Orchid-mycorrhizal fungi interactions reveal a duality in their network structure in two European regions differing in climate
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36905296
DOI
10.1111/mec.16918
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic factors, bipartite network, coexistence, modularity, nestedness, orchid mycorrhizal fungi,
- MeSH
- fylogeneze MeSH
- lidé MeSH
- mykorhiza * genetika MeSH
- Orchidaceae * genetika mikrobiologie MeSH
- rostliny MeSH
- symbióza genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Network analysis is an effective tool to describe and quantify the ecological interactions between plants and root-associated fungi. Mycoheterotrophic plants, such as orchids, critically rely on mycorrhizal fungi for nutrients to survive, so investigating the structure of those intimate interactions brings new insights into the plant community assembly and coexistence. So far, there is little consensus on the structure of those interactions, described either as nested (generalist interactions), modular (highly specific interactions) or of both topologies. Biotic factors (e.g., mycorrhizal specificity) were shown to influence the network structure, while there is less evidence of abiotic factor effects. By using next-generation sequencing of the orchid mycorrhizal fungal (OMF) community associated to with plant individuals belonging to 17 orchid species, we assessed the structure of four orchid-OMF networks in two European regions under contrasting climatic conditions (Mediterranean vs. Continental). Each network contained four to 12 co-occurring orchid species, including six species shared among the regions. All four networks were both nested and modular, and fungal communities were different between co-occurring orchid species, despite multiple sharing of fungi across some orchids. Co-occurring orchid species growing in Mediterranean climate were associated with more dissimilar fungal communities, consistent with a more modular network structure compared to the Continental ones. OMF diversity was comparable among orchid species since most orchids were associated with multiple rarer fungi and with only a few highly dominant ones in the roots. Our results provide useful highlights into potential factors involved in structuring plant-mycorrhizal fungus interactions in different climatic conditions.
CEFE Univ Montpellier CNRS EPHE IRD Montpellier France
Departamento de Ciencias Biológicas Facultad de Ciencias Universidad de los Andes Bogotá Colombia
Zobrazit více v PubMed
Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Jr., Loyola, R. D., & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos, 117(8), 1227-1239.
Almeida-Neto, M., & Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling and Software, 26(2), 173-178.
Bahram, M., Harend, H., & Tedersoo, L. (2014). Network perspectives of ectomycorrhizal associations. Fungal Ecology, 7(1), 70-77.
Bailarote, B. C., Lievens, B., & Jacquemyn, H. (2012). Does mycorrhizal specificity affect orchid decline and rarity? American Journal of Botany, 99(10), 1655-1665.
Banerjee, S., Schlaeppi, K., & van der Heijden, M. G. (2018). Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16(9), 567-576.
Barrat, A., Barthelemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of complex weighted networks. Proceedings of the National Academy of Sciences, 101(11), 3747-3752.
Bascompte, J. (2010). Structure and dynamics of ecological networks. Science, 329(5993), 765-766.
Bascompte, J., & Jordano, P. (2007). Plant-animal mutualistic networks: The architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 38, 567-593.
Bascompte, J., Jordano, P., Melian, C. J., & Olesen, J. M. (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences USA, 100(16), 9383-9387.
Bascompte, J., & Stouffer, D. B. (2009). The assembly and disassembly of ecological networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1524), 1781-1787.
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media, 3(1), 361-362.
Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Luque, B., & Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458(7241), 1018-1020.
Beckett, S. J. (2016). Improved community detection in weighted bipartite networks. Royal Society Open Science, 3(1), 1-18.
Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., De Wit, P., Sanchez- Garcia, M., Ebersberger, I., de Sousa, F., Amend, A., Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K., Eriksson, K. M., … Nilsson, R. H. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4(10), 914-919.
Blüthgen, N., Menzel, F., & Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecology, 6(1), 1-12.
Brown, S. P., Veach, A. M., Rigdon-Huss, A. R., Grond, K., Lickteig, S. K., Lothamer, K., Oliver, A. K., & Jumpponen, A. (2015). Scraping the bottom of the barrel: Are rare high throughput sequences artifacts? Fungal Ecology, 13, 221-225.
Cagnolo, L., Salvo, A., & Valladares, G. (2011). Network topology: Patterns and mechanisms in plant-herbivore and host-parasitoid food webs. Journal of Animal Ecology, 80(2), 342-351.
Carstensen, D. W., Sabatino, M., & Morellato, L. P. C. (2016). Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space. Ecology, 97(5), 1298-1306.
Chagnon, P. L., Bradley, R. L., & Klironomos, J. N. (2012). Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytologist, 194(2), 307-312.
Core Team R (2018). R: a language and environment for statistical computing. Version 3.5.2. R Foundation for Statistical Computing.
Curiel Yuste, J., Baldocchi, D. D., Gershenson, A., Goldstein, A., Misson, L., & Wong, S. (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13(9), 2018-2035.
De Cáceres, M. D., & Legendre, P. (2009). Associations between species and groups of sites: Indices and statistical inference. Ecology, 90(12), 3566-3574.
De Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674-1684.
Dearnaley, J. D., Martos, F., & Selosse, M. A. (2012). 12 orchid mycorrhizas: Molecular ecology, physiology, evolution and conservation aspects. In Fungal associations (2nd ed., pp. 207-230). Springer.
Dicks, L. V., Corbet, S. A., & Pywell, R. F. (2002). Compartmentalization in plant-insect flower visitor webs. Journal of Animal Ecology, 71, 32-43.
Djordjević, V., Tsiftsis, S., Lakušić, D., Jovanović, S., & Stevanović, V. (2016). Factors affecting the distribution and abundance of orchids in grasslands and herbaceous wetlands. Systematics and Biodiversity, 14(4), 355-370.
Doré, M., Fontaine, C., & Thébault, E. (2020). Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. Global Change Biology, 27(6), 1266-1280.
Dormann, C. F., Fruend, J., & Gruber, B. (2017). Bipartite: visualizing bipartite networks and calculating some (ecological) indices. R package version 2.08.
Dormann, C. F., Fründ, J., Blüthgen, N., & Gruber, B. (2009). Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2(1), 7-24.
Dormann, C. F., & Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5(1), 90-98.
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 19, 11-15.
Duffy, K. J., Waud, M., Schatz, B., Petanidou, T., & Jacquemyn, H. (2019). Latitudinal variation in mycorrhizal diversity associated with a European orchid. Journal of Biogeography, 46(5), 968-980.
Ercole, E., Adamo, M., Rodda, M., Gebauer, G., Girlanda, M., & Perotto, S. (2015). Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio. New Phytologist, 205(3), 1308-1319.
Fortuna, M. A., Stouffer, D. B., Olesen, J. M., Jordano, P., Mouillot, D., Krasnov, B. R., Poulin, R., & Bascompte, J. (2010). Nestedness versus modularity in ecological networks: Two sides of the same coin? Journal of Animal Ecology, 79(4), 811-817.
Guimerà, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895-900.
Illyés, Z., Halász, K., Rudnóy, S., Ouanphanivanh, N., Garay, T., & Bratek, Z. (2009). Changes in the diversity of the mycorrhizal fungi of orchids as a function of the water supply of the habitat. Journal of Applied Botany and Food Quality, 83(1), 28-36.
Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., Edwards, F., Figueroa, D., Jacob, U., Jones, J. I., Lauridsen, R. B., Ledger, M. E., Lewis, H. M., Olesen, J. M., Van Veen, F. J. F., Warren, P. H., & Woodward, G. (2009). Ecological networks-beyond food webs. Journal of Animal Ecology, 78(1), 253-269.
Jacquemyn, H., Brys, R., Lievens, B., & Wiegand, T. (2012). Spatial variation in below-ground seed germination and divergent mycorrhizal associations correlate with spatial segregation of three co-occurring orchid species. Journal of Ecology, 100(6), 1328-1337.
Jacquemyn, H., Brys, R., Merckx, V. S., Waud, M., Lievens, B., & Wiegand, T. (2014). Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytologist, 202(2), 616-627.
Jacquemyn, H., Brys, R., Waud, M., Busschaert, P., & Lievens, B. (2015). Mycorrhizal networks and coexistence in species-rich orchid communities. New Phytologist, 206(3), 1127-1134.
Jacquemyn, H., Duffy, K. J., & Selosse, M. A. (2017). Biogeography of orchid mycorrhizas. In Tedersoo, L. (Ed.), Biogeography of mycorrhizal symbiosis: Ecological Studies (pp. 159-177). Cham.
Jacquemyn, H., Honnay, O., Cammue, B. P., Brys, R., & Lievens, B. (2010). Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Molecular Ecology, 19(18), 4086-4095.
Jacquemyn, H., Merckx, V., Brys, R., Tyteca, D., Cammue, B. P., Honnay, O., & Lievens, B. (2011). Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytologist, 192(2), 518-528.
Jacquemyn, H., Waud, M., Merckx, V. S., Brys, R., Tyteca, D., Hedrén, M., & Lievens, B. (2016). Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza. Scientific Reports, 6(1), 1-9.
Joffard, N., Massol, F., Grenié, M., Montgelard, C., & Schatz, B. (2019). Effect of pollination strategy, phylogeny and distribution on pollination niches of Euro-Mediterranean orchids. Journal of Ecology, 107(1), 478-490.
Jordan, F. (2009). Keystone species and food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1524), 1733-1741.
Köppen, W. P., & Geiger, R. (1930). Handbuch der klimatologie (Vol. 1). Gebrüder Borntraeger.
Kotilínek, M., Těšitelová, T., & Jersáková, J. (2015). Biological flora of the British Isles: Neottia ovata. Journal of Ecology, 103(5), 1354-1366.
Kottke, I., Setaro, S., Haug, I., Herrera, P., Cruz, D., Fries, A., Gawlik, J., Homeier, J., Werner, F. A., Gerique, A., & Suárez, J. P. (2013). Mycorrhiza networks promote biodiversity and stabilize the tropical mountain rain forest ecosystem: Perspectives for understanding complex communities. In Bendix, J., Beck, E., Brauning, A., Makeschin, F., Mosandl, R., Scheu, S., & Wilcke, W. (Eds.), Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador (Vol. 221, pp. 187-203). Springer-Verlag.
Lewinsohn, T. M., Inácio Prado, P., Jordano, P., Bascompte, J., & Olesen, J. M. (2006). Structure in plant-animal interaction assemblages. Oikos, 113(1), 174-184.
Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658-1659.
Li, T., Wu, S., Yang, W., Selosse, M. A., & Gao, J. (2021). How mycorrhizal associations influence orchid distribution and population dynamics. Frontiers in Plant Science, 12, 833.
Ma, A., Bohan, D. A., Canard, E., Derocles, S. A., Gray, C., Lu, X., Macfadyen, S., Romero, G. Q., & Kratina, P. (2018). A replicated network approach to ‘big data’ in ecology. In Bohan, D. A., Dumbrell, A. J., Woodward, G., & Jackson, M. (Eds.), Advances in Ecological Research (Vol. 59, pp. 225-264). Academic Press.
Magoč, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957-2963.
Martos, F., Munoz, F., Pailler, T., Kottke, I., Gonneau, C., & Selosse, M. A. (2012). The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Molecular Ecology, 21(20), 5098-5109.
May, R. M. (1972). Will a large complex system be stable? Nature, 238, 413-414.
McCormick, M. K., Taylor, D. L., Whigham, D. F., & Burnett, R. K., Jr. (2016). Germination patterns in three terrestrial orchids relate to abundance of mycorrhizal fungi. Journal of Ecology, 104(3), 744-754.
McCormick, M. K., Whigham, D. F., Sloan, D., O'Malley, K., & Hodkinson, B. (2006). Orchid-fungus fidelity: A marriage meant to last? Ecology, 87(4), 903-911.
Miranda, P. N., da Silva Ribeiro, J. E. L., Luna, P., Brasil, I., Delabie, J. H. C., & Dáttilo, W. (2019). The dilemma of binary or weighted data in interaction networks. Ecological Complexity, 38, 1-10.
Montesinos-Navarro, A., Segarra-Moragues, J. G., Valiente-Banuet, A., & Verdú, M. (2012). The network structure of plant-arbuscular mycorrhizal fungi. New Phytologist, 194(2), 536-547.
Mujica, M. I., Saez, N., Cisternas, M., Manzano, M., Armesto, J. J., & Pérez, F. (2016). Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from Central Chile. Annals of Botany, 118(1), 149-158.
Nguyen, N. H., Smith, D., Peay, K., & Kennedy, P. (2015). Parsing ecological signal from noise in next generation amplicon sequencing. New Phytologist, 205(4), 1389-1393.
Nilsson, R. H., Larsson, K. H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D., Kennedy, P., Picard, K., Glockner, F. O., Tedersoo, L., Saar, I., Koljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259-D264.
Nilsson, R. H., Tedersoo, L., Ryberg, M., Kristiansson, E., Hartmann, M., Unterseher, M., Porter, T. M., Bengtsson-Palme, J., Walker, D. M., De Sousa, F., Gamper, H. A., Larsson, E., Larsson, K. H., Kõljalg, U., Edgar, R. C., & Abarenkov, K. (2015). A comprehensive, automatically updated fungal ITS sequence data set for reference-based chimera control in environmental sequencing efforts. Microbes and Environments, 30(2), 145-150.
Novotná, A., Mennicken, S., de Paula, C. C. P., Vogt-Schilb, H., Kotilínek, M., Těšitelová, T., Šmilauer, P., & Jersáková, J. (2023). Variability in nutrient use by orchid mycorrhizal fungi in two medium types. Journal of Fungi, 9(1), 88.
Nurfadilah, S., Swarts, N. D., Dixon, K. W., Lambers, H., & Merritt, D. J. (2013). Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Annals of Botany, 111(6), 1233-1241.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). Vegan: Community Ecology Package. 2019. R Package Version 2.5-7.
Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences, 104(50), 19891-19896.
Pauw, A., & Stanway, R. (2015). Unrivalled specialization in a pollination network from South Africa reveals that specialization increases with latitude only in the southern hemisphere. Journal of Biogeography, 42(4), 652-661.
Põlme, S., Bahram, M., Jacquemyn, H., Kennedy, P., Kohout, P., Moora, M., Oja, J., Opik, M., Pecoraro, L., & Tedersoo, L. (2018). Host preference and network properties in biotrophic plant-fungal associations. New Phytologist, 217(3), 1230-1239.
Rasmussen, H. N. (2002). Recent developments in the study of orchid mycorrhiza. Plant and Soil, 244(1), 149-163.
Rasmussen, P. U., Hugerth, L. W., Blanchet, F. G., Andersson, A. F., Lindahl, B. D., & Tack, A. J. (2018). Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. New Phytologist, 220(4), 1248-1261.
Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P., & Bascompte, J. (2007). Non-random coextinctions in phylogenetically structured mutualistic networks. Nature, 448(7156), 925-928.
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4, e2584.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541.
Selosse, M. A., Petrolli, R., Mujica, M. I., Laurent, L., Perez-Lamarque, B., Figura, T., Bourceret, A., Jacquemyn, H., Li, T., Gao, J., Minasiewicz, J., & Martos, F. (2022). The waiting room hypothesis revisited by orchids: Were orchid mycorrhizal fungi recruited among root endophytes? Annals of Botany, 129(3), 259-270.
Selosse, M. A., & Roy, M. (2009). Green plants that feed on fungi: Facts and questions about mixotrophy. Trends in Plant Science, 14(2), 64-70.
Sepp, S. K., Davison, J., Jairus, T., Vasar, M., Moora, M., Zobel, M., & Öpik, M. (2019). Non-random association patterns in a plant-mycorrhizal fungal network reveal host-symbiont specificity. Molecular Ecology, 28(2), 365-378.
Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (Vol. 333, 3rd ed.). Academic Press.
Stouffer, D. B., & Bascompte, J. (2011). Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences, 108(9), 3648-3652.
Taylor, D. L., Bruns, T. D., Leake, J. R., & Read, D. J. (2002). Mycorrhizal specificity and function in myco-heterotrophic plants. In Mycorrhizal ecology (pp. 375-413). Springer.
Taylor, D. L., & McCormick, M. K. (2008). Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytologist, 177(4), 1020-1033.
Tedersoo, L., Bahram, M., Toots, M., Diedhiou, A. G., Henkel, T. W., Kjøller, R., Morris, M. H., Nara, K., Nouhra, E., Peay, K. G., Polme, S., Ryberg, M., Smith, M. E., & Koljalg, U. (2012). Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Molecular Ecology, 21(17), 4160-4170.
Tedersoo, L., Bahram, M., & Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology. Science, 367(6480), eaba1223.
Teng, J., & McCann, K. S. (2004). Dynamics of compartmented and reticulate food webs in relation to energetic flows. The American Naturalist, 164(1), 85-100.
Těšitelová, T., Jersáková, J., Roy, M., Kubátová, B., Těšitel, J., Urfus, T., Travnicek, P., & Suda, J. (2013). Ploidy-specific symbiotic interactions: Divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae). New Phytologist, 199(4), 1022-1033.
Těšitelová, T., Klimešová, L., Vogt-Schilb, H., Kotilínek, M., & Jersáková, J. (2022). Addition of fungal inoculum increases germination of orchid seeds in restored grasslands. Basic and Applied Ecology, 63, 71-82.
Těšitelová, T., Kotilínek, M., Jersáková, J., Joly, F. X., Košnar, J., Tatarenko, I., & Selosse, M. A. (2015). Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Molecular Ecology, 24(5), 1122-1134.
Thébault, E., & Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329(5993), 853-856.
Thompson, J. N. (2005). Coevolution: The geographic mosaic of coevolutionary arms races. Current Biology, 15(24), R992-R994.
UNITE Community. (2019). UNITE general FASTA release for Fungi. Version 18.11. 2018. UNITE Community.
Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296-310.
Van Der Heijden, M. G., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205(4), 1406-1423.
Van Geel, M., Jacquemyn, H., Plue, J., Saar, L., Kasari, L., Peeters, G., van Acker, K., Honnay, O., & Ceulemans, T. (2018). Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands. New Phytologist, 220(4), 1262-1272.
Vázquez, D. P., Melián, C. J., Williams, N. M., Blüthgen, N., Krasnov, B. R., & Poulin, R. (2007). Species abundance and asymmetric interaction strength in ecological networks. Oikos, 116(7), 1120-1127.
Vogt-Schilb, H., Těšitelová, T., Kotilínek, M., Sucháček, P., Kohout, P., & Jersáková, J. (2020). Altered rhizoctonia assemblages in grasslands on ex-arable land support germination of mycorrhizal generalist, not specialist orchids. New Phytologist, 227(4), 1200-1212.
Waterman, R. J., Bidartondo, M. I., Stofberg, J., Combs, J. K., Gebauer, G., Savolainen, V., Barraclough, T. G., & Pauw, A. (2011). The effects of above-and belowground mutualisms on orchid speciation and coexistence. The American Naturalist, 177(2), E54-E68.
Waud, M., Busschaert, P., Lievens, B., & Jacquemyn, H. (2016). Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecology, 20, 155-165.
Weiß, M., Waller, F., Zuccaro, A., & Selosse, M. A. (2016). Sebacinales-one thousand and one interactions with land plants. New Phytologist, 211(1), 20-40.
Xing, X., Gao, Y., Zhao, Z., Waud, M., Duffy, K. J., Selosse, M. A., Jakalski, M., Liu, N., Jacquemyn, H., & Guo, S. (2020). Similarity in mycorrhizal communities associating with two widespread terrestrial orchids decays with distance. Journal of Biogeography, 47(2), 421-433.
Xing, X., Jacquemyn, H., Gai, X., Gao, Y., Liu, Q., Zhao, Z., & Guo, S. (2019). The impact of life form on the architecture of orchid mycorrhizal networks in tropical forest. Oikos, 128(9), 1254-1264.
Dryad
10.5061/dryad.0vt4b8h3m