Accelerated nitrogen cycling on Mediterranean seagrass leaves at volcanic CO2 vents
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38503855
PubMed Central
PMC11254932
DOI
10.1038/s42003-024-06011-0
PII: 10.1038/s42003-024-06011-0
Knihovny.cz E-zdroje
- MeSH
- dusík MeSH
- koncentrace vodíkových iontů MeSH
- listy rostlin MeSH
- mikrobiota * MeSH
- mořská voda * chemie MeSH
- oxid uhličitý MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- oxid uhličitý MeSH
Seagrass meadows form highly productive and diverse ecosystems in coastal areas worldwide, where they are increasingly exposed to ocean acidification (OA). Efficient nitrogen (N) cycling and uptake are essential to maintain plant productivity, but the effects of OA on N transformations in these systems are poorly understood. Here we show that complete N cycling occurs on leaves of the Mediterranean seagrass Posidonia oceanica at a volcanic CO2 vent near Ischia Island (Italy), with OA affecting both N gain and loss while the epiphytic microbial community structure remains largely unaffected. Daily leaf-associated N2 fixation contributes to 35% of the plant's N demand under ambient pH, while it contributes to 45% under OA. Nitrification potential is only detected under OA, and N-loss via N2 production increases, although the balance remains decisively in favor of enhanced N gain. Our work highlights the role of the N-cycling microbiome in seagrass adaptation to OA, with key N transformations accelerating towards increased N gain.
Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
Center for water technology Department of Biology Aarhus University Aarhus Denmark
Department of Marine Ecology University of Bremen Bremen Germany
Institute for Marine Biological Resources and Biotechnology National Research Council Ancona Italy
Zobrazit více v PubMed
Hemminga, M. A. & Duarte, C. M. Seagrass Ecology. Seagrass Ecology (Cambridge University Press, 2000). 10.1017/cbo9780511525551.
Björk, M., Short, F. T., Mcleod, E. & Beer, S. Managing seagrasses for resilience to climate change. (IUCN, Gland, Switzerland, 2008).
Hyman AC, Frazer TK, Jacoby CA, Frost JR, Kowalewski M. Long-term persistence of structured habitats: seagrass meadows as enduring hotspots of biodiversity and faunal stability. Proc. R. Soc. B. 2019;286:20191861. doi: 10.1098/rspb.2019.1861. PubMed DOI PMC
Fourqurean JW, et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 2012;5:505–509. doi: 10.1038/ngeo1477. DOI
Duarte CM, Kennedy H, Marbà N, Hendriks I. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean Coast Manag. 2013;83:32–38. doi: 10.1016/j.ocecoaman.2011.09.001. DOI
Hendriks IE, et al. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences. 2014;11:333–346. doi: 10.5194/bg-11-333-2014. DOI
Lacoue-Labarthe T, et al. Impacts of ocean acidification in a warming Mediterranean Sea: An overview. Reg. Stud. Mar. Sci. 2016;5:1–11.
Goyet C, et al. Thermodynamic forecasts of the Mediterranean Sea acidification. Mediterr. Mar. Sci. 2016;17:508–518. doi: 10.12681/mms.1487. DOI
Koch M, Bowes G, Ross C, Zhang X-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang Biol. 2013;19:103–132. doi: 10.1111/j.1365-2486.2012.02791.x. PubMed DOI
Cox TE, et al. Effects of ocean acidification on Posidonia oceanica epiphytic community and shoot productivity. J. Ecol. 2015;103:1594–1609. doi: 10.1111/1365-2745.12477. DOI
Hernán G, et al. Seagrass (Posidonia oceanica) seedlings in a high-CO 2 world: from physiology to herbivory. Sci. Rep. 2016;6:38017. doi: 10.1038/srep38017. PubMed DOI PMC
Berlinghof J, et al. The role of epiphytes in seagrass productivity under ocean acidification. Sci. Rep. 2022;12:6249. doi: 10.1038/s41598-022-10154-7. PubMed DOI PMC
Cox TE, et al. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica. Biogeosciences. 2016;13:2179–2194. doi: 10.5194/bg-13-2179-2016. DOI
Scartazza A, et al. Carbon and nitrogen allocation strategy in Posidonia oceanica is altered by seawater acidification. Sci. Total Environ. 2017;607:954–964. doi: 10.1016/j.scitotenv.2017.06.084. PubMed DOI
Donnarumma L, Lombardi C, Cocito S, Gambi MC. Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics. Mediterr. Mar. Sci. 2014;15:498–509. doi: 10.12681/mms.677. DOI
Mecca S, Casoli E, Ardizzone G, Gambi MC. Effects of ocean acidification on phenology and epiphytes of the seagrass Posidonia oceanica at two CO2 vent systems of Ischia (Italy) Mediterr. Mar. Sci. 2020;21:70–83. doi: 10.12681/mms.20795. DOI
Gravili C, Cozzoli F, Gambi MC. Epiphytic hydroids on Posidonia oceanica seagrass meadows are winner organisms under future ocean acidification conditions: evidence from a CO2 vent system (Ischia Island, Italy) Eur. Zool. J. 2021;88:472–486. doi: 10.1080/24750263.2021.1899317. DOI
Hemminga MA, Harrison PG. & Van Lent, F. The balance of nutrient losses and gains in seagrass meadows. Mar. Ecol. Prog. Ser. 1991;71:85–96. doi: 10.3354/meps071085. DOI
Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Microb. Biogeochem. 2018;16:263–276. PubMed
Wyatt NJ, et al. Effects of high CO2 on the fixed nitrogen inventory of the Western English Channel. J. Plankton Res. 2010;32:631–641. doi: 10.1093/plankt/fbp140. DOI
Wannicke N, Frey C, Law CS, Voss M. The response of the marine nitrogen cycle to ocean acidification. Glob. Chang Biol. 2018;24:5031–5043. doi: 10.1111/gcb.14424. PubMed DOI
Hutchins DA, Mulholland MR, Fu F. Nutrient Cycles and Marine Microbes in a CO2-Enriched Ocean. Oceanography. 2009;22:128–145. doi: 10.5670/oceanog.2009.103. DOI
Levitan O, et al. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Glob. Chang. Biol. 2007;13:531–538. doi: 10.1111/j.1365-2486.2006.01314.x. DOI
Kranz SA, et al. Combined Effects of CO 2 and Light on the N2-Fixing Cyanobacterium Trichodesmium IMS101: Physiological Responses. Plant Physiol. 2010;154:334–345. doi: 10.1104/pp.110.159145. PubMed DOI PMC
Beman JM, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. PNAS. 2011;108:208–213. doi: 10.1073/pnas.1011053108. PubMed DOI PMC
Ugarelli K, Chakrabarti S, Laas P, Stingl U. The Seagrass Holobiont and Its Microbiome. Microorganisms. 2017;5:81. doi: 10.3390/microorganisms5040081. PubMed DOI PMC
Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C. The seagrass holobiont: Understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol. Lett. 2019;366:1–15. doi: 10.1093/femsle/fnz057. PubMed DOI
Pfister CA, et al. Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification. Sci. Rep. 2023;13:19996. doi: 10.1038/s41598-023-47126-4. PubMed DOI PMC
Mohr, W. et al. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature2021, 1–5 (2021) 10.1038/s41586-021-04063-4. PubMed PMC
Agawin NSR, et al. Significant nitrogen fixation activity associated with the phyllosphere of Mediterranean seagrass Posidonia oceanica: first report. Mar. Ecol. Prog. Ser. 2016;551:53–62. doi: 10.3354/meps11755. DOI
Garcias-Bonet N, Arrieta JM, Duarte CM, Marbà N. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. Aquat. Bot. 2016;131:57–60. doi: 10.1016/j.aquabot.2016.03.002. DOI
Lehnen N, et al. High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica. Syst. Appl. Microbiol. 2016;39:476–483. doi: 10.1016/j.syapm.2016.08.004. PubMed DOI
Agawin NSR, Ferriol P, Sintes E. Simultaneous measurements of nitrogen fixation in different plant tissues of the seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser. 2019;611:111–127. doi: 10.3354/meps12854. DOI
Ling J, et al. Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass Thalassia hemprichii in Coral Reef Ecosystems. Front. Microbiol. 2018;9:7. doi: 10.3389/fmicb.2018.00007. PubMed DOI PMC
Noisette F, Depetris A, Kühl M, Brodersen KE. Flow and epiphyte growth effects on the thermal, optical and chemical microenvironment in the leaf phyllosphere of seagrass (Zostera marina) J. R. Soc. Interface. 2020;17:20200485. doi: 10.1098/rsif.2020.0485. PubMed DOI PMC
Brodersen KE, Kühl M. Effects of Epiphytes on the Seagrass Phyllosphere. Front. Mar. Sci. 2022;9:1–10. doi: 10.3389/fmars.2022.821614. PubMed DOI
Kohn T, et al. The Microbiome of Posidonia oceanica Seagrass Leaves Can Be Dominated by Planctomycetes. Front. Microbiol. 2020;11:1458. doi: 10.3389/fmicb.2020.01458. PubMed DOI PMC
Agawin NSR, Ferriol P, Sintes E, Moyà G. Temporal and spatial variability of in situ nitrogen fixation activities associated with the Mediterranean seagrass Posidonia oceanica meadows. Limnol. Oceanogr. 2017;62:2575–2592. doi: 10.1002/lno.10591. DOI
Lepoint G, Millet S, Dauby P, Gobert S, Bouquegneau JM. Annual nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake experiments. Mar. Ecol. Prog. Ser. 2002;237:87–96. doi: 10.3354/meps237087. DOI
Salk KR, Erler DV, Eyre BD, Carlson-Perret N, Ostrom NE. Unexpectedly high degree of anammox and DNRA in seagrass sediments: Description and application of a revised isotope pairing technique. Geochim. Cosmochim. Acta. 2017;211:64–78. doi: 10.1016/j.gca.2017.05.012. DOI
Touchette BW, Burkholder JAM. Review of nitrogen and phosphorus metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 2000;250:133–167. doi: 10.1016/S0022-0981(00)00195-7. PubMed DOI
Dang H, Li T, Chen M, Huang G. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 2008;74:52–60. doi: 10.1128/AEM.01400-07. PubMed DOI PMC
Mejia AY, et al. Assessing the ecological status of seagrasses using morphology, biochemical descriptors and microbial community analyses. A study in Halophila stipulacea (Forsk.) Aschers meadows in the northern Red Sea. Ecol. Indic. 2016;60:1150–1163. doi: 10.1016/j.ecolind.2015.09.014. DOI
Trevathan-Tackett SM, et al. Spatial variation of bacterial and fungal communities of estuarine seagrass leaf microbiomes. Aquat. Microb. Ecol. 2020;84:59–74. doi: 10.3354/ame01926. DOI
Matallana-Surget S, et al. Proteogenomic Analysis of Epibacterium Mobile BBCC367, a Relevant Marine Bacterium Isolated From the South Pacific Ocean. Front. Microbiol. 2018;9:3125. doi: 10.3389/fmicb.2018.03125. PubMed DOI PMC
Durham BP, et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand. Genom. Sci. 2014;9:632–645. doi: 10.4056/sigs.4998989. PubMed DOI PMC
Li Y, et al. Microbiota and functional analyses of nitrogen-fixing bacteria in root-knot nematode parasitism of plants. Microbiome. 2023;11:1–23. doi: 10.1186/s40168-023-01484-3. PubMed DOI PMC
Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–824. doi: 10.1038/s41396-017-0008-6. PubMed DOI PMC
Moynihan MA, et al. Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. ISME J. 2022;16:233–246. doi: 10.1038/s41396-021-01054-1. PubMed DOI PMC
Lindström K, Mousavi SA. Minireview Effectiveness of nitrogen fixation in rhizobia. Micro. Biotechnol. 2020;13:1314–1335. doi: 10.1111/1751-7915.13517. PubMed DOI PMC
Avis TJ, Gravel V, Antoun H, Tweddell RJ. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol. Biochem. 2008;40:1733–1740. doi: 10.1016/j.soilbio.2008.02.013. DOI
Blanchet, E. et al. Quorum sensing and quorum quenching in the Mediterranean Seagrass Posidonia Oceanica microbiota. Front. Mar. Sci.4, 218 (2017).
Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ. Trichodesmium – a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 2013;37:286–302. doi: 10.1111/j.1574-6976.2012.00352.x. PubMed DOI PMC
Berrendero E, et al. Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river. Sci. Rep. 2016;6:30920. doi: 10.1038/srep30920. PubMed DOI PMC
Crump, B. C., Wojahn, J. M., Tomas, F. & Mueller, R. S. Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes. Front. Microbiol.10.3389/fmicb.2018.00388 (2018). PubMed PMC
Weigel BL, Miranda KK, Fogarty EC, Watson AR, Pfister CA. Functional Insights into the Kelp Microbiome from Metagenome-Assembled Genomes. mSystems. 2022;7:e0142221. doi: 10.1128/msystems.01422-21. PubMed DOI PMC
Sanders-Smith R, et al. Host-Specificity and Core Taxa of Seagrass Leaf Microbiome Identified Across Tissue Age and Geographical Regions. Front. Ecol. Evol. 2020;8:1–13. doi: 10.3389/fevo.2020.605304. DOI
Zhang Z, et al. Long-Term Survival of Synechococcus and Heterotrophic Bacteria without External Nutrient Supply after Changes in Their Relationship from Antagonism to Mutualism. mBio. 2021;12:e0161421. doi: 10.1128/mBio.01614-21. PubMed DOI PMC
Van Duc L, et al. High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment. Chemosphere. 2018;196:69–77. doi: 10.1016/j.chemosphere.2017.12.159. PubMed DOI
Yin S, Li J, Dong H, Qiang Z. Unraveling the nitrogen removal properties and microbial characterization of “Candidatus Scalindua”-dominated consortia treating seawater-based wastewater. Sci. Total Environ. 2021;786:147470. doi: 10.1016/j.scitotenv.2021.147470. PubMed DOI
Bondoso J, et al. Epiphytic Planctomycetes communities associated with three main groups of macroalgae. FEMS Microbiol. Ecol. 2017;93:fiw255. doi: 10.1093/femsec/fiw255. PubMed DOI PMC
Lage, O. M., Bondoso, J., Luis, R., Comolli, L. & Bengtsson, M. Planctomycetes and macroalgae, a striking association. Front. Microbiol.10.3389/fmicb.2014.00267 (2014). PubMed PMC
Delmont TO, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 2018;3:804–813. doi: 10.1038/s41564-018-0176-9. PubMed DOI PMC
Strous M, et al. Missing lithotroph identified as new planctomycete. Lett. Nat. 1999;400:446–449. doi: 10.1038/22749. PubMed DOI
Jetten MSM, et al. Biochemistry and molecular biology of anammox bacteria. Crit. Rev. Biochem. Mol. Biol. 2009;44:65–84. doi: 10.1080/10409230902722783. PubMed DOI
Rambo IM, Dombrowski N, Constant L, Erdner D, Baker BJ. Metabolic relationships of uncultured bacteria associated with the microalgae Gambierdiscus. Environ. Microbiol. 2020;22:1764–1783. doi: 10.1111/1462-2920.14878. PubMed DOI
Hutchins DA, Capone DG. The marine nitrogen cycle: new developments and global change. Nat. Rev. Microbiol. 2022;20:401–414. doi: 10.1038/s41579-022-00687-z. PubMed DOI
Jung M-Y, et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME. 2022;16:272–283. doi: 10.1038/s41396-021-01064-z. PubMed DOI PMC
Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nat. Lett. 2009;461:976–981. doi: 10.1038/nature08465. PubMed DOI
Liu J, Weinbauer MG, Maier C, Dai M, Gattuso JP. Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquat. Microb. Ecol. 2010;61:291–305. doi: 10.3354/ame01446. DOI
Kroeker KJ, et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang Biol. 2013;19:1884–1896. doi: 10.1111/gcb.12179. PubMed DOI PMC
Kitidis, V. et al. Impact of ocean acidification on benthic and water column ammonia oxidation. Geophys. Res. Lett.38, L21603 (2011).
Fulweiler RW, Emery HE, Heiss EM, Berounsky VM. Assessing the Role of pH in Determining Water Column Nitrification Rates in a Coastal System. Estuaries Coasts. 2011;34:1095–1102. doi: 10.1007/s12237-011-9432-4. DOI
Apostolaki ET, Vizzini S, Karakassis I. Leaf vs. epiphyte nitrogen uptake in a nutrient enriched Mediterranean seagrass (Posidonia oceanica) meadow. Aquat. Bot. 2012;96:58–62. doi: 10.1016/j.aquabot.2011.09.008. DOI
Ravaglioli C, et al. Nutrient Loading Fosters Seagrass Productivity Under Ocean Acidification. Sci. Rep. 2017;7:13732. doi: 10.1038/s41598-017-14075-8. PubMed DOI PMC
Banister, R. B., Schwarz, M. T., Fine, M., Ritchie, K. B. & Muller, E. M. Instability and Stasis Among the Microbiome of Seagrass Leaves, Roots and Rhizomes, and Nearby Sediments Within a Natural pH Gradient. Microb. Ecol. 10.1007/s00248-021-01867-9 (2021). PubMed PMC
Rotini A, Conte C, Winters G, Vasquez MI, Migliore L. Undisturbed Posidonia oceanica meadows maintain the epiphytic bacterial community in different environments. Environ. Sci. Pollut. Res. 2023;30:95464–95474. doi: 10.1007/s11356-023-28968-x. PubMed DOI PMC
Lidbury, I., Johnson, V., Hall-Spencer, J. M., Munn, C. B. & Cunliffe, M. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem. Mar. Pollut. Bull. 10.1016/j.marpolbul.2012.02.011 (2012). PubMed
Cardini U, Van Hoytema N, Bednarz VN, Al-Rshaidat MMD, Wild C. N2 fixation and primary productivity in a red sea Halophila stipulacea meadow exposed to seasonality. Limnol. Oceanogr. 2018;63:786–798. doi: 10.1002/lno.10669. DOI
Hall-Spencer JM, et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature. 2008;454:96–99. doi: 10.1038/nature07051. PubMed DOI
Foo SA, Byrne M, Ricevuto E, Gambi MC. The carbon dioxide vents of Ischia, Italy, a natural system to assess impacts of ocean acidification on marine ecosystems: An overview of research and comparisons with other vent systems. Oceanogr. Mar. Biol. 2018;56:237–310.
Basili, M. et al. Major Role of Surrounding Environment in Shaping Biofilm Community Composition on Marine Plastic Debris. Front. Mar. Sci. 7, 262 (2020).
Walters, W. et al. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems1, e00009–15 (2016). PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org (2021).
Callahan BJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Quast C, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics, 10.1093/bioinformatics/bty175 (2018). PubMed PMC
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front. Microbiol. 2017;8:2224. doi: 10.3389/fmicb.2017.02224. PubMed DOI PMC
Oksanen, F.J., et al. Vegan: Community Ecology Package, https://CRAN.R-project.org/package=vegan (2020).
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001;26:32–46.
Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-Like Differential Expression (ALDEx) Analysis for Mixed Population RNA-Seq. PLoS One. 2013;8:e67019. doi: 10.1371/journal.pone.0067019. PubMed DOI PMC
Nearing JT, et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 2022;13:342. doi: 10.1038/s41467-022-28034-z. PubMed DOI PMC
Klawonn I, et al. Simple approach for the preparation of 15−15 N 2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations. Front. Microbiol. 2015;6:769. doi: 10.3389/fmicb.2015.00769. PubMed DOI PMC
Montoya JP, Voss M, Kähler P, Capone DG. A Simple, High-Precision, High-Sensitivity Tracer Assay for N2 Fixation. Appl. Environ. Microbiol. 1996;62:986–993. doi: 10.1128/aem.62.3.986-993.1996. PubMed DOI PMC
Altabet MA, Wassenaar LI, Douence C, Roy R. A Ti(III) reduction method for one-step conversion of seawater and freshwater nitrate into N2O for stable isotopic analysis of 15N/14N, 18O/16O and 17O/16O. Rapid Commun. Mass. Spectrom. 2019;33:1227–1239. doi: 10.1002/rcm.8454. PubMed DOI