A Different Pattern of Production and Scavenging of Reactive Oxygen Species in Halophytic Eutrema salsugineum (Thellungiella salsuginea) Plants in Comparison to Arabidopsis thaliana and Its Relation to Salt Stress Signaling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27540390
PubMed Central
PMC4972836
DOI
10.3389/fpls.2016.01179
Knihovny.cz E-zdroje
- Klíčová slova
- chloroplast, glucosinolates, halophyte, hydrogen peroxide, salinity, stress hormones,
- Publikační typ
- časopisecké články MeSH
Isolated thylakoids from halophytic Eutrema salsugineum (Thellungiella salsuginea) produces more H2O2 in comparison to glycophytic Arabidopsis thaliana. The first objective of this study was to verify whether this feature is relevant also to the intact chloroplasts and leaves. Enhanced H2O2 levels in chloroplasts and leaves of E. salsugineum were positively verified with several methods (electron microscopy, staining with Amplex Red and with diaminobenzidine). This effect was associated with a decreased ratio of [Formula: see text]/H2O2 in E. salsugineum in comparison to A. thaliana as detected by electron paramagnetic resonance method. As a next step, we tested how this specific ROS signature of halophytic species affects the antioxidant status and down-stream components of ROS signaling. Comparison of enzymatic antioxidants revealed a decreased activity of ascorbate peroxidase (APX), enhanced activity of glutathione peroxidase, and the presence of thylakoid-bound forms of iron superoxide dismutase (FeSOD) and APX in E. salsugineum. These cues were, however, independent from application of salt stress. The typical H2O2-dependent cellular responses, namely the levels of glucosinolates and stress-related hormones were determined. The total glucosinolate content in E. salsugineum water-treated leaves was higher than in A. thaliana and increased after salinity treatment. Treatment with salinity up-regulated all of tested stress hormones, their precursors and catabolites [abscisic acid (ABA), dihydrophaseic acid, phaseic acid, 1-aminocyclopropane-1-carboxylic acid, salicylic acid, jasmonic acid, cis-(+)-12-oxo-phytodienoic acid and jasmonoyl-L-isoleucine] in A. thaliana, whereas in E. salsugineum only a stimulation in ethylene synthesis and ABA catabolism was noted. Obtained results suggest that constitutively enhanced H2O2 generation in chloroplasts of E. salsugineum might be a crucial component of stress-prepardeness of this halophytic species. It shapes a very efficient antioxidant protection (in which glucosinolates might play a specific role) and a fine tuning of hormonal signaling to suppress the cell death program directed by jasmonate pathway.
Department of Plant Cytology and Embryology University of Gdańsk Gdańsk Poland
Institute of Experimental Botany AS CR Prague Czech Republic
The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences Kraków Poland
Zobrazit více v PubMed
Aebi H. (1984). Catalase in vitro. Methods Enzymol. 105 121–126. 10.1016/S0076-6879(84)05016-3 PubMed DOI
Aghajanzadeh T., Hawkesford M. J., De Kok L. J. (2014). The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Front. Plant Sci. 5:704 10.3389/fpls.2014.00704 PubMed DOI PMC
Amtmann A. (2009). Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol. Plant 2 3–12. 10.1093/mp/ssn094 PubMed DOI PMC
Arbona V., Argamasilla R., Gómez-Cadenas A. (2010). Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J. Plant Physiol. 167 1342–1350. 10.1016/j.jplph.2010.05.012 PubMed DOI
Asada K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141 391–396. 10.1104/pp.106.082040 PubMed DOI PMC
Avsian-Kretchmer O., Gueta-Dahan Y., Lev-Yadun S., Gollop R., Ben-Hayyim G. (2004). The salt-stress signal transduction pathway that activates the gpx1 promoter is mediated by intracellular H2O2, different from the pathway induced by extracellular H2O2. Plant Physiol. 135 1685–1696. 10.1104/pp.104.041921 PubMed DOI PMC
Balazadeh S., Jaspert N., Arif M., Mueller-Roeber B., Maurino V. G. (2012). Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts. Front. Plant Sci. 3:234 10.3389/fpls.2012.00234 PubMed DOI PMC
Baxter A., Mittler R., Suzuki N. (2014). ROS as key players in plant stress signalling. J. Exp. Bot. 65 1229–1240. 10.1093/jxb/ert375 PubMed DOI
Bestwick C. S., Brown I. R., Bennett M. H., Mansfield J. W. (1997). Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9 209–221. 10.1105/tpc.9.2.209 PubMed DOI PMC
Borisova M. M. M., Kozuleva M. A., Rudenko N. N., Naydov I. A., Klenina I. B., Ivanov B. N. (2012). Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins. Biochim. Biophys. Acta 1817 1314–1321. 10.1016/j.bbabio.2012.02.036 PubMed DOI
Bose J., Rodrigo-Moreno A., Shabala S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65 1241–1257. 10.1093/jxb/ert430 PubMed DOI
Chang L., Guo A., Jin X., Yang Q., Wang D., Sun Y., et al. (2015). The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress-based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila. Plant Sci. 236 223–238. 10.1016/j.plantsci.2015.04.010 PubMed DOI
Delaunay A., Pflieger D., Barrault M. B., Vinh J., Toledano M. B. (2002). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111 471–481. 10.1016/S0092-8674(02)01048-6 PubMed DOI
Dobrev P. I., Kamínek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A 950 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI
Dobrev P. I., Vankova R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 913 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI
Ellouzi H., Hamed K. B., Hernández I., Cela J., Müller M., Magné C., et al. (2014). A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 240 1299–1317. 10.1007/s00425-014-2154-7 PubMed DOI
Fahnenstich H., Scarpeci T. E., Valle E. M., Flügge U. I., Maurino V. G. (2008). Generation of hydrogen peroxide in chloroplasts of Arabidopsis overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol. 148 719–729. 10.1104/pp.108.126789 PubMed DOI PMC
Fryer M. J., Ball L., Oxborough K., Karpinski S., Mullineaux P. M., Baker N. R. (2003). Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J. 33 691–705. 10.1046/j.1365-313X.2003.01656.x PubMed DOI
Gadjev I., Vanderauwera S., Gechev T. S., Laloi C., Minkov I. N., Shulaev V., et al. (2006). Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 141 436–445. 10.1104/pp.106.078717 PubMed DOI PMC
Galvez-Valdivieso G., Mullineaux P. M. (2010). The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol. Plant. 138 430–439. 10.1111/j.1399-3054.2009.01331.x PubMed DOI
Gao F., Chen J., Ma T., Li H., Wang N., Li Z., et al. (2014). The glutathione peroxidase gene family in Thellungiella salsuginea: genome-wide identification, classification, and gene and protein expression analysis under stress conditions. Int. J. Mol. Sci. 15 3319–3335. 10.3390/ijms15023319 PubMed DOI PMC
Gao F., Zhou Y., Zhu W., Li X., Fan L., Zhang G. (2009). Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta 230 1033–1046. 10.1007/s00425-009-1003-6 PubMed DOI
Geisler M., Kleczkowski L. A., Karpinski S. (2006). A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis. Plant J. 45 384–398. 10.1111/j.1365-313X.2005.02634.x PubMed DOI
Gong Q., Li P., Ma S., Indu Rupassara S., Bohnert H. J. (2005). Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J. 44 826–839. 10.1111/j.1365-313X.2005.02587.x PubMed DOI
Hopkins J., Tudhope G. R. (1973). Glutathione peroxidase in human red cells in health and disease. Br. J. Haematol. 25 563–575. 10.1111/j.1365-2141.1973.tb01768.x PubMed DOI
Hou Q., Bartels D. (2015). Comparative study of the aldehyde dehydrogenase (ALDH). gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Ann. Bot. 115 465–479. 10.1093/aob/mcu152 PubMed DOI PMC
Inan G., Zhang Q., Li P., Wang Z., Cao Z., Zhang H., et al. (2004). Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol. 135 1718–1737. 10.1104/pp.104.041723 PubMed DOI PMC
Ismail A., Seo M., Takebayashi Y., Kamiya Y., Eiche E., Nick P. (2014). Salt adaptation requires suppression of jasmonate signaling. Protoplasma 251 881–898. 10.1007/s00709-013-0591-y PubMed DOI
Jajić I., Sarna T., Szewczyk G., Strzałka K. (2015). Changes in production of reactive oxygen species in illuminated thylakoids isolated during development and senescence of barley. J. Plant Physiol. 184 49–56. 10.1016/j.jplph.2015.06.009 PubMed DOI
Jiang Y., Yang B., Harris N. S., Deyholos M. K. (2007). Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J. Exp. Bot. 58 3591–3607. 10.1093/jxb/erm207 PubMed DOI
Kozieradzka-Kiszkurno M., Płachno B. J. (2012). Are there symplastic connections between the endosperm and embryo in some angiosperms?-a lesson from the Crassulaceae family. Protoplasma 249 1081–1089. 10.1007/s00709-011-0352-8 PubMed DOI PMC
Laloi C., Stachowiak M., Pers-Kamczyc E., Warzych E., Murgia I., Apel K. (2007). Cross-talk between singlet oxygen-and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104 672–677. 10.1073/pnas.0609063103 PubMed DOI PMC
Li P., Mane S. P., Sioson A. A., Robinet C. V., Heath L. S., Bohnert H. J., et al. (2006). Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila. Plant Cell Environ. 29 854–868. 10.1111/j.1365-3040.2005.01465.x PubMed DOI
Libik-Konieczny M., Kozieradzka-Kiszkurno M., Desel C., Michalec-Warzecha Ż, Miszalski Z., Konieczny R. (2015). The localization of NADPH oxidase and reactive oxygen species in in vitro-cultured Mesembryanthemum crystallinum L. hypocotyls discloses their differing roles in rhizogenesis. Protoplasma 252 477–487. 10.1007/s00709-014-0692-2 PubMed DOI PMC
Lichtenthaler H. K., Buschmann C. (2001). “Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy,” in Current Protocols in Food Analytical Chemistry eds Wrolstad R. E., Acree T. E., An H., Decker E. A., Penner M. H., Reid D. S., et al. (New York, NY: John Wiley and Sons, Inc; ) F4.3.1–F4.3.8.
Miao Y., Lv D., Wang P., Wang X. C., Chen J., Miao C., et al. (2006). An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18 2749–2766. 10.1105/tpc.106.044230 PubMed DOI PMC
M’rah S., Ouerghi Z., Berthomieu C., Havaux M., Jungas C., Hajji M., et al. (2006). Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J. Plant Physiol. 163 1022–1031. 10.1016/j.jplph.2005.07.015 PubMed DOI
M’rah S., Ouerghi Z., Eymery F., Rey P., Hajji M., Grignon C., et al. (2007). Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana. J. Plant Physiol. 164 375–384. 10.1016/j.jplph.2006.07.013 PubMed DOI
Mubarakshina M. M., Ivanov B. N., Naydov I. A., Hillier W., Badger M. R., Krieger-Liszkay A. (2010). Production and diffusion of chloroplastic H2O2 and its implication to signalling. J. Exp. Bot. 61 3577–3587. 10.1093/jxb/erq171 PubMed DOI
Nakano Y., Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22 867–880.
Niewiadomska E., Bilger W., Gruca M., Mulisch M., Miszalski Z., Krupinska K. (2011). CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L. Planta 233 275–285. 10.1007/s00425-010-1302-y PubMed DOI PMC
Niewiadomska E., Polzien L., Desel C., Rozpadek P., Miszalski Z., Krupinska K. (2009). Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves. J. Plant Physiol. 166 1057–1068. 10.1016/j.jplph.2008.12.014 PubMed DOI
Niewiadomska E., Wiciarz M. (2015). “Adaptations of chloroplastic metabolism in halophytic plants”, in Progress in Botany eds Lüttge U., Beyschlag W. (Basel: Springer; ) 177–193.
op den Camp R. G., Przybyla D., Ochsenbein C., Laloi C., Kim C., Danon A., et al. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15 2320–2332. 10.1105/tpc.014662 PubMed DOI PMC
Pang Q., Chen S., Dai S., Chen Y., Wang Y., Yan X. (2010). Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J. Proteome Res. 9 2584–2599. 10.1021/pr100034f PubMed DOI
Pang Q., Guo J., Chen S., Chen Y., Zhang L., Fei M., et al. (2012). Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant Soil 355 363–374. 10.1007/s11104-011-1108-0 DOI
Pedras M. S. C., Adio A. M. (2008). Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin. Phytochemistry 69 889–893. 10.1016/j.phytochem.2007.10.032 PubMed DOI
Pottosin I., Shabala S. (2016). Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions. Mol. Plant 9 356–370. 10.1016/j.molp.2015.10.006 PubMed DOI
Rastogi A., Yadav D. K., Szymańska R., Kruk J., Sedlářová M., Pospišil P. (2014). Singlet oxygen scavenging activity of tocopherol and plastochromanol in Arabidopsis thaliana: relevance to photooxidative stress. Plant Cell Environ. 37 392–401. 10.1111/pce.12161 PubMed DOI
Sewelam N., Jaspert N., Van Der Kelen K., Tognetti V. B., Schmitz J., Frerigmann H., et al. (2014). Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Mol. Plant 7 1191–1210. 10.1093/mp/ssu070 PubMed DOI
Stepien P., Johnson G. N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol. 149 1154–1165. 10.1104/pp.108.132407 PubMed DOI PMC
Suzuki N., Koussevitzky S., Mittler R., Miller G. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 35 259–270. 10.1111/j.1365-3040.2011.02336.x PubMed DOI
Taji T., Seki M., Satou M., Sakurai T., Kobayashi M., Ishiyama K., et al. (2004). Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 135 1697–1709. 10.1104/pp.104.039909 PubMed DOI PMC
Tiwari A., Rác M., Pospíšil P. (2013). Formation of superoxide anion and carbon-centered radicals by photosystem II under high light and heat stress-EPR spin-trapping study. J. Bioenerg. Biomembr. 45 551–559. 10.1007/s10863-013-9523-y PubMed DOI
Uzilday B., Ozgur R., Sekmen A. H., Yildiztugay E., Turkan I. (2015). Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity. Ann. Bot. 115 449–463. 10.1093/aob/mcu184 PubMed DOI PMC
Wiciarz M., Gubernator B., Kruk J., Niewiadomska E. (2015). Enhanced chloroplastic generation of H2O2 in stress-resistant Thellungiella salsuginea in comparison to Arabidopsis thaliana. Physiol. Plant. 153 467–476. 10.1111/ppl.12248 PubMed DOI PMC
Wiciarz M., Niewiadomska E., Kruk J. (2016). Different effects of salt stress on low molecular antioxidants and redox state of photosynthetic electron carriers of Eutrema salsugineum (halophyte) and Arabidopsis thaliana (glycophyte). Acta Physiol. Plant. (in press).
Wong C. E., Li Y., Labbe A., Guevara D., Nuin P., Whitty B., et al. (2006). Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol. 140 1437–1450. 10.1104/pp.105.070508 PubMed DOI PMC
Wu H. J., Zhang Z., Wang J. Y., Oh D. H., Dassanayake M., Liu B., et al. (2012). Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc. Natl. Acad. Sci. U.S.A. 109 12219–12224. 10.1073/pnas.1209954109 PubMed DOI PMC
Yamane K., Taniguchi M., Miyake H. (2012). Salinity-induced subcellular accumulation of H2O2 in leaves of rice. Protoplasma 249 301–308. 10.1007/s00709-011-0280-7 PubMed DOI