Protein Coding Low-Copy rpb2 and ef1-α Regions Are Viable Fungal Metabarcoding DNA Markers Which Can Supplement ITS for Better Accuracy
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40260151
PubMed Central
PMC12011493
DOI
10.1002/ece3.71352
PII: ECE371352
Knihovny.cz E-zdroje
- Klíčová slova
- amplicon abundance, chimera, sympatric species, threshold,
- Publikační typ
- časopisecké články MeSH
The nuclear ribosomal DNA Internal Transcribed Spacer (ITS) region is used as a universal fungal barcode marker, but often lacks a significant DNA barcoding gap between sister taxa. Here we tested the reliability of protein coding low-copy genes as alternative barcode markers. Mock communities of three unrelated agaric genera (Dermoloma, Hodophilus, and Russula) representing lineages of closely related species were sequenced by the Illumina platform targeting the ITS1, ITS2, the second largest subunit of RNA polymerase II gene (rpb2) and the transcription elongation factor 1-alpha gene (ef1-α) regions. Species representation and their relative abundances were similar across all tested barcode regions, despite a lower copy number in protein coding markers. ITS1 and ITS2 required more sophisticated sequence filtering because they produced a high number of chimeric sequences requiring reference-based chimera removal and had a higher number of sequence variants per species. Although clustering of filtered ITS sequences resulted in an average higher number of correctly clustered units at optimal similarity thresholds, these thresholds varied substantially among genera. Best-fitted thresholds of low-copy markers were more consistent across genera but frequently lacked species resolution due to low intraspecific variability. At some thresholds, we observed multiple species lumped together, and at the same time, species split into multiple partial clusters, which should be taken into consideration when assessing the best clustering thresholds and taxonomic identity of clusters. To achieve the best taxonomic resolution and improve species detection, we recommend combining different markers and applying additional reference-based sorting of clusters. The current availability of rpb2 and ef1-α reference sequences in public databases is far from being complete for all fungal groups, but a combined marker approach can be used for group-specific studies that can build reference data for their own purposes.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Plant Pathology University of Florida Gainesville Florida USA
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Aas, B. A. , Davey M. L., and Kauserud H.. 2017. “ITS all Right Mama: Investigating the Formation of Chimeric Sequences in the ITS2 Region by DNA Metabarcoding Analyses of Fungal Mock Communities of Different Complexities.” Molecular Ecology Resources 17, no. 4: 730–741. 10.1111/1755-0998.12622. PubMed DOI
Abarenkov, K. , Nilsson R. H., Larsson K. H., et al. 2024. “The UNITE Database for Molecular Identification and Taxonomic Communication of Fungi and Other Eukaryotes: Sequences, Taxa and Classifications Reconsidered.” Nucleic Acids Research 52, no. D1: D791–D797. 10.1093/nar/gkad1039. PubMed DOI PMC
Abu Almakarem, A. S. , Heilman K. L., Conger H. L., Shtarkman Y. M., and Rogers S. O.. 2012. “Extraction of DNA From Plant and Fungus Tissues In Situ.” BMC Research Notes 5: 266. 10.1186/1756-0500-5-266. PubMed DOI PMC
Adamčík, S. , Dima B., Adamčíková K., et al. 2020. “Hodophilus Phaeophyllus Complex (Clavariaceae, Agaricales) is Defined as New Phylogenetic Lineage in Europe.” Mycological Progress 19, no. 2: 111–125. 10.1007/s11557-019-01544-9. DOI
Adamčík, S. , Dima B., Adamčíková K., et al. 2018. “European Hodophilus (Clavariaceae, Agaricales) Species With Yellow Stipe.” Mycological Progress 17, no. 9: 1097–1111. 10.1007/s11557-018-1418-1. DOI
Adamčík, S. , Jančovičová S., Looney B. P., et al. 2017. “Hodophilus (Clavariaceae, Agaricales) Species With Dark Dots on the Stipe: More Than One Species in Europe.” Mycological Progress 16, no. 8: 811–821. 10.1007/s11557-017-1318-9. DOI
Adamčík, S. , Looney B. P., Birkebak J. M., et al. 2016. “Circumscription of Species of Hodophilus (Clavariaceae, Agaricales) in North America With Naphthalene Odours.” Botany 94, no. 10: 941–956. 10.1139/cjb-2016-0091. DOI
Arulandhu, A. J. , Staats M., Hagelaar R., et al. 2017. “Development and Validation of a Multi‐Locus DNA Metabarcoding Method to Identify Endangered Species in Complex Samples.” GigaScience 6, no. 10: gix080. 10.1093/gigascience/gix080. PubMed DOI PMC
Badotti, F. , de Oliveira F. S., Garcia C. F., et al. 2017. “Effectiveness of ITS and Sub‐Regions as DNA Barcode Markers for the Identification of Basidiomycota (Fungi).” BMC Microbiology 17, no. 1: 42. 10.1186/s12866-017-0958-x. PubMed DOI PMC
Bakker, M. G. 2018. “A Fungal Mock Community Control for Amplicon Sequencing Experiments.” Molecular Ecology Resources 18, no. 3: 541–556. 10.1111/1755-0998.12760. PubMed DOI
Bazzicalupo, A. L. , Bálint M., and Schmitt I.. 2013. “Comparison of ITS1 and ITS2 rDNA in 454 Sequencing of Hyperdiverse Fungal Communities.” Fungal Ecology 6, no. 1: 102–109. 10.1016/j.funeco.2012.09.003. DOI
Bell, K. L. , Burgess K. S., Botsch J. C., Dobbs E. K., Read T. D., and Brosi B. J.. 2019. “Quantitative and Qualitative Assessment of Pollen DNA Metabarcoding Using Constructed Species Mixtures.” Molecular Ecology 28, no. 2: 431–455. 10.1111/mec.14840. PubMed DOI
Bellemain, E. , Carlsen T., Brochmann C., Coissac E., Taberlet P., and Kauserud H.. 2010. “ITS as an Environmental DNA Barcode for Fungi: An In Silico Approach Reveals Potential PCR Biases.” BMC Microbiology 10: 189. 10.1186/1471-2180-10-189. PubMed DOI PMC
Bengtsson‐Palme, J. , Ryberg M., Hartmann M., et al. 2013. “Improved Software Detection and Extraction of ITS1 and ITS2 From Ribosomal ITS Sequences of Fungi and Other Eukaryotes for Analysis of Environmental Sequencing Data.” Methods in Ecology and Evolution 4, no. 10: 914–919. 10.1111/2041-210X.12073. DOI
Bonin, A. , Guerrieri A., and Ficetola G. F.. 2023. “Optimal Sequence Similarity Thresholds for Clustering of Molecular Operational Taxonomic Units in DNA Metabarcoding Studies.” Molecular Ecology Resources 23, no. 2: 368–381. 10.1111/1755-0998.13709. PubMed DOI
Boutigny, A. L. , Gautier A., Basler R., et al. 2019. “Metabarcoding Targeting the EF1 Alpha Region to Assess Fusarium Diversity on Cereals.” PLoS One 14, no. 1: e0207988. 10.1371/journal.pone.0207988. PubMed DOI PMC
Caboň, M. , Li G. J., Saba M., et al. 2019. “Phylogenetic Study Documents Different Speciation Mechanisms Within the Russula Globispora Lineage in Boreal and Arctic Environments of the Northern Hemisphere.” IMA Fungus 10, no. 1: 5. 10.1186/s43008-019-0003-9. PubMed DOI PMC
Castaño, C. , Berlin A., Brandström Durling M., et al. 2020. “Optimized Metabarcoding With Pacific Biosciences Enables Semi‐Quantitative Analysis of Fungal Communities.” New Phytologist 228, no. 3: 1149–1158. 10.1111/nph.16731. PubMed DOI
Cedeño‐Sanchez, M. , Cheng T., Lambert C., et al. 2024. “Unraveling Intragenomic Polymorphisms in the High‐Quality Genome of Hypoxylaceae: A Comprehensive Study of the rDNA Cistron.” Mycological Progress 23, no. 1: 5. 10.1007/s11557-023-01940-2. DOI
Conti, A. , Casagrande Pierantoni D., Robert V., Corte L., and Cardinali G.. 2023. “MinION Sequencing of Yeast Mock Communities to Assess the Effect of Databases and ITS‐LSU Markers on the Reliability of Metabarcoding Analysis.” Microbiology Spectrum 11, no. 1: e01052‐22. 10.1128/spectrum.01052-22. PubMed DOI PMC
Cristescu, M. E. 2014. “From Barcoding Single Individuals to Metabarcoding Biological Communities: Towards an Integrative Approach to the Study of Global Biodiversity.” Trends in Ecology and Evolution 29, no. 10: 566–571. 10.1016/j.tree.2014.08.001. PubMed DOI
Deagle, B. E. , Thomas A. C., McInnes J. C., et al. 2019. “Counting With DNA in Metabarcoding Studies: How Should We Convert Sequence Reads to Dietary Data?” Molecular Ecology 28, no. 2: 391–406. 10.1111/mec.14734. PubMed DOI PMC
Débarre, F. 2012. “Refining the Conditions for Sympatric Ecological Speciation.” Journal of Evolutionary Biology 25, no. 12: 2651–2660. 10.1111/j.1420-9101.2012.02621.x. PubMed DOI
Edgar, R. C. 2010. “Search and Clustering Orders of Magnitude Faster Than BLAST.” Bioinformatics 26, no. 19: 2460–2461. 10.1093/bioinformatics/btq461. PubMed DOI
Edgar, R. C. , Haas B. J., Clemente J. C., Quince C., and Knight R.. 2011. “UCHIME Improves Sensitivity and Speed of Chimera Detection.” Bioinformatics 27, no. 16: 2194–2200. 10.1093/bioinformatics/btr381. PubMed DOI PMC
Feibelman, T. , Bayman P., and Cibula W. G.. 1994. “Length Variation in the Internal Transcribed Spacer of Ribosomal DNA in Chanterelles.” Mycological Research 98, no. 6: 614–618. 10.1016/S0953-7562(09)80407-3. DOI
Ficetola, G. F. , and Taberlet P.. 2023. “Towards Exhaustive Community Ecology via DNA Metabarcoding.” Molecular Ecology 32, no. 23: 6320–6329. 10.1111/mec.16881. PubMed DOI
Hackel, J. , Henkel T. W., Moreau P. A., et al. 2022. “Biogeographic History of a Large Clade of Ectomycorrhizal Fungi, the Russulaceae, in the Neotropics and Adjacent Regions.” New Phytologist 236, no. 2: 698–713. 10.1111/nph.18365. PubMed DOI PMC
Hakimzadeh, A. , Abdala Asbun A., Albanese D., et al. 2023. “A Pile of Pipelines: An Overview of the Bioinformatics Software for Metabarcoding Data Analyses.” Molecular Ecology Resources 24, no. 5: e13847. 10.1111/1755-0998.13847. PubMed DOI PMC
Hernández‐Hernández, T. , Miller E. C., Román‐Palacios C., and Wiens J. J.. 2021. “Speciation Across the Tree of Life.” Biological Reviews 96, no. 4: 1205–1242. 10.1111/brv.12698. PubMed DOI
Hleap, J. S. , Littlefair J. E., Steinke D., Hebert P. D. N., and Cristescu M. E.. 2021. “Assessment of Current Taxonomic Assignment Strategies for Metabarcoding Eukaryotes.” Molecular Ecology Resources 21, no. 7: 2190–2203. 10.1111/1755-0998.13407. PubMed DOI
Hoggard, M. , Vesty A., Wong G., et al. 2018. “Characterizing the Human Mycobiota: A Comparison of Small Subunit rRNA, ITS1, ITS2, and Large Subunit rRNA Genomic Targets.” Frontiers in Microbiology 9: 2208. 10.3389/fmicb.2018.02208. PubMed DOI PMC
Kassambara, A. 2023. “rstatix: Pipe‐Friendly Framework for Basic Statistical Tests.” R Package Version 0.7.2. https://rpkgs.datanovia.com/rstatix/.
Kauserud, H. 2023. “ITS Alchemy: On the Use of ITS as a DNA Marker in Fungal Ecology.” Fungal Ecology 65: 101274. 10.1016/j.funeco.2023.101274. DOI
Keck, F. , Vasselon V., Rimet F., Bouchez A., and Kahlert M.. 2018. “Boosting DNA Metabarcoding for Biomonitoring With Phylogenetic Estimation of Operational Taxonomic Units' Ecological Profiles.” Molecular Ecology Resources 18, no. 6: 1299–1309. 10.1111/1755-0998.12919. PubMed DOI
Kiran, M. , Caboň M., Senko D., Khalid A. N., and Adamčík S.. 2021. “Description of the Fifth New Species of Russula Subsect. Maculatinae From Pakistan Indicates Local Diversity Hotspot of Ectomycorrhizal Fungi in Southwestern Himalayas.” Life 11, no. 7: 662. 10.3390/life11070662. PubMed DOI PMC
Lekberg, Y. , Vasar M., Bullington L. S., et al. 2018. “More Bang for the Buck? Can Arbuscular Mycorrhizal Fungal Communities Be Characterized Adequately Alongside Other Fungi Using General Fungal Primers?” New Phytologist 220, no. 4: 971–976. 10.1111/nph.15035. PubMed DOI
Lofgren, L. A. , Uehling J. K., Branco S., Bruns T. D., Martin F., and Kennedy P. G.. 2019. “Genome‐Based Estimates of Fungal rDNA Copy Number Variation Across Phylogenetic Scales and Ecological Lifestyles.” Molecular Ecology 28, no. 4: 721–730. 10.1111/mec.14995. PubMed DOI
Lücking, R. , Aime M. C., Robbertse B., et al. 2020. “Unambiguous Identification of Fungi: Where Do We Stand and How Accurate and Precise Is Fungal DNA Barcoding?” IMA Fungus 11, no. 1: 14. 10.1186/s43008-020-00033-z. PubMed DOI PMC
Mächler, E. , Walser J. C., and Altermatt F.. 2021. “Decision‐Making and Best Practices for Taxonomy‐Free Environmental DNA Metabarcoding in Biomonitoring Using Hill Numbers.” Molecular Ecology 30, no. 13: 3326–3339. 10.1111/mec.15725. PubMed DOI
Matheny, P. B. , Wang Z., Binder M., et al. 2007. “Contributions of rpb2 and tef1 to the Phylogeny of Mushrooms and Allies (Basidiomycota, Fungi).” Molecular Phylogenetics and Evolution 43, no. 2: 430–451. 10.1016/j.ympev.2006.08.024. PubMed DOI
Matsuoka, S. , Sugiyama Y., Shimono Y., Ushio M., and Doi H.. 2021. “Evaluation of Seasonal Dynamics of Fungal DNA Assemblages in a Flow‐Regulated Stream in a Restored Forest Using eDNA Metabarcoding.” Environmental Microbiology 23, no. 8: 4797–4806. 10.1111/1462-2920.15669. PubMed DOI
Mbareche, H. , Veillette M., Bilodeau G., and Duchaine C.. 2020. “Comparison of the Performance of ITS1 and ITS2 as Barcodes in Amplicon‐Based Sequencing of Bioaerosols.” PeerJ 8: e8523. 10.7717/peerj.8523. PubMed DOI PMC
Mello, A. , Napoli C., Murat C., Morin E., Marceddu G., and Bonfante P.. 2011. “ITS‐1 Versus ITS‐2 Pyrosequencing: A Comparison of Fungal Populations in Truffle Grounds.” Mycologia 103, no. 6: 1184–1193. 10.3852/11-027. PubMed DOI
Mueller, R. C. , Gallegos‐Graves L. V., and Kuske C. R.. 2016. “A New Fungal Large Subunit Ribosomal RNA Primer for High‐Throughput Sequencing Surveys.” FEMS Microbiology Ecology 92, no. 2: fiv153. 10.1093/femsec/fiv153. PubMed DOI
Mujic, A. B. , Durall D. M., Spatafora J. W., and Kennedy P. G.. 2016. “Competitive Avoidance Not Edaphic Specialization Drives Vertical Niche Partitioning Among Sister Species of Ectomycorrhizal Fungi.” New Phytologist 209, no. 3: 1174–1183. 10.1111/nph.13677. PubMed DOI
Nilsson, R. H. , Anslan S., Bahram M., Wurzbacher C., Baldrian P., and Tedersoo L.. 2019. “Mycobiome Diversity: High‐Throughput Sequencing and Identification of Fungi.” Nature Reviews Microbiology 17, no. 2: 95–109. 10.1038/s41579-018-0116-y. PubMed DOI
Nilsson, R. H. , Tedersoo L., Ryberg M., et al. 2015. “A Comprehensive, Automatically Updated Fungal ITS Sequence Dataset for Reference‐Based Chimera Control in Environmental Sequencing Efforts.” Microbes and Environments 30, no. 2: 145–150. 10.1264/jsme2.ME14121. PubMed DOI PMC
Ogier, J. C. , Pagès S., Galan M., Barret M., and Gaudriault S.. 2019. “rpoB, a Promising Marker for Analyzing the Diversity of Bacterial Communities by Amplicon Sequencing.” BMC Microbiology 19: 171. 10.1186/s12866-019-1546-z. PubMed DOI PMC
Oliveira, M. , and Azevedo L.. 2022. “Molecular Markers: An Overview of Data Published for Fungi Over the Last Ten Years.” Journal of Fungi 8, no. 8: 803. 10.3390/jof8080803. PubMed DOI PMC
Pauvert, C. , Buée M., Laval V., et al. 2019. “Bioinformatics Matters: The Accuracy of Plant and Soil Fungal Community Data Is Highly Dependent on the Metabarcoding Pipeline.” Fungal Ecology 41: 23–33. 10.1016/j.funeco.2019.03.005. DOI
Phillips, J. D. , Gillis D. J., and Hanner R. H.. 2022. “Lack of Statistical Rigor in DNA Barcoding Likely Invalidates the Presence of a True Species' Barcode Gap.” Frontiers in Ecology and Evolution 10: 859099. 10.3389/fevo.2022.859099. DOI
Quince, C. , Lanzén A., Curtis T. P., et al. 2009. “Accurate Determination of Microbial Diversity From 454 Pyrosequencing Data.” Nature Methods 6, no. 9: 639–641. 10.1038/nmeth.1361. PubMed DOI
R Core Team . 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R‐project.org.
Rosenblad, M. A. , Martín M. P., Tedersoo L., et al. 2016. “Detection of Signal Recognition Particle (SRP) RNAs in the Nuclear Ribosomal Internal Transcribed Spacer I (ITS1) of Three Lineages of Ectomycorrhizal Fungi (Agaricomycetes, Basidiomycota).” MycoKeys 13: 21–33. 10.3897/mycokeys.13.8579. DOI
Rué, O. , Coton M., Dugat‐Bony E., et al. 2023. “Towards a More Accurate Metabarcoding Approach for Studying Fungal Communities of Fermented Foods.” Peer Community Journal 3: e97. 10.24072/pcjournal.321. DOI
Ryberg, M. 2015. “Molecular Operational Taxonomic Units as Approximations of Species in the Light of Evolutionary Models and Empirical Data From Fungi.” Molecular Ecology 24, no. 23: 5770–5777. 10.1111/mec.13444. PubMed DOI
Sánchez‐García, M. , Adamčíková K., Moreau P. A., et al. 2021. “The Genus Dermoloma Is More Diverse Than Expected and Forms a Monophyletic Lineage in the Tricholomataceae.” Mycological Progress 20, no. 1: 11–25. 10.1007/s11557-020-01651-y. DOI
Sánchez‐García, M. , and Matheny P. B.. 2017. “Is the Switch to an Ectomycorrhizal State an Evolutionary Key Innovation in Mushroom‐Forming Fungi? A Case Study in the Tricholomatineae (Agaricales).” Evolution 71, no. 1: 51–65. 10.1111/evo.13099. PubMed DOI
Schloss, P. D. , Gevers D., and Westcott S. L.. 2011. “Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16s rRNA‐Based Studies.” PLoS One 6, no. 12: e27310. 10.1371/journal.pone.0027310. PubMed DOI PMC
Schmidt, P. A. , Schmitt I., Otte J., et al. 2018. “Season‐Long Experimental Drought Alters Fungal Community Composition but Not Diversity in a Grassland Soil.” Microbial Ecology 75, no. 2: 468–478. 10.1007/s00248-017-1047-2. PubMed DOI
Schoch, C. L. , Seifert K. A., Huhndorf S., et al. 2012. “Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi.” Proceedings of the National Academy of Sciences of the United States of America 109, no. 16: 6241–6246. 10.1073/pnas.1117018109. PubMed DOI PMC
Shin, S. , Lee T. K., Han J. M., and Park J.. 2014. “Regional Effects on Chimera Formation in 454 Pyrosequenced Amplicons From a Mock Community.” Journal of Microbiology 52: 566–573. 10.1007/s12275-014-3485-6. PubMed DOI
Stielow, J. B. , Lévesque C. A., Seifert K. A., et al. 2015. “One Fungus, Which Genes? Development and Assessment of Universal Primers for Potential Secondary Fungal DNA Barcodes.” Persoonia: Molecular Phylogeny and Evolution of Fungi 35, no. 1: 242–263. 10.3767/003158515X689135. PubMed DOI PMC
Stockinger, H. , Peyret‐Guzzon M., Koegel S., Bouffaud M. L., and Redecker D.. 2014. “The Largest Subunit of RNA Polymerase II as a New Marker Gene to Study Assemblages of Arbuscular Mycorrhizal Fungi in the Field.” PLoS One 9, no. 9: e107783. 10.1371/journal.pone.0107783. PubMed DOI PMC
Swenie, R. A. , Looney B. P., Ke Y. H., et al. 2024. “PacBio High‐Throughput Multi‐Locus Sequencing Reveals High Genetic Diversity in Mushroom‐Forming Fungi.” Molecular Ecology Resources 24, no. 1: e13885. 10.1111/1755-0998.13885. PubMed DOI
Sze, M. A. , and Schloss P. D.. 2019. “The Impact of DNA Polymerase and Number of Rounds of Amplification in PCR on 16S rRNA Gene Sequence Data.” MSphere 4, no. 3: e00163‐19. 10.1128/msphere.00163-19. PubMed DOI PMC
Tan, G. , Opitz L., Schlapbach R., and Rehrauer H.. 2019. “Long Fragments Achieve Lower Base Quality in Illumina Paired‐End Sequencing.” Scientific Reports 9, no. 1: 2856. 10.1038/s41598-019-39076-7. PubMed DOI PMC
Tedersoo, L. , Bahram M., Põlme S., et al. 2015. “Response to Comment on “Global Diversity and Geography of Soil Fungi”.” Science 349, no. 6251: 936. 10.1126/science.aaa5594. PubMed DOI
Tedersoo, L. , Bahram M., Zinger L., et al. 2022. “Best Practices in Metabarcoding of Fungi: From Experimental Design to Results.” Molecular Ecology 31, no. 10: 2769–2795. 10.1111/mec.16460. PubMed DOI
Tedersoo, L. , and Lindahl B.. 2016. “Fungal Identification Biases in Microbiome Projects.” Environmental Microbiology Reports 8, no. 5: 774–779. 10.1111/1758-2229.12438. PubMed DOI
Tedersoo, L. , Mikryukov V., Anslan S., et al. 2021. “The Global Soil Mycobiome Consortium Dataset for Boosting Fungal Diversity Research.” Fungal Diversity 111, no. 1: 573–588. 10.1007/s13225-021-00493-7. DOI
Tedersoo, L. , Tooming‐Klunderud A., and Anslan S.. 2018. “PacBio Metabarcoding of Fungi and Other Eukaryotes: Errors, Biases and Perspectives.” New Phytologist 217, no. 3: 1370–1385. 10.1111/nph.14776. PubMed DOI
Thibert‐Plante, X. , and Hendry A. P.. 2011. “Factors Influencing Progress Toward Sympatric Speciation.” Journal of Evolutionary Biology 24, no. 10: 2186–2196. 10.1111/j.1420-9101.2011.02348.x. PubMed DOI
Trollip, C. , Kaur J., Piper A. M., et al. 2024. “Modular, Multi‐Barcode Amplicon Sequencing for Improved Species‐Level Detection of Fungal Phytopathogens: A Case Study of Pipeline Establishment Targeting the Ophiostomatales.” Environmental DNA 6, no. 1: e368. 10.1002/edn3.368. DOI
van der Loos, L. M. , and Nijland R.. 2021. “Biases in Bulk: DNA Metabarcoding of Marine Communities and the Methodology Involved.” Molecular Ecology 30, no. 13: 3270–3288. 10.1111/mec.15592. PubMed DOI PMC
Varga, T. , Krizsán K., Földi C., et al. 2019. “Megaphylogeny Resolves Global Patterns of Mushroom Evolution.” Nature Ecology and Evolution 3, no. 4: 668–678. 10.1038/s41559-019-0834-1. PubMed DOI PMC
Větrovský, T. , Kolařík M., Žifčáková L., Zelenka T., and Baldrian P.. 2016. “The rpb2 Gene Represents a Viable Alternative Molecular Marker for the Analysis of Environmental Fungal Communities.” Molecular Ecology Resources 16, no. 2: 388–401. 10.1111/1755-0998.12456. PubMed DOI
Větrovský, T. , Morais D., Kohout P., et al. 2020. “GlobalFungi, a Global Database of Fungal Occurrences From High‐Throughput‐Sequencing Metabarcoding Studies.” Scientific Data 7: 228. 10.1038/s41597-020-0567-7. PubMed DOI PMC
Vidal, J. M. , Alvarado P., Loizides M., et al. 2019. “A Phylogenetic and Taxonomic Revision of Sequestrate Russulaceae in Mediterranean and Temperate Europe.” Persoonia: Molecular Phylogeny and Evolution of Fungi 42: 127–185. 10.3767/persoonia.2019.42.06. PubMed DOI PMC
Voyron, S. , Ercole E., Ghignone S., Perotto S., and Girlanda M.. 2017. “Fine‐Scale Spatial Distribution of Orchid Mycorrhizal Fungi in the Soil of Host‐Rich Grasslands.” New Phytologist 213, no. 3: 1428–1439. 10.1111/nph.14286. PubMed DOI
Wang, X. C. , Liu C., Huang L., et al. 2015. “ITS1: A DNA Barcode Better Than ITS2 in Eukaryotes?” Molecular Ecology Resources 15, no. 3: 573–586. 10.1111/1755-0998.12325. PubMed DOI
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer. 10.1007/978-3-319-24277-4_5. DOI
Wickham, H. , François R., Henry L., Müller K., and Vaughan D.. 2023. “Dplyr: A Grammar of Data Manipulation.” R Package Version 1.1.4. https://CRAN.R‐project.org/package=dplyr.
Wilson, A. W. , Eberhardt U., Nguyen N., et al. 2023. “Does One Size Fit all? Variations in the DNA Barcode Gaps of Macrofungal Genera.” Journal of Fungi 9, no. 8: 788. 10.3390/jof9080788. PubMed DOI PMC
Xu, J. 2016. “Fungal DNA Barcoding.” Genome 59, no. 11: 913–932. 10.1139/gen-2016-0046. PubMed DOI
Yang, R. H. , Su J. H., Shang J. J., et al. 2018. “Evaluation of the Ribosomal DNA Internal Transcribed Spacer (ITS), Specifically ITS1 and ITS2, for the Analysis of Fungal Diversity by Deep Sequencing.” PLoS One 13, no. 10: e0206428. 10.1371/journal.pone.0206428. PubMed DOI PMC
Zinger, L. , Bonin A., Alsos I. G., et al. 2019. “DNA Metabarcoding—Need for Robust Experimental Designs to Draw Sound Ecological Conclusions.” Molecular Ecology 28, no. 8: 1857–1862. 10.1111/mec.15060. PubMed DOI