Germination and proliferation of emetic Bacillus cereus sensu lato strains in milk
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Bacillus klasifikace genetika růst a vývoj metabolismus MeSH
- časové faktory MeSH
- emetika metabolismus MeSH
- mléko mikrobiologie MeSH
- molekulární typizace MeSH
- polymerázová řetězová reakce MeSH
- pulzní gelová elektroforéza MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- emetika MeSH
The Bacillus cereus sensu lato group includes potentially pathogenic bacteria that are ubiquitous in the environment and, importantly, could also be present in food products. This study focuses on emetic isolates which presumably could cause acute food poisoning and emetic syndrome. Here, we evaluate the ability of psychrotolerant Bacillus weihenstephanensis MC118 (isolated from soil) and mesophilic B. cereus BOD3/9 isolated from milk to germinate and multiply at 7 and 30 °C. Whereas the rates of germination at 30 °C in milk and nutrient broth of MC118 and BOD3/9 were similar, MC118, but not BOD3/9, proliferated to achieve relatively high numbers (∼10(6) colony-forming units/g) within 7 days of incubation at 7 °C. Mesophilic BOD3/9 showed a slight decrease of cell concentration in similar studies at 7 °C. Genotyping with repetitive extragenic palindromic sequence-based PCR and pulsed field gel electrophoresis revealed significant similarities between BOD3/9 and emetic reference B. cereus F4810/72 strain, while the B. weihenstephanensis MC118 isolate was more similar to the B. weihenstephanensis non-emetic reference DSMZ11821 strain. Our data suggest that emetic isolates that are also psychrotolerant, such as MC118, could constitute a hazard in the dairy industry, where milk could be a suitable medium for germination and growth.
Zobrazit více v PubMed
J Bacteriol. 1916 May;1(3):273-6 PubMed
J Food Prot. 2010 Feb;73(2):395-9 PubMed
Environ Microbiol Rep. 2009 Jun;1(3):177-83 PubMed
Lett Appl Microbiol. 2000 Nov;31(5):385-9 PubMed
Food Microbiol. 2008 Jun;25(4):588-96 PubMed
FEMS Microbiol Rev. 2008 Jul;32(4):579-606 PubMed
Can J Microbiol. 2007 Jun;53(6):673-87 PubMed
FEMS Microbiol Lett. 2003 Jun 6;223(1):61-6 PubMed
Microbiology (Reading). 2005 Jan;151(Pt 1):183-197 PubMed
Pol J Microbiol. 2010;59(1):3-10 PubMed
J Med Microbiol. 1975 Nov;8(4):543-50 PubMed
Appl Environ Microbiol. 2006 Jul;72(7):5118-21 PubMed
J Clin Microbiol. 2005 Aug;43(8):4277-9 PubMed
Environ Microbiol. 2003 Aug;5(8):631-40 PubMed
Lett Appl Microbiol. 2012 May;54(5):468-74 PubMed
Food Microbiol. 2011 Apr;28(2):284-90 PubMed
Antonie Van Leeuwenhoek. 2006 Feb;89(2):239-49 PubMed
Appl Environ Microbiol. 1998 Sep;64(9):3525-9 PubMed
Appl Environ Microbiol. 1987 Jun;53(6):1263-6 PubMed
FEMS Microbiol Lett. 2004 Mar 19;232(2):189-95 PubMed
Pediatr Infect Dis J. 2008 Sep;27(9):846-7 PubMed
J Clin Microbiol. 2011 Dec;49(12):4379-81 PubMed
Int J Syst Bacteriol. 1998 Oct;48 Pt 4:1373-82 PubMed
Int J Food Microbiol. 2002 Feb 25;73(1):23-7 PubMed
Int J Food Microbiol. 2004 Oct 1;96(1):75-83 PubMed
J Appl Microbiol. 2009 Jun;106(6):1967-75 PubMed
Appl Environ Microbiol. 2011 Feb;77(4):1475-82 PubMed
Appl Environ Microbiol. 2005 Mar;71(3):1346-55 PubMed
J Dairy Res. 2000 Aug;67(3):455-60 PubMed
J Appl Microbiol. 2012 Mar;112(3):417-29 PubMed
Appl Environ Microbiol. 2010 Feb;76(4):1232-40 PubMed
Microb Ecol. 2006 Oct;52(3):544-51 PubMed
Int J Food Microbiol. 2009 Aug 31;134(1-2):133-9 PubMed