Species identification of phlebotomine sandflies using deep learning and wing interferential pattern (WIP)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
38049590
PubMed Central
PMC10696019
DOI
10.1038/s41598-023-48685-2
PII: 10.1038/s41598-023-48685-2
Knihovny.cz E-zdroje
- MeSH
- deep learning * MeSH
- entomologie MeSH
- Phlebotomus * parazitologie MeSH
- Psychodidae * parazitologie MeSH
- reprodukovatelnost výsledků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Sandflies (Diptera; Psychodidae) are medical and veterinary vectors that transmit diverse parasitic, viral, and bacterial pathogens. Their identification has always been challenging, particularly at the specific and sub-specific levels, because it relies on examining minute and mostly internal structures. Here, to circumvent such limitations, we have evaluated the accuracy and reliability of Wing Interferential Patterns (WIPs) generated on the surface of sandfly wings in conjunction with deep learning (DL) procedures to assign specimens at various taxonomic levels. Our dataset proves that the method can accurately identify sandflies over other dipteran insects at the family, genus, subgenus, and species level with an accuracy higher than 77.0%, regardless of the taxonomic level challenged. This approach does not require inspection of internal organs to address identification, does not rely on identification keys, and can be implemented under field or near-field conditions, showing promise for sandfly pro-active and passive entomological surveys in an era of scarcity in medical entomologists.
Cergy Paris University Cergy France
Direction des Affaires Sanitaires et Sociales de la Nouvelle Calédonie Nouméa France
ETIS UMR 8051 Cergy Paris University ENSEA CNRS 95000 Cergy France
MIVEGEC Univ Montpellier CNRS IRD Montpellier France
Parasitology Mycology Hopital Avicenne AP HP Bobigny France
Univ Bordeaux CNRS Bordeaux INP LaBRI UMR 5800 33400 Talence France
Zobrazit více v PubMed
Akhoundi M, et al. A historical overview of the classification, evolution, and dispersion of leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 2016;10:e0004349–e0004349. doi: 10.1371/journal.pntd.0004349. PubMed DOI PMC
Sereno, D. Leishmania (Mundinia) spp.: from description to emergence as new human and animal Leishmania pathogens. New Microbes New Infect. 100540–100540. 10.1016/j.nmni.2019.100540 (2019). PubMed PMC
Kholoud K, Sereno D, Lahouari B, El Hidan M, Souad B. Management of Leishmaniases in the Era of Climate Change in Morocco. Int. J. Environ. Res. Public Health. 2018;15:1542–1542. doi: 10.3390/ijerph15071542. PubMed DOI PMC
Kholoud, K., Bounoua, L., Sereno, D., El Hidan, M. & Messouli, M. Emerging and re-emerging leishmaniases in the mediterranean area: What can be learned from a retrospective review analysis of the situation in Morocco during 1990 to 2010? Microorganisms8. 10.3390/microorganisms8101511 (2020). PubMed PMC
Alvar J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7:e35671–e35671. doi: 10.1371/journal.pone.0035671. PubMed DOI PMC
Jancarova, M., Polanska, N., Volf, P. & Dvorak, V. The role of sand flies as vectors of viruses other than phleboviruses. J. Gen. Virol.104. 10.1099/jgv.0.001837 (2023). PubMed
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI
Ruiz, J. JMM Profile: Bartonella bacilliformis: A forgotten killer. J. Med. Microbiol.71. 10.1099/jmm.0.001614 (2022). PubMed
Maia C, Depaquit J. Can Sergentomyia (Diptera, Psychodidae) play a role in the transmission of mammal-infecting Leishmania? Parasite. 2016;23:55. doi: 10.1051/parasite/2016062. PubMed DOI PMC
Ticha L, et al. Experimental feeding of Sergentomyia minuta on reptiles and mammals: Comparison with Phlebotomus papatasi. Parasites Vectors. 2023;16:126. doi: 10.1186/s13071-023-05758-5. PubMed DOI PMC
Buffington LM, Sandler JR. The occurrence and phylogenetic implications of wing interference patterns in Cynipoidea (Insecta : Hymenoptera) Invertebr. Syst. 2012;25:586–597. doi: 10.1071/IS11038. DOI
Shevtsova E, Hansson C, Janzen DH, Kjærandsen J. Stable structural color patterns displayed on transparent insect wings. Proc. Natl. Acad. Sci. U S A. 2011;108:668–673. doi: 10.1073/pnas.1017393108. PubMed DOI PMC
Simon, E. Preliminary study of wing interference patterns (WIPs) in some species of soft scale (Hemiptera, Sternorrhyncha, Coccoidea, Coccidae). Zookeys, 269–281. 10.3897/zookeys.319.4219 (2013). PubMed PMC
Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron. Mark. 2021;31:685–695. doi: 10.1007/s12525-021-00475-2. DOI
Cannet, A. et al. Wing interferential patterns (WIPs) and machine learning, a step toward automatized tsetse (Glossina spp.) identification. Sci. Rep.12, 20086. 10.1038/s41598-022-24522-w (2022). PubMed PMC
Cannet A, et al. Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species. Sci. Rep. 2023;13:13895. doi: 10.1038/s41598-023-41114-4. PubMed DOI PMC
Lawyer P, Killick-Kendrick M, Rowland T, Rowton E, Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae) Parasite. 2017;24:42. doi: 10.1051/parasite/2017041. PubMed DOI PMC
Sereno D, 2023. Listing and pictures of Diptera WIPs. DOI
Howard, A. G. et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:abs/1704.04861 (2017).
He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2016).
Redmon, J. & Farhadi, A. YOLO9000: Better, Faster, Stronger. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6517–6525 (2017).
Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:abs/1502.03167 (2015).
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2015).
Sereno, D., Cannet, A., Akhoundi, M., Romain, O. & Histace, A. Système et procédé d'identification automatisée de diptères hématophages. France PCT/FR15/000229. patent (2015).
Shimabukuro PHF, de Andrade AJ, Galati EAB. Checklist of American sand flies (Diptera, Psychodidae, Phlebotominae): genera, species, and their distribution. Zookeys. 2017;1:67–106. doi: 10.3897/zookeys.660.10508. PubMed DOI PMC
Galati EAB, Rodrigues BL. A review of historical phlebotominae taxonomy (Diptera: Psychodidae) Neotrop. Entomol. 2023 doi: 10.1007/s13744-023-01030-8. PubMed DOI
WHO. Arboviruses and human disease. Report of a WHO Scientific Group. World Health Organ. Tech. Rep. Ser.369, 1–84 (1967). PubMed
Rodrigues BL, Galati EAB. Molecular taxonomy of phlebotomine sand flies (Diptera, Psychodidae) with emphasis on DNA barcoding: A review. Acta Trop. 2023;238:106778. doi: 10.1016/j.actatropica.2022.106778. PubMed DOI
Massey AL, et al. Invertebrates for vertebrate biodiversity monitoring: Comparisons using three insect taxa as iDNA samplers. Mol. Ecol. Resour. 2022;22:962–977. doi: 10.1111/1755-0998.13525. PubMed DOI
Lafri I, et al. Identification of Algerian field-caught phlebotomine sand fly vectors by MALDI-TOF MS. PLoS Neglect. Trop. Dis. 2016;10:e0004351. doi: 10.1371/journal.pntd.0004351. PubMed DOI PMC
Dvorak V, et al. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasites Vectors. 2014;7:21. doi: 10.1186/1756-3305-7-21. PubMed DOI PMC
Arfuso F, et al. Identification of phlebotomine sand flies through MALDI-TOF mass spectrometry and in-house reference database. Acta Tropica. 2019;194:47–52. doi: 10.1016/j.actatropica.2019.03.015. PubMed DOI
Mathis A, et al. Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems. Parasites Vectors. 2015;8:266. doi: 10.1186/s13071-015-0878-2. PubMed DOI PMC
Huguenin A, et al. MALDI-TOF MS limits for the identification of mediterranean sandflies of the Subgenus Larroussius, with a special focus on the Phlebotomus perniciosus complex. Microorganisms. 2022;10:1. doi: 10.3390/microorganisms10112135. PubMed DOI PMC
Chavy A, et al. Identification of French Guiana sand flies using MALDI-TOF mass spectrometry with a new mass spectra library. PLoS Neglect. Trop. Dis. 2019;13:e0007031. doi: 10.1371/journal.pntd.0007031. PubMed DOI PMC
Depaquit J. Molecular systematics applied to Phlebotomine sandflies: review and perspectives. Infect. Genet. Evol. 2014;28:744–756. doi: 10.1016/j.meegid.2014.10.027. PubMed DOI
Halada P, et al. Effect of trapping method on species identification of phlebotomine sandflies by MALDI-TOF MS protein profiling. Med. Vet. Entomol. 2018;32:388–392. doi: 10.1111/mve.12305. PubMed DOI