epiphytic microbial community structure remains largely unaffected. Daily leaf-associated N2 fixation contributes to 35% of the plant's N demand under ambient pH, while it contributes to 45% under OA. Nitrification potential is only detected under OA, and N-loss via N2 production increases, although the balance remains decisively in favor of enhanced N gain. Our work highlights the role of the N-cycling microbiome in seagrass adaptation to OA, with key N transformations accelerating towards increased N gain.

Zobrazit více v PubMed

Hemminga, M. A. & Duarte, C. M. Seagrass Ecology. Seagrass Ecology (Cambridge University Press, 2000). 10.1017/cbo9780511525551.

Björk, M., Short, F. T., Mcleod, E. & Beer, S. Managing seagrasses for resilience to climate change. (IUCN, Gland, Switzerland, 2008).

Hyman AC, Frazer TK, Jacoby CA, Frost JR, Kowalewski M. Long-term persistence of structured habitats: seagrass meadows as enduring hotspots of biodiversity and faunal stability. Proc. R. Soc. B. 2019;286:20191861. doi: 10.1098/rspb.2019.1861. PubMed DOI PMC

Fourqurean JW, et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 2012;5:505–509. doi: 10.1038/ngeo1477. DOI

Duarte CM, Kennedy H, Marbà N, Hendriks I. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean Coast Manag. 2013;83:32–38. doi: 10.1016/j.ocecoaman.2011.09.001. DOI

Hendriks IE, et al. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences. 2014;11:333–346. doi: 10.5194/bg-11-333-2014. DOI

Lacoue-Labarthe T, et al. Impacts of ocean acidification in a warming Mediterranean Sea: An overview. Reg. Stud. Mar. Sci. 2016;5:1–11.

Goyet C, et al. Thermodynamic forecasts of the Mediterranean Sea acidification. Mediterr. Mar. Sci. 2016;17:508–518. doi: 10.12681/mms.1487. DOI

Koch M, Bowes G, Ross C, Zhang X-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang Biol. 2013;19:103–132. doi: 10.1111/j.1365-2486.2012.02791.x. PubMed DOI

Cox TE, et al. Effects of ocean acidification on Posidonia oceanica epiphytic community and shoot productivity. J. Ecol. 2015;103:1594–1609. doi: 10.1111/1365-2745.12477. DOI

Hernán G, et al. Seagrass (Posidonia oceanica) seedlings in a high-CO 2 world: from physiology to herbivory. Sci. Rep. 2016;6:38017. doi: 10.1038/srep38017. PubMed DOI PMC

Berlinghof J, et al. The role of epiphytes in seagrass productivity under ocean acidification. Sci. Rep. 2022;12:6249. doi: 10.1038/s41598-022-10154-7. PubMed DOI PMC

Cox TE, et al. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica. Biogeosciences. 2016;13:2179–2194. doi: 10.5194/bg-13-2179-2016. DOI

Scartazza A, et al. Carbon and nitrogen allocation strategy in Posidonia oceanica is altered by seawater acidification. Sci. Total Environ. 2017;607:954–964. doi: 10.1016/j.scitotenv.2017.06.084. PubMed DOI

Donnarumma L, Lombardi C, Cocito S, Gambi MC. Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics. Mediterr. Mar. Sci. 2014;15:498–509. doi: 10.12681/mms.677. DOI

Mecca S, Casoli E, Ardizzone G, Gambi MC. Effects of ocean acidification on phenology and epiphytes of the seagrass Posidonia oceanica at two CO2 vent systems of Ischia (Italy) Mediterr. Mar. Sci. 2020;21:70–83. doi: 10.12681/mms.20795. DOI

Gravili C, Cozzoli F, Gambi MC. Epiphytic hydroids on Posidonia oceanica seagrass meadows are winner organisms under future ocean acidification conditions: evidence from a CO2 vent system (Ischia Island, Italy) Eur. Zool. J. 2021;88:472–486. doi: 10.1080/24750263.2021.1899317. DOI

Hemminga MA, Harrison PG. & Van Lent, F. The balance of nutrient losses and gains in seagrass meadows. Mar. Ecol. Prog. Ser. 1991;71:85–96. doi: 10.3354/meps071085. DOI

Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Microb. Biogeochem. 2018;16:263–276. PubMed

Wyatt NJ, et al. Effects of high CO2 on the fixed nitrogen inventory of the Western English Channel. J. Plankton Res. 2010;32:631–641. doi: 10.1093/plankt/fbp140. DOI

Wannicke N, Frey C, Law CS, Voss M. The response of the marine nitrogen cycle to ocean acidification. Glob. Chang Biol. 2018;24:5031–5043. doi: 10.1111/gcb.14424. PubMed DOI

Hutchins DA, Mulholland MR, Fu F. Nutrient Cycles and Marine Microbes in a CO2-Enriched Ocean. Oceanography. 2009;22:128–145. doi: 10.5670/oceanog.2009.103. DOI

Levitan O, et al. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Glob. Chang. Biol. 2007;13:531–538. doi: 10.1111/j.1365-2486.2006.01314.x. DOI

Kranz SA, et al. Combined Effects of CO 2 and Light on the N2-Fixing Cyanobacterium Trichodesmium IMS101: Physiological Responses. Plant Physiol. 2010;154:334–345. doi: 10.1104/pp.110.159145. PubMed DOI PMC

Beman JM, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. PNAS. 2011;108:208–213. doi: 10.1073/pnas.1011053108. PubMed DOI PMC

Ugarelli K, Chakrabarti S, Laas P, Stingl U. The Seagrass Holobiont and Its Microbiome. Microorganisms. 2017;5:81. doi: 10.3390/microorganisms5040081. PubMed DOI PMC

Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C. The seagrass holobiont: Understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol. Lett. 2019;366:1–15. doi: 10.1093/femsle/fnz057. PubMed DOI

Pfister CA, et al. Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification. Sci. Rep. 2023;13:19996. doi: 10.1038/s41598-023-47126-4. PubMed DOI PMC

Mohr, W. et al. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature2021, 1–5 (2021) 10.1038/s41586-021-04063-4. PubMed PMC

Agawin NSR, et al. Significant nitrogen fixation activity associated with the phyllosphere of Mediterranean seagrass Posidonia oceanica: first report. Mar. Ecol. Prog. Ser. 2016;551:53–62. doi: 10.3354/meps11755. DOI

Garcias-Bonet N, Arrieta JM, Duarte CM, Marbà N. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. Aquat. Bot. 2016;131:57–60. doi: 10.1016/j.aquabot.2016.03.002. DOI

Lehnen N, et al. High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica. Syst. Appl. Microbiol. 2016;39:476–483. doi: 10.1016/j.syapm.2016.08.004. PubMed DOI

Agawin NSR, Ferriol P, Sintes E. Simultaneous measurements of nitrogen fixation in different plant tissues of the seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser. 2019;611:111–127. doi: 10.3354/meps12854. DOI

Ling J, et al. Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass Thalassia hemprichii in Coral Reef Ecosystems. Front. Microbiol. 2018;9:7. doi: 10.3389/fmicb.2018.00007. PubMed DOI PMC

Noisette F, Depetris A, Kühl M, Brodersen KE. Flow and epiphyte growth effects on the thermal, optical and chemical microenvironment in the leaf phyllosphere of seagrass (Zostera marina) J. R. Soc. Interface. 2020;17:20200485. doi: 10.1098/rsif.2020.0485. PubMed DOI PMC

Brodersen KE, Kühl M. Effects of Epiphytes on the Seagrass Phyllosphere. Front. Mar. Sci. 2022;9:1–10. doi: 10.3389/fmars.2022.821614. PubMed DOI

Kohn T, et al. The Microbiome of Posidonia oceanica Seagrass Leaves Can Be Dominated by Planctomycetes. Front. Microbiol. 2020;11:1458. doi: 10.3389/fmicb.2020.01458. PubMed DOI PMC

Agawin NSR, Ferriol P, Sintes E, Moyà G. Temporal and spatial variability of in situ nitrogen fixation activities associated with the Mediterranean seagrass Posidonia oceanica meadows. Limnol. Oceanogr. 2017;62:2575–2592. doi: 10.1002/lno.10591. DOI

Lepoint G, Millet S, Dauby P, Gobert S, Bouquegneau JM. Annual nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake experiments. Mar. Ecol. Prog. Ser. 2002;237:87–96. doi: 10.3354/meps237087. DOI

Salk KR, Erler DV, Eyre BD, Carlson-Perret N, Ostrom NE. Unexpectedly high degree of anammox and DNRA in seagrass sediments: Description and application of a revised isotope pairing technique. Geochim. Cosmochim. Acta. 2017;211:64–78. doi: 10.1016/j.gca.2017.05.012. DOI

Touchette BW, Burkholder JAM. Review of nitrogen and phosphorus metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 2000;250:133–167. doi: 10.1016/S0022-0981(00)00195-7. PubMed DOI

Dang H, Li T, Chen M, Huang G. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 2008;74:52–60. doi: 10.1128/AEM.01400-07. PubMed DOI PMC

Mejia AY, et al. Assessing the ecological status of seagrasses using morphology, biochemical descriptors and microbial community analyses. A study in Halophila stipulacea (Forsk.) Aschers meadows in the northern Red Sea. Ecol. Indic. 2016;60:1150–1163. doi: 10.1016/j.ecolind.2015.09.014. DOI

Trevathan-Tackett SM, et al. Spatial variation of bacterial and fungal communities of estuarine seagrass leaf microbiomes. Aquat. Microb. Ecol. 2020;84:59–74. doi: 10.3354/ame01926. DOI

Matallana-Surget S, et al. Proteogenomic Analysis of Epibacterium Mobile BBCC367, a Relevant Marine Bacterium Isolated From the South Pacific Ocean. Front. Microbiol. 2018;9:3125. doi: 10.3389/fmicb.2018.03125. PubMed DOI PMC

Durham BP, et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand. Genom. Sci. 2014;9:632–645. doi: 10.4056/sigs.4998989. PubMed DOI PMC

Li Y, et al. Microbiota and functional analyses of nitrogen-fixing bacteria in root-knot nematode parasitism of plants. Microbiome. 2023;11:1–23. doi: 10.1186/s40168-023-01484-3. PubMed DOI PMC

Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–824. doi: 10.1038/s41396-017-0008-6. PubMed DOI PMC

Moynihan MA, et al. Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. ISME J. 2022;16:233–246. doi: 10.1038/s41396-021-01054-1. PubMed DOI PMC

Lindström K, Mousavi SA. Minireview Effectiveness of nitrogen fixation in rhizobia. Micro. Biotechnol. 2020;13:1314–1335. doi: 10.1111/1751-7915.13517. PubMed DOI PMC

Avis TJ, Gravel V, Antoun H, Tweddell RJ. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol. Biochem. 2008;40:1733–1740. doi: 10.1016/j.soilbio.2008.02.013. DOI

Blanchet, E. et al. Quorum sensing and quorum quenching in the Mediterranean Seagrass Posidonia Oceanica microbiota. Front. Mar. Sci.4, 218 (2017).

Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ. Trichodesmium – a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 2013;37:286–302. doi: 10.1111/j.1574-6976.2012.00352.x. PubMed DOI PMC

Berrendero E, et al. Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river. Sci. Rep. 2016;6:30920. doi: 10.1038/srep30920. PubMed DOI PMC

Crump, B. C., Wojahn, J. M., Tomas, F. & Mueller, R. S. Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes. Front. Microbiol.10.3389/fmicb.2018.00388 (2018). PubMed PMC

Weigel BL, Miranda KK, Fogarty EC, Watson AR, Pfister CA. Functional Insights into the Kelp Microbiome from Metagenome-Assembled Genomes. mSystems. 2022;7:e0142221. doi: 10.1128/msystems.01422-21. PubMed DOI PMC

Sanders-Smith R, et al. Host-Specificity and Core Taxa of Seagrass Leaf Microbiome Identified Across Tissue Age and Geographical Regions. Front. Ecol. Evol. 2020;8:1–13. doi: 10.3389/fevo.2020.605304. DOI

Zhang Z, et al. Long-Term Survival of Synechococcus and Heterotrophic Bacteria without External Nutrient Supply after Changes in Their Relationship from Antagonism to Mutualism. mBio. 2021;12:e0161421. doi: 10.1128/mBio.01614-21. PubMed DOI PMC

Van Duc L, et al. High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment. Chemosphere. 2018;196:69–77. doi: 10.1016/j.chemosphere.2017.12.159. PubMed DOI

Yin S, Li J, Dong H, Qiang Z. Unraveling the nitrogen removal properties and microbial characterization of “Candidatus Scalindua”-dominated consortia treating seawater-based wastewater. Sci. Total Environ. 2021;786:147470. doi: 10.1016/j.scitotenv.2021.147470. PubMed DOI

Bondoso J, et al. Epiphytic Planctomycetes communities associated with three main groups of macroalgae. FEMS Microbiol. Ecol. 2017;93:fiw255. doi: 10.1093/femsec/fiw255. PubMed DOI PMC

Lage, O. M., Bondoso, J., Luis, R., Comolli, L. & Bengtsson, M. Planctomycetes and macroalgae, a striking association. Front. Microbiol.10.3389/fmicb.2014.00267 (2014). PubMed PMC

Delmont TO, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 2018;3:804–813. doi: 10.1038/s41564-018-0176-9. PubMed DOI PMC

Strous M, et al. Missing lithotroph identified as new planctomycete. Lett. Nat. 1999;400:446–449. doi: 10.1038/22749. PubMed DOI

Jetten MSM, et al. Biochemistry and molecular biology of anammox bacteria. Crit. Rev. Biochem. Mol. Biol. 2009;44:65–84. doi: 10.1080/10409230902722783. PubMed DOI

Rambo IM, Dombrowski N, Constant L, Erdner D, Baker BJ. Metabolic relationships of uncultured bacteria associated with the microalgae Gambierdiscus. Environ. Microbiol. 2020;22:1764–1783. doi: 10.1111/1462-2920.14878. PubMed DOI

Hutchins DA, Capone DG. The marine nitrogen cycle: new developments and global change. Nat. Rev. Microbiol. 2022;20:401–414. doi: 10.1038/s41579-022-00687-z. PubMed DOI

Jung M-Y, et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME. 2022;16:272–283. doi: 10.1038/s41396-021-01064-z. PubMed DOI PMC

Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nat. Lett. 2009;461:976–981. doi: 10.1038/nature08465. PubMed DOI

Liu J, Weinbauer MG, Maier C, Dai M, Gattuso JP. Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquat. Microb. Ecol. 2010;61:291–305. doi: 10.3354/ame01446. DOI

Kroeker KJ, et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang Biol. 2013;19:1884–1896. doi: 10.1111/gcb.12179. PubMed DOI PMC

Kitidis, V. et al. Impact of ocean acidification on benthic and water column ammonia oxidation. Geophys. Res. Lett.38, L21603 (2011).

Fulweiler RW, Emery HE, Heiss EM, Berounsky VM. Assessing the Role of pH in Determining Water Column Nitrification Rates in a Coastal System. Estuaries Coasts. 2011;34:1095–1102. doi: 10.1007/s12237-011-9432-4. DOI

Apostolaki ET, Vizzini S, Karakassis I. Leaf vs. epiphyte nitrogen uptake in a nutrient enriched Mediterranean seagrass (Posidonia oceanica) meadow. Aquat. Bot. 2012;96:58–62. doi: 10.1016/j.aquabot.2011.09.008. DOI

Ravaglioli C, et al. Nutrient Loading Fosters Seagrass Productivity Under Ocean Acidification. Sci. Rep. 2017;7:13732. doi: 10.1038/s41598-017-14075-8. PubMed DOI PMC

Banister, R. B., Schwarz, M. T., Fine, M., Ritchie, K. B. & Muller, E. M. Instability and Stasis Among the Microbiome of Seagrass Leaves, Roots and Rhizomes, and Nearby Sediments Within a Natural pH Gradient. Microb. Ecol. 10.1007/s00248-021-01867-9 (2021). PubMed PMC

Rotini A, Conte C, Winters G, Vasquez MI, Migliore L. Undisturbed Posidonia oceanica meadows maintain the epiphytic bacterial community in different environments. Environ. Sci. Pollut. Res. 2023;30:95464–95474. doi: 10.1007/s11356-023-28968-x. PubMed DOI PMC

Lidbury, I., Johnson, V., Hall-Spencer, J. M., Munn, C. B. & Cunliffe, M. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem. Mar. Pollut. Bull. 10.1016/j.marpolbul.2012.02.011 (2012). PubMed

Cardini U, Van Hoytema N, Bednarz VN, Al-Rshaidat MMD, Wild C. N2 fixation and primary productivity in a red sea Halophila stipulacea meadow exposed to seasonality. Limnol. Oceanogr. 2018;63:786–798. doi: 10.1002/lno.10669. DOI

Hall-Spencer JM, et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature. 2008;454:96–99. doi: 10.1038/nature07051. PubMed DOI

Foo SA, Byrne M, Ricevuto E, Gambi MC. The carbon dioxide vents of Ischia, Italy, a natural system to assess impacts of ocean acidification on marine ecosystems: An overview of research and comparisons with other vent systems. Oceanogr. Mar. Biol. 2018;56:237–310.

Basili, M. et al. Major Role of Surrounding Environment in Shaping Biofilm Community Composition on Marine Plastic Debris. Front. Mar. Sci. 7, 262 (2020).

Walters, W. et al. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems1, e00009–15 (2016). PubMed PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org (2021).

Callahan BJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Quast C, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics, 10.1093/bioinformatics/bty175 (2018). PubMed PMC

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front. Microbiol. 2017;8:2224. doi: 10.3389/fmicb.2017.02224. PubMed DOI PMC

Oksanen, F.J., et al. Vegan: Community Ecology Package, https://CRAN.R-project.org/package=vegan (2020).

Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001;26:32–46.

Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-Like Differential Expression (ALDEx) Analysis for Mixed Population RNA-Seq. PLoS One. 2013;8:e67019. doi: 10.1371/journal.pone.0067019. PubMed DOI PMC

Nearing JT, et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 2022;13:342. doi: 10.1038/s41467-022-28034-z. PubMed DOI PMC

Klawonn I, et al. Simple approach for the preparation of 15−15 N 2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations. Front. Microbiol. 2015;6:769. doi: 10.3389/fmicb.2015.00769. PubMed DOI PMC

Montoya JP, Voss M, Kähler P, Capone DG. A Simple, High-Precision, High-Sensitivity Tracer Assay for N2 Fixation. Appl. Environ. Microbiol. 1996;62:986–993. doi: 10.1128/aem.62.3.986-993.1996. PubMed DOI PMC

Altabet MA, Wassenaar LI, Douence C, Roy R. A Ti(III) reduction method for one-step conversion of seawater and freshwater nitrate into N2O for stable isotopic analysis of 15N/14N, 18O/16O and 17O/16O. Rapid Commun. Mass. Spectrom. 2019;33:1227–1239. doi: 10.1002/rcm.8454. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...