Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river

. 2016 Aug 01 ; 6 () : 30920. [epub] 20160801

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27476439

In situ nitrogen fixation was investigated in a cyanobacterial mat growing on the bed of rocks of the Muga River, Spain. The filamentous non-heterocystous cyanobacterium Schizothrix dominated the mat, showing nitrogenase activity in the light at similar rates to those found in nearby heterocystous Rivularia colonies. N2 fixation in the light was significantly increased by an inhibitor of PSII and oxygen evolution, DCMU (3-[3,4-dichlorophenyl]-1,1-dimethylurea), and anaerobic conditions. However, no nitrogenase activity was found in the dark. Addition of fructose as a respiratory substrate induced nitrogenase activity in samples incubated under aerobic conditions in the dark but not in anaerobic conditions. Microelectrode oxygen profiles showed internal microaerobic microzones where nitrogen fixation might concentrate. Analyses of the 16S rRNA gene revealed only the presence of sequences belonging to filamentous non-heterocystous cyanobacteria. nifH gene diversity showed that the major phylotypes also belonged to this group. One of the three strains isolated from the Schizothrix mat was capable of fixing N2 and growing in the absence of combined N. This was consistent with the nifH gene analysis. These results suggest a relevant contribution of non-heterocystous cyanobacteria to nitrogen fixation in these mats.

Zobrazit více v PubMed

Stal L. J. Cyanobacterial mats and stromatolites in The Ecology of cyanobacteria II: Their Diversity in Space and Time (ed. Whitton B. A.) 65–125 (Springer, Dordrecht, 2012).

Paerl H. W., Pinckney J. L. & Steppe T. F. Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2, 11–15, doi: 10.1046/j.1462-2920.2000.00071.x (2000). PubMed DOI

Bebout B. M., Fitzpatrick M. W. & Paerl H. W. Identification of the sources of energy for nitrogen fixation and physiological characterization of nitrogen-fixing members of a marine microbial mat community. Appl Environ Microbiol 59, 1495–1503, doi: 0099-2240/93/051495-09$02.00/0 (1993). PubMed PMC

Fernández Valiente E., Quesada A., Howard-Williams C. & Hawes I. N2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microb Ecol 42, 338–349, doi: 10.1007/s00248-001-1010-z (2001). PubMed DOI

Severin I. & Stal L. J. Light dependency of nitrogen fixation in a coastal cyanobacterial mat. ISME J 2, 1077–1088, doi: 10.1038/ismej.2008.63 (2008). PubMed DOI

Livingstone D., Pentecost A. & Whitton B. A. Diel variations in nitrogen and carbon-dioxide fixation by the blue-green alga Rivularia in an upland stream. Phycologia. 23, 125–133, doi: 10.2216/i0031-8884-23-2-125.1 (1984). DOI

Marcarelli A. M., Baker M. A. & Wurtsbaugh W. A. Is in-stream N2 fixation an important source for benthic communities and stream ecosystems? J N Am Benthol Soc 27, 186–211, doi: 10.1899/07-027.1 (2008). DOI

Scott J. T. & Marcarelli A. M. Cyanobacteria in freshwater benthic environments in Ecology of Cyanobacteria II: Their Diversity in Space and Time (ed. Whitton B. A.) 271–289 (Springer, Dordrecht, 2012).

Douterelo I., Perona E. & Mateo P. Use of cyanobacteria to asses water quality in running waters. Environ Pollut 127, 377–384, doi: 10.1016/j.envpol.2003.08.016 (2004). PubMed DOI

Perona E. & Mateo P. Benthic cyanobacterial assemblages as indicators of nutrient enrichment regimes in a Spanish river. Acta Hydrochim Hydrobiol 34, 67–72, doi: 10.1002/aheh.200500611 (2006). DOI

Loza V., Perona E. & Mateo P. Molecular fingerprinting of cyanobacteria from river biofilms as a water quality monitoring tool. Appl Environ Microbiol. 79, 1459–1472, doi: 10.1128/AEM.03351-12 (2013). PubMed DOI PMC

Loza V., Perona E., Carmona J. & Mateo P. Phenotypic and genotypic characteristics of Phormidium-like cyanobacteria inhabiting microbial mats are correlated with the trophic status in running waters. Eur. J. Phycol. 48, 235–252, doi: 10.1080/09670262.2013.799715 (2013). DOI

Berrendero E., Perona P. & Mateo P. Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 58, 447–460, doi: 10.1099/ijs.0.65273-0 (2008). PubMed DOI

Berrendero E., Perona E. & Mateo P. Phenotypic variability and phylogenetic relationships of Tolypothrix and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 61, 3039–3051, doi: 10.1099/ijs.0.027581-0 (2011). PubMed DOI

Loza V., Berrendero E., Perona E. & Mateo P. Polyphasic characterization of benthic cyanobacterial diversity from biofilms of the Guadarrama (Spain): morphological, molecular and ecological approaches. J Phycol 49, 282–297, doi: 10.1111/jpy.12036 (2013). PubMed DOI

Mateo P., Douterelo I., Berrendero E. & Perona E. Physiological differences between two species of cyanobacteria in relation to phosphorus limitation. J Phycol 42, 61–66, doi: 10.1111/j.1529-8817.2006.00180.x (2006). DOI

Mateo P., Berrendero E., Perona E., Loza V. & Whitton B. A. Phosphatase activities of cyanobacteria as indicators of nutrient status in a Pyrenees river. Hydrobiologia 652, 255–268, doi: 10.1007/s10750-010-0338-0 (2010). DOI

Muñoz-Martín M. A., Martínez-Rosell A., Perona E. Fernández-Piñas F. & Mateo P. Monitoring bioavailable phosphorus in lotic systems: A polyphasic approach based on cyanobacteria. Sci Total Environ 475, 158–68, doi: 10.1016/j.scitotenv.2013.06.076 (2013). PubMed DOI

Masterson C. L. & Murphy P. M. The acetylene reduction technique in Recent Advances in Biological Nitrogen Fixation (ed. Subba Rao N. S.) 8–33 (Edward Arnold Publishers, London, 1980).

David R. A. V. & Fay P. Effects of long-term treatment with acetylene on nitrogen- fixing microorganisms. Appl Environ Microbiol 34, 640–646 (1977). PubMed PMC

Peterson C. G. & Grimm N. B. Temporal variation in enrichment effects during periphyton succession in a nitrogen limited desert stream ecosystem. J N Am Benthol Soc 11, 20–36 (1992).

Rodríguez V., Aguirre de Cárcer D., Loza V., Perona E. & Mateo P. A Molecular Fingerprint Technique to Detect Pollution-Related Changes in River Cyanobacterial Diversity. J Environ Qual 36, 464–468, doi: 10.1128/AEM.03351-12 (2007). PubMed DOI

Stancheva R., Sheath R. G., Read B. A., McArthur K. D., Schroepfer C., Kociolek J. P. & Fetscher A. E. Nitrogen-fixing cyanobacteria (free-living and diatom endosymbionts): their use in southern California stream bioassessment. Hydrobiologia 720, 111–127, doi: 10.1007/s10750-013-1630-6 (2013). DOI

Clark B. R. et al.. Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum. J Nat Pro 71, 1530–1537, doi: 10.1021/np800 (2008). PubMed DOI PMC

Heath M. W., Wood S. A. & Ryan K. G. Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol Ecol 73, 95–109, doi: 10.1111/j.1574-6941.2010.00867.x (2010). PubMed DOI

Casamatta D., Johansen J. R., Vis M. L. & Broadwater S. T. Molecular and morphological characterization of ten polar and Near-polar strains within the oscillatoriales (cyanobacteria). J Phycol 41, 421–438, doi: 10.1111/j.1529-8817.2005.04062.x (2005). DOI

McGregor G. B. & Rasmussen P. Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation. FEMS Microbiol Ecol 63, 23–35, doi: 10.1111/j.1574-6941.2007.00405.x (2008). PubMed DOI

Whitton B. A. Phylum Cyanophyta (Cyanophyta) in The freshwater algal flora of the British Isle: an identification guide to freshwater and terrestrial algae (eds John D. M., Whitton B. A. & Brook A. J.), 31–158 (Cambridge University Press, UK, 2011).

Storme J. Y. et al.. Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology 15, 843–857, doi: 10.1089/ast.2015.1292 (2015). PubMed DOI

Cantonati M., Guella G., Komarek J. & Spitale D. Depth distribution of epilithic cyanobacteria and pigments in a mountain lake characterized by marked water-level fluctuations. Fresh Sci 33, 537–547, doi: http://dx.doi.org/10.1086/675930 (2014). DOI

Grimm N. B. & Petrone K. C. Nitrogen fixation in a desert stream ecosystem. Biogeochemistry 37, 33–61, doi: 10.1023/A:1005798410819 (1997). DOI

Marcarelli A. M. & Wurtsbaugh W. A. Nitrogen fixation varies spatially and seasonally in linked stream-lake ecosystems. Biogeochemistry 94, 95–110, doi: 10.1007/s10533-009-9311-2 (2009). DOI

Marcarelli A. M. & Wurtsbaugh W. A. Temperature and nutrient supply interact to control nitrogen fixation in oligotrophic streams: An experimental examination. Limnol Oceanogr 51, 2278–2289, doi: 10.4319/lo.2006.51.5.2278 (2006). DOI

Marcarelli A. M. & Wurtsbaugh W. A. Effects of upstream lakes and nutrient limitation on periphytic biomass and nitrogen fixation in oligotrophic, subalpine streams. Freshw Biol 52, 2211–2225, doi: 10.1111/j.1365-2427.2007.01851.x (2007). DOI

Howard-Williams C., Priscu J. C. & Vincent W. F. Nitrogen dynamics in two Antarctic streams. Hydrobiologia 172, 51–61, doi: 10.1007/BF00031612 (1989). DOI

Fernández Valiente E. et al.. Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59, 377–385, doi: 0.1111/j.1574-6941.2006.00221.x (2007). PubMed

Kunza L. A. & Hall R. O. Nitrogen fixation can exceed inorganic nitrogen uptake fluxes in oligotrophic streams. Biogeochemistry 121, 537–549, doi: 10.1007/s10533-014-0021-z (2014). DOI

Fay P. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56, 340–373, doi: 0146-0749/92/020340-34$02.00/0 (1992). PubMed PMC

Bergman B., Gallon J. R. Rai A. N. & Stal L. J. N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19, doi: 139-185 10.1111/j.1574-6976.1997.tb00296.x (1997). DOI

Falcón L. I., Cerritos R., Eguiarte L. E. & Souza V. Nitrogen fixation in microbial mat and stromatolite communities from Cuatro Cienegas, Mexico. Microb Ecol 54, 363–373, doi: 10.1007/s00248-007-9240-3 (2007). PubMed DOI

Pepe-Ranney C. et al.. H. Non-cyanobacterial diazotrophs dominate dinitrogen fixation in biological soil crusts during early crust formation. ISME Journal 10, 287–298, doi: 10.1038/ismej.2015.106 (2016). PubMed DOI PMC

Baran R. et al.. Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun 6, doi: 10.1038/ncomms9289 (2015). PubMed DOI PMC

Paerl H. W. Marine plankton, in Ecology of Cyanobacteria II (ed. Whitton B. A.), 127–153 (Springer, Netherlands, 2012).

Paerl H. W., Pinckney. J. L. & Kucera S. A. Clarification of the structural and functional roles of heterocysts and anoxic microzones in the control of pelagic nitrogen fixation. Limnol Oceanogr 40, 634–638 (1995).

Stal L. J., Grossberger S. & Krumbein W. E. Nitrogen fixation associated with the cyanobacterial mat of a marine laminated microbial ecosystem. Mar Biol 82, 217–224, doi: 10.1007/BF00392402 (1984). DOI

Schrautemeier B. & Böhme H. Different functions assigned to NAD(H) and NADP(H) in light-dependent nitrogen fixation by heterocysts of Anabaena variabilis.FEMS Microb. Lett. 25, 215–218, doi: 10.1111/j.1574-6968.1984.tb01459.x (1984). DOI

Helman Y. et al.. Gene encoding a-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13, 230–235, doi: 10.1016/S0960-9822(03)00046-0 (2003). PubMed DOI

Berman-Frank I. et al.. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294, 1534–1537, doi: 10.1126/science.1064082 (2001). PubMed DOI

Kana T. M. Rapid oxygen cycling in Trichodesmium thiebautii. Limnol. Oceanogr. 38, 18–24, doi: 10.4319/lo.1993.38.1.0018 (1993). DOI

Wilson S. T., Kolber Z. S., Tozzi S., Zehr J. P. & Karl D. M. Nitrogen fixation, hydrogen production and electron transport kinetics in Trichodesmium erythraeum strain IMS101. J Phycol 48, 595–506 doi: 10.1111/j.1529-8817.2012.01166.x (2012). PubMed DOI

Komárek J. & Anagnostidis K. Cyanoprokariota: Oscillatoriales in Süßwasserflora von Mitteleuropa (eds Büdel B., Krienitz L., Gärtner G. & Schagerl M.) Vol. 19/2., 759 (Elsevier, München, 2005).

Chu S. P. The influence of the mineral composition of the medium on the growth of planktonic algae. Part 1. Methods and culture media. J Ecol 30, 284–325 (1942).

Ariosa Y., Carrasco D., Quesada A. & Fernández-Valiente E. Incorporation of different N sources and light response curves of nitrogenasa and photosynthesis by cyanobacterial blooms from rice fields. Microb Ecol 51, 394–403, doi: 10.1007/s00248-006-9023-2 (2006). PubMed DOI

Olson J. B., Steppe T. F., Litaker R. W. & Paerl H. W. N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 36, 231–238 (1998). PubMed

Díez B., Bauer K. & Bergman B. Epilithic cyanobacterial communities of a marine tropical beach rock (Heron Island, Great Barrier Reef). Appl Environ Microbiol 73, 3656–3668, doi: 10.1128/AEM.02067-06 (2007). PubMed DOI PMC

Zehr J. P. & McReynolds L. A. Use of degenerate oligonucleotides for amplification of the nifh gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55, 2522–2526 (1989). PubMed PMC

Edwards U., Rogall T., Blockerl H., Emde M. & Bottger E. C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17, 7843–7853 (1989). PubMed PMC

Lepère C., Wilmotte A. & Meyer B. Molecular diversity of Microcystis strains (Cyanophyceae, Chroococales) based on 16S rDNA sequences. Syst Geogr Pl 70, 275–283, doi: 10.2307/3668646 (2000). DOI

Mateo P. et al.. Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers. FEMS Microbiol Ecol 76, 185–198, doi: 10.1111/j.1574-6941.2010.01040.x (2011). PubMed DOI

Ashelford K. E., Chuzhanova N. A., Fry J. C., Jones A. J. & Weightman A. J. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72, 5734–5741, doi: 10.1128/AEM.00556-06 (2006). PubMed DOI PMC

Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. & Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882 (1997). PubMed PMC

Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98 (1999).

Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biol Evol 30, 2725–2729, doi: 10.1093/molbev/mst197 (2013). PubMed DOI PMC

Saitou N. & Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425 (1987). PubMed

Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Accelerated nitrogen cycling on Mediterranean seagrass leaves at volcanic CO2 vents

. 2024 Mar 19 ; 7 (1) : 341. [epub] 20240319

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace