Molecular-Based Diversity Studies and Field Surveys Are Not Mutually Exclusive: On the Importance of Integrated Methodologies in Mycological Research
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37746218
PubMed Central
PMC10512293
DOI
10.3389/ffunb.2022.860777
Knihovny.cz E-zdroje
- Klíčová slova
- fieldwork, fungal conservation, fungal diversity, genetics, monitoring, taxonomy,
- Publikační typ
- časopisecké články MeSH
Understanding and describing the diversity of living organisms is a great challenge. Fungi have for a long time been, and unfortunately still are, underestimated when it comes to taxonomic research. The foundations were laid by the first mycologists through field observations. These important fundamental works have been and remain vital reference works. Nevertheless, a non-negligible part of the studied funga escaped their attention. Thanks to modern developments in molecular techniques, the study of fungal diversity has been revolutionized in terms of tools and knowledge. Despite a number of disadvantages inherent to these techniques, traditional field-based inventory work has been increasingly superseded and neglected. This perspective aims to demonstrate the central importance of field-based research in fungal diversity studies, and encourages researchers not to be blinded by the sole use of molecular methods.
Centro de Investigaciones Micológicas Herbario UCH Universidad Autónoma de Chiriquí David Panama
Faculty of Science University of South Bohemia Ceské Budějovice Czechia
Laboratory of Mycology Institute of Botany Academy of Sciences of Uzbekistan Tashkent Uzbekistan
Mycology Working Group Goethe Universität Frankfurt am Main Frankfurt am Main Germany
Operation Wallacea Ltd Wallace House Old Bolingbroke United Kingdom
Population Genetics and Cytogenetics Group Facultade de Bioloxía Universidade de Vigo Vigo Spain
Research Group Mycology Department of Biology Ghent University Ghent Belgium
Research Institute for Nature and Forest Brussels Belgium
State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences Beijing China
Zobrazit více v PubMed
Abarenkov K., Nilsson R. H., Larsson K. H., Alexander I. J., Eberhardt U., Erland S., et al. . (2010). The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol. 186, 281–285. 10.1111/j.1469-8137.2009.03160.x PubMed DOI
Abdurazakov A. A., Bulgakov T. S., Kholmuradova T. N., Gafforov Y. S. (2021). Powdery mildew fungi (Erysiphaceae) of the Fergana Valley (within Uzbekistan): a first annotated checklist. Nov. Sist. Nizs. Rast. 55, 55–78. 10.31111/nsnr/2021.55.1.55 DOI
Adamčík S., Looney B., Cabon M., Jančovičová S., Adamčíková K., Avis P. G., et al. . (2019). The quest for a globally comprehensible Russula language. Fungal Divers. 99, 369–449. 10.1007/s13225-019-00437-2 DOI
Afkhami M. E., Stinchcombe J. R. (2016). Multiple mutualist effects on genomewide expression in the tripartite association between Medicago truncatula, nitrogen-fixing bacteria and mycorrhizal fungi. Mol. Ecol. 25, 4946–4962. 10.1111/mec.13809 PubMed DOI
Aime M. C., Matheny P. B., Henk D. A., Frieders E. M., Nilsson R. H., Piepenbring M., et al. . (2006). An overview of the higher-level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia 98, 895–905. 10.1080/15572536.2006.11832619 PubMed DOI
Anderson I. C., Cairney J. W. (2004). Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ. Microbiol. 6, 769–779. 10.1111/j.1462-2920.2004.00675.x PubMed DOI
Antonelli A., Fry C., Smith R. J., Simmonds M. S. J., Kersey P. J., Pritchard H. W., et al. . (2020). State of the World's Plants and Fungi 2020. London: Royal Botanic Gardens, Kew.
Arnolds E. (2001). The future of fungi in Europe: threats, conservation and management. Brit. Mycol. Soc. Symp. Ser. 22, 64–80. 10.1017/CBO9780511565168.005 DOI
Baeza M., Barahona S., Alcaíno J., Cifuentes V. (2017). Amplicon-metagenomic analysis of fungi from antarctic terrestrial habitats. Front. Microbiol. 8, 2235. 10.3389/fmicb.2017.02235 PubMed DOI PMC
Baral H.-O. (1992). Vital versus herbarium taxonomy: morphological differences between living and dead cells of ascomycetes, and their taxonomic implications. Mycotaxon 44, 333–390.
Bardgett R. D., van der Putten W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature 515, 505–511. 10.1038/nature13855 PubMed DOI
Barnosky A. D., Matzke N., Tomiya S., Wogan G. O. U., Swartz B., Quental T. B., et al. . (2011). Has the Earth's sixth mass extinction already arrived? Nature 471, 51–57. 10.1038/nature09678 PubMed DOI
Bauer R., Begerow D., Sampaio J. P., Wei,β M., Oberwinkler F. (2006). The simple-septate basidiomycetes: a synopsis. Mycol. Prog. 5, 41–66. 10.1007/s11557-006-0502-0 DOI
Berbee M. L., Taylor J. W. (2001). “Fungal molecular evolution: gene trees and geologic time,” in Systematics and Evolution, eds. McLaughlin D. J., McLaughlin E. G., Lemke P. A. (New York, NY: Springer–Verlag; ), 229–245. 10.1007/978-3-662-10189-6_10 DOI
Berbee M. L., Taylor J. W. (2010). Dating the molecular clock in fungi – how close are we? Fungal Biol. Rev. 24, 1–16. 10.1016/j.fbr.2010.03.001 DOI
Bernicchia A., Fugazzola M. A., Gemelli V., Mantovani B., Lucchetti A., Cesari M., et al. . (2006). DNA recovered and sequenced from an almost 7000 y-old Neolithic polypore, Daedaleopsis tricolor. Mycol. Res. 110, 14–17. 10.1016/j.mycres.2005.09.012 PubMed DOI
Bjelland T., Ekman S. (2005). Fungal diversity in rock beneath a crustose lichen as revealed by molecular markers. Microb. Ecol. 49, 598–603. 10.1007/s00248-004-0101-z PubMed DOI
Borriello R., Lumini E., Girlanda M., Bonfante P., Bianciotto V. (2012). Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol. Fertil. Soils 48, 911–922. 10.1007/s00374-012-0683-4 DOI
Boundy-Mills K., Hess M., Bennett A. R., Ryan M., Kang S., Nobles D., et al. . (2015). The United States Culture Collection Network (USCCN): enhancing microbial genomics research through living microbe culture collections. Appl. Environ. Microbiol. 81, 5671–5674. 10.1128/AEM.01176-15 PubMed DOI PMC
Brock P. M., Döring H., Bidartondo M. I. (2009). How to know unknown fungi: the role of a herbarium. New Phytol. 181, 719–724. 10.1111/j.1469-8137.2008.02703.x PubMed DOI
Bruns T. D., White T. J., Taylor J. W. (1991). Fungal molecular systematics. Annu. Rev. Ecol. Syst. 22, 525–564. 10.1146/annurev.es.22.110191.002521 DOI
Butler G., Heitman J., Idnurm A., James T. Y. (2021). On a special collection in MMBR on sex in fungi: molecular mechanisms and evolutionary implications. Microbiol. Mol. Biol. Rev. 85, e00094–e00021. 10.1128/MMBR.00094-21 PubMed DOI PMC
Cardoza Y. J., Paskewitz S., Raffa K. F. (2006). Travelling through time and space on wings of beetles: a tripartite insect-fungi-nematode association. Symbiosis 41, 71–79.
Ceballos G., Ehrlich P. R., Barnosky A. D., García A., Pringle R. M., Palmer T. M. (2015). Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253. 10.1126/sciadv.1400253 PubMed DOI PMC
Cheek M., Nic Lughadha E., Kirk P., Lindon H., Carretero J., Looney B., et al. . (2020). New discoveries: plants and fungi. Plants People Planet 2, 371–388. 10.1002/ppp3.10148 DOI
Christensen M. (1993). The fungal community: its organization and role in the ecosystem. BioScience 43, 787–789. 10.2307/1312325 DOI
Claridge A. W., Barry S. C., Cork S. J., Trappe J. M. (2000a). Diversity and habitat relationships of hypogeous fungi. II. factors influencing the occurrence and number of taxa. Biodivers. Conserv. 9, 175–199. 10.1023/A:1008962711138 DOI
Claridge A. W., Cork S. J., Trappe J. M. (2000b). Diversity and habitat relationships of hypogeous fungi. I. study design, sampling techniques and general survey results. Biodivers. Conserv. 9, 151–173. 10.1023/A:1008941906441 DOI
Cordier T., Robin C., Capdevielle X., Fabreguettes O., Desprez-Loustau M.-L., Vacher C. (2012). The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytol. 196, 510–519. 10.1111/j.1469-8137.2012.04284.x PubMed DOI
Cunha A. O., Bezerra J. D. P., Oliveira T. G. L., Barbier E., Bernard E., Machado A. R., et al. . (2020). Living in the dark: bat caves as hotspots of fungal diversity. PLoS ONE 15, e0243494. 10.1371/journal.pone.0243494 PubMed DOI PMC
Currie C. R. (2000). The ecology and evolution of a quadripartite symbiosis, examining the interactions among Attine ants, fungi, and actinomycetes. Ph.D. thesis. Toronto, ON: University of Toronto.
Dastogeer K. M., Wylie S. J. (2017). “Plant–fungi association: role of fungal endophytes in improving plant tolerance to water stress,” in Plant–Microbe Interactions in Agro-Ecological Perspectives, D. P. eds. Singh, Singh H. B, Prabha R. (Singapore: Springer Nature; ), 143–159. 10.1007/978-981-10-5813-4_8 DOI
Davis T. S., Landolt P. J. (2013). A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. J. Chem. Ecol. 39, 860–868. 10.1007/s10886-013-0278-z PubMed DOI
Dayrat B. (2005). Towards integrative taxonomy. Biol. J. Linn. Soc. 85, 407–415. 10.1111/j.1095-8312.2005.00503.x DOI
Dentinger B. T. M., Gaya E., O'Brien H., Suz L. M., Lachlan R., Díaz-Valderrama J. R., et al. . (2016). Tales from the crypt: genome mining from fungarium specimens improves resolution of the mushroom tree of life. Biol. J. Linn. Soc. 117, 11–32. 10.1111/bij.12553 DOI
Deveau A., Bonito G., Uehling J., Paoletti M., Becker M., Bindschedler S., et al. . (2018). Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352. 10.1093/femsre/fuy008 PubMed DOI
Diederich P., Ertz D. (2020). First checklist of lichens and lichenicolous fungi from Mauritius, with phylogenetic analyses and descriptions of new taxa. Plant Fungal Syst. 65, 13–75. 10.35535/pfsyst-2020-0003 DOI
Dighton J. (2003). Fungi in Ecosystem Processes. New York, NY: Marcel Dekker, Inc. 10.1201/9780203911440 DOI
Dirks A., Russell S. D. (2020). DNA barcoding of macrofungi from the 2018 Smith Foray: new fungal records for Wisconsin and the United States of America. Great Bot. 59, 191–201.
Drew L. W. (2011). Are we losing the science of taxonomy? As need grows, numbers and training are failing to keep up. BioScience 61, 942–946. 10.1525/bio.2011.61.12.4 DOI
Edwards R. A., Rodríguez-Brito B., Wegley L., Haynes M., Breitbart M., Peterson D. M., et al. . (2006). Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genom. 7, 57. 10.1186/1471-2164-7-57 PubMed DOI PMC
Egidi E., de Hoog G. S., Isola D., Onofri S., Quaedvlieg W., de Vries M., et al. . (2014). Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Divers. 65, 127–165. 10.1007/s13225-013-0277-y DOI
Fell J. W., Boekhout T., Fonseca A., Scorzetti G., Statzell-Tallman A. (2000). Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int. J. Syst. Evol. Microbiol. 50, 1351–1371. 10.1099/00207713-50-3-1351 PubMed DOI
Fraser J. A., Heitman J. (2004). Evolution of fungal sex chromosomes. Mol. Microbiol. 51, 299–306. 10.1046/j.1365-2958.2003.03874.x PubMed DOI
Fryar S. C., Hyde K. D., Catcheside D. E. (2020). A checklist of marine fungi from Australia. Mycotaxon 135, 465. 10.5248/135.465 DOI
Gafforov Y. (2017). A preliminary checklist of ascomycetous microfungi from Southern Uzbekistan. Mycosphere 8, 660–696. 10.5943/mycosphere/8/4/12 DOI
Gafforov Y., Ordynets A., Langer E., Yarasheva M., Gugliotta A. M., Schigel D., et al. . (2020). Species diversity with comprehensive annotations of wood- inhabiting poroid and corticioid fungi in Uzbekistan. Front. Microbiol. 11, 598321. 10.3389/fmicb.2020.598321 PubMed DOI PMC
Gafforov Y., Riebesehl J., Ordynets A., Langer E., Yarasheva M., Ghobad-Nejhad M., et al. . (2017). Hyphodontia (Hymenochaetales, Basidiomycota) and similar taxa from Central Asia. Botany 95, 1041–1056. 10.1139/cjb-2017-0115 DOI
Geml J., Gravendeel B., van der Gaag K. J., Neilen M., Lammers Y., Raes N., et al. . (2014). The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands. PLoS ONE 9, e99852. 10.1371/journal.pone.0099852 PubMed DOI PMC
George P. B., Creer S., Griffiths R. I., Emmett B. A., Robinson D. A., Jones D. L. (2019). Primer and database choice affect fungal functional but not biological diversity findings in a national soil survey. Front. Environ. Sci. 7, 173. 10.3389/fenvs.2019.00173 DOI
Glaeser J. A., Lindner D. L. (2011). Use of fungal biosystematics and molecular genetics in detection and identification of wood-decay fungi for improved forest management. For. Pathol. 41, 341–348. 10.1111/j.1439-0329.2010.00681.x DOI
Gómez-Zapata P. A., Haelewaters D., Quijada L., Pfister D. H., Aime M. C. (2021). Notes on Trochila (Ascomycota, Leotiomycetes), with new species and combinations. MycoKeys 78, 21–47. 10.3897/mycokeys.78.62046 PubMed DOI PMC
Gonçalves S. C., Haelewaters D., Furci G., Mueller G. M. (2021). Include all fungi in biodiversity goals. Science 373, 403. 10.1126/science.abk1312 PubMed DOI
Gordon M., van Norman K. (2015). Bridgeoporus nobilissimus is much more abundant than indicated by the presence of basidiocarps in forest stands. North Am. Fungi 10, 1–28.
Grossart H.-P., Van den Wyngaert S., Kagami M., Wurzbacher C., Cunliffe M., Rojas-Jimenez K. (2019). Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 17, 339–354. 10.1038/s41579-019-0175-8 PubMed DOI
Haelewaters D., Dirks A. C., Kappler L. A., Mitchell J. K., Quijada L., Vandegrift R., et al. . (2018). A preliminary checklist of fungi at the Boston Harbor islands. Northeast. Nat. 25, 45–76. 10.1656/045.025.s904 DOI
Haelewaters D., Gorczak M., Kaishian P., De Kesel A., Blackwell M. (2021a). “Laboulbeniomycetes, enigmatic fungi with a turbulent taxonomic history,” in Encyclopedia of Mycology, ed. Zaragoza Ó. (Oxford: Elsevier; ), 263–283. 10.1016/B978-0-12-819990-9.00049-4 DOI
Haelewaters D., Gorczak M., Pfliegler W. P., Tartally A., Tischer M., Wrzosek M., et al. . (2015). Bringing Laboulbeniales to the 21st century: enhanced techniques for extraction and PCR amplification of DNA from minute ectoparasitic fungi. IMA Fungus 6, 363–372. 10.5598/imafungus.2015.06.02.08 PubMed DOI PMC
Haelewaters D., Peterson R. A., Nevalainen H., Aime M. C. (2021b). Inopinatum lactosum gen. & comb. nov., the first yeast-like fungus in Leotiomycetes. Int. J. Syst. Evol. Microbiol. 71, 4862. 10.1099/ijsem.0.004862 PubMed DOI
Haelewaters D., Schoutteten N., Medina-van Berkum P., Martin T. E., Verbeken A., Aime M. C. (2021c). Pioneering a fungal inventory at Cusuco National Park, Honduras. J. Mesoam. Biol. 1, 111–131.
Hagge J., Bässler C., Gruppe A., Hoppe B., Kellner H., Krah F.-S., et al. . (2019). Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proc. R. Soc. B Biol. Sci. 286, 20191744. 10.1098/rspb.2019.1744 PubMed DOI PMC
Halme P., Heilmann-Clausen J., Räm,ä T., Kosonen T., Kunttu P. (2012). Monitoring fungal biodiversity – towards an integrated approach. Fungal Ecol. 5, 750–758. 10.1016/j.funeco.2012.05.005 PubMed DOI
Hawksworth D. L. (1988). The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96, 3–20. 10.1111/j.1095-8339.1988.tb00623.x DOI
Hawksworth D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol. Res. 105, 1422–1432. 10.1017/S0953756201004725 PubMed DOI
Hawksworth D. L. (2011). Naming Aspergillus species: progress towards one name for each species. Med. Mycol. 49, S70–S76. 10.3109/13693786.2010.504753 PubMed DOI
Hawksworth D. L., Lücking R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, 1–17. 10.1128/microbiolspec.FUNK-0052-2016 PubMed DOI PMC
Heilmann-Clausen J., Barron E. S., Boddy L., Dahlberg A., Griffith G. W., Nordén J., et al. . (2014). A fungal perspective on conservation biology. Conserv. Biol. 29, 61–68. 10.1111/cobi.12388 PubMed DOI
Hibbett D., Abarenkov K., Kõljalg U., Öpik M., Chai B., Cole J., et al. . (2016). Sequence-based classification and identification of Fungi. Mycologia 108, 1049–1068. 10.3852/16-130 PubMed DOI
Hibbett D. S., Ohman A., Glotzer D., Nuhn M., Kirk P., Nilsson R. H. (2011). Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol. Rev. 25, 38–47. 10.1016/j.fbr.2011.01.001 DOI
Hock B. (2012). Fungal Associations. Berlin: Springer–Verlag. 10.1007/978-3-642-30826-0 DOI
Hofstetter V., Buyck B., Eyssartier G., Schnee S., Gindro K. (2019). The unbearable lightness of sequenced-based identification. Fungal Divers. 96, 243–284. 10.1007/s13225-019-00428-3 DOI
IPBES (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
Irga P. J., Barker K., Torpy F. R. (2018). Conservation mycology in Australia and the potential role of citizen science. Conserv. Biol. 32, 1031–1037. 10.1111/cobi.13121 PubMed DOI
IUCN (2022). The IUCN Red List of Threatened Species. Version 2021-3. Available online at: https://www.iucnredlist.org (accessed January 20, 2022).
Jones M. D., Forn I., Gadelha C., Egan M. J., Bass D., Massana R., et al. . (2011). Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474, 200–203. 10.1038/nature09984 PubMed DOI
Jumbam B., Haelewaters D., Koch R. A., Dentinger B. T., Henkel T. W., Aime M. C. (2019). A new and unusual species of Hericium (Basidiomycota: Russulales, Hericiaceae) from the Dja Biosphere Reserve, Cameroon. Mycol. Prog. 18, 1253–1262. 10.1007/s11557-019-01530-1 DOI
Kaishian P. J. (2021). Insects and their Laboulbeniales (Ascomycota, Fungi) of Lake Eustis and Emeralda Marsh Conservation Area: a case study on urbanization and diversity. Ecol. Evol. 11, 16618–16633. 10.1002/ece3.8246 PubMed DOI PMC
Kendrick B. (2011). “Fungi: ecological importance and impact on humans,” in eLS (Hoboken, NJ: Wiley; ). 10.1002/9780470015902.a0000369.pub2 DOI
Kerekes J., Desjardin D. E. (2009). A monograph of the genera Crinipellis and Moniliophthora from Southeast Asia including a molecular phylogeny of the nrITS region. Fungal Divers. 37, 101–152.
Khan F., Kluting K., Tångrot J., Urbina H., Ammunet T., Eshghi Sahraei S., et al. . (2020). Naming the untouchable – environmental sequences and niche partitioning as taxonomical evidence in fungi. IMA Fungus 11, 23. 10.1186/s43008-020-00045-9 PubMed DOI PMC
Kim S., Axelsson E. P., Girona M. M., Senior J. K. (2021). Continuous-cover forestry maintains soil fungal communities in Norway spruce dominated boreal forests. For. Ecol. Manag. 480, 118659. 10.1016/j.foreco.2020.118659 DOI
Kõljalg U., Nilsson R. H., Abarenkov K., Tedersoo L., Taylor A. F., Bahram M., et al. . (2013). Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277. 10.1111/mec.12481 PubMed DOI
Korf R. P. (2005). Reinventing taxonomy: a curmudgeon's view of 250 years of fungal taxonomy, the crisis in biodiversity, and the pitfalls of the phylogenetic age. Mycotaxon 93, 407–415.
Kress W. J., Erickson D. L. (2012). DNA barcodes: methods and protocols. Methods Mol. Biol. 858, 3–8. 10.1007/978-1-61779-591-6_1 PubMed DOI
Kuhar F., Furci G., Drechsler-Santos E. R., Pfister D. H. (2018). Delimitation of Funga as a valid term for the diversity of fungal communities: the Fauna, Flora & Funga proposal (FF&F). IMA Fungus 9, A71–A74. 10.1007/BF03449441 DOI
Léveillé-Bourret É., Eggertson Q., Hambleton S., Starr J. R. (2021). Cryptic diversity and significant cophylogenetic signal detected by DNA barcoding the rust fungi (Pucciniaceae) of Cyperaceae–Juncaceae. J. Syst. Evol. 59, 833–851. 10.1111/jse.12740 DOI
Lienhard P., Terrat S., Prévost-Bour,é N. C., Nowak V., Régnier T., Sayphoummie S., et al. . (2014). Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron. Sustain. Dev. 34, 525–533. 10.1007/s13593-013-0162-9 DOI
Lin H., Peddada S. D. (2020). Analysis of compositions of microbiomes with bias correction. Nat. Commun. 11, 3514. 10.1038/s41467-020-17041-7 PubMed DOI PMC
Liu B., Fu R., Wu B., Liu X. Z., Xiang M. (2021). Rock-inhabiting fungi: terminology, diversity, evolution and adaptation mechanisms. Mycology 13, 1–31. 10.1080/21501203.2021.2002452 PubMed DOI PMC
Liu J., Haelewaters D., Pfliegler W. P., Page R. A., Dick C. W., Aime M. C. (2020). A new species of Gloeandromyces from Ecuador and Panama revealed by morphology and phylogenetic reconstruction, with a discussion of secondary barcodes in Laboulbeniomycetes taxonomy. Mycologia 112, 1192–1202. 10.1080/00275514.2020.1781496 PubMed DOI
López-Quintero C. A., Straatsma G., Franco-Molano A. E., Boekhout T. (2012). Macrofungal diversity in Colombian Amazon forests varies with regions and regimes of disturbance. Biodivers. Conserv. 21, 2221–2243. 10.1007/s10531-012-0280-8 DOI
Lücking R., Aime M. C., Robbertse B., Miller A. N., Ariyawansa H. A., Aoki T., et al. . (2020). Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 11, 14. 10.1186/s43008-020-00033-z PubMed DOI PMC
Lücking R., Dal-Forno M., Sikaroodi M., Gillevet P. M., Bungartz F., Moncada B., et al. . (2014). A single macrolichen constitutes hundreds of unrecognized species. Proc. Natl. Acad. Sci. U.S.A. 111, 11091–11096. 10.1073/pnas.1403517111 PubMed DOI PMC
Marinho F., da Silva I. R., Oehl F., Maia L. C. (2018). Checklist of arbuscular mycorrhizal fungi in tropical forests. Sydowia 70, 107–127. 10.12905/0380.sydowia70-2018-0107 DOI
McMurdie P. J., Holmes S. (2014). Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comp. Biol. 10, e1003531. 10.1371/journal.pcbi.1003531 PubMed DOI PMC
Meswaet Y., Mangelsdorff R., Yorou N. S., Piepenbring M. (2021). Unravelling unexplored diversity of cercosporoid fungi (Mycosphaerellaceae, Mycosphaerellales, Ascomycota) in tropical Africa. MycoKeys 81, 69–138. 10.3897/mycokeys.81.67850 PubMed DOI PMC
Moore D., Nauta M. M., Evans S. E., Rotheroe M. (2001). Fungal Conservation: Issues and Solutions. Cambridge: Cambridge University Press. 10.1017/CBO9780511565168 DOI
Morange M., Lagerkvist C., Helix D. (1998). A history of molecular biology. Endeavour 22, 165–166. 10.1016/S0160-9327(99)80026-X DOI
Mueller G. M. (2017). Progress in conserving fungi: engagement and red listing. BGjournal 14, 30–33.
Mueller G. M., Bills G. F., Foster M. S. (2004). Biodiversity of Fungi: Inventory and Monitoring Methods. Burlington, MA: Elsevier Academic Press.
Nilsson R. H., Anslan S., Bahram M., Wurzbacher C., Baldrian P., Tedersoo L. (2019). Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 17, 95–109. 10.1038/s41579-018-0116-y PubMed DOI
Nilsson R. H., Hyde K. D., Pawłowska J., Ryberg M., Tedersoo L., Aas A. B., et al. . (2014). Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Divers. 67, 11–19. 10.1007/s13225-014-0291-8 DOI
Nilsson R. H., Ryberg M., Kristiansson E., Abarenkov K., Larsson K.-H., Kõljalg U. (2006). Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE 1, e59. 10.1371/journal.pone.0000059 PubMed DOI PMC
Noordeloos M. E., Antonín V. (2008). Contribution to a monograph of marasmioid and collybioid fungi in Europe. Czech Mycol. 60, 21–27. 10.33585/cmy.60103 DOI
Nuñez N. F., Maggia L., Stenger P. L., Lelièvre M., Letellier K., Gigante S., et al. . (2021). Potential of high-throughput eDNA sequencing of soil fungi and bacteria for monitoring ecological restoration in ultramafic substrates: the case study of the New Caledonian biodiversity hotspot. Ecol. Eng. 173, 106416. 10.1016/j.ecoleng.2021.106416 DOI
Oberwinkler F. (2018). “How to understand cryptogams? The development of research methods and their impact on the knowledge of cryptogams,” in Biodiversity and Ecology of Fungi, Lichens, and Mosses. Kerner von Marilaun Workshop 2015 in memory of Josef Poelt, Vol. 34, ed. Blanz P. (Budapest: Austrian Academy of Sciences; ), 106–186.
Oliver R. P., Schweizer M. (1999). Molecular Fungal Biology. Cambridge: Cambridge University Press Oliver. 10.1017/CBO9781139163972 DOI
Osiewacz H. D. (2002). Genes, mitochondria and aging in filamentous fungi. Ageing Res. Rev. 1, 425–442. 10.1016/S1568-1637(02)00010-7 PubMed DOI
Osmundson T. W., Robert V. A., Schoch C. L., Baker L. J., Smith A., Robich G., et al. . (2013). Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project. PLoS ONE 8, e62419. 10.1371/journal.pone.0062419 PubMed DOI PMC
Pante E., Schoelinck C., Puillandre N. (2015). From integrative taxonomy to species description: one step beyond. Syst. Biol. 64, 152–160. 10.1093/sysbio/syu083 PubMed DOI
Paton A., Antonelli A., Carine M., Forzza R. C., Davies N., Demissew S., et al. . (2020). Plant and fungal collections: current status, future perspectives. Plants People Planet 2, 499–514. 10.1002/ppp3.10141 PubMed DOI
Peay K. G. (2014). Back to the future: natural history and the way forward in modern fungal ecology. Fungal Ecol. 12, 4–9. 10.1016/j.funeco.2014.06.001 DOI
Peay K. G., Kennedy P. G., Bruns T. D. (2008). Fungal community ecology: a hybrid beast with a molecular master. BioScience 58, 799–810. 10.1641/B580907 DOI
Peay K. G., Kennedy P. G., Talbot J. M. (2016). Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447. 10.1038/nrmicro.2016.59 PubMed DOI
Peay K. G., Matheny P. B. (2016). “The biogeography of ectomycorrhizal fungi – a history of life in the subterranean,” in Molecular Mycorrhizal Symbiosis, ed. Martin F. (Hoboken, NJ: John Wiley & Sons, Ltd.), 341–361. 10.1002/9781118951446.ch19 DOI
Penton C. R., StLouis D., Cole J. R., Luo Y., Wu L., Schuur E. G., et al. . (2013). Fungal diversity in permafrost and tallgrass prairie soils under experimental warming conditions. Appl. Environ. Microbiol. 79, 7063–7072. 10.1128/AEM.01702-13 PubMed DOI PMC
Pérez-Izquierdo L., Zabal-Aguirre M., Verdú M., Buée M., Rincón A. (2020). Ectomycorrhizal fungal diversity decreases in Mediterranean pine forests adapted to recurrent fires. Mol. Ecol. 29, 2463–2476. 10.1111/mec.15493 PubMed DOI
Petisco C., Downey G., Murray I., Zabalgogeazcoa I., García-Criado B., García-Ciudad A. (2008). Direct classification of related species of fungal endophytes (Epichloë spp.) using visible and near-infrared spectroscopy and multivariate analysis. FEMS Microbiol. Lett. 284, 135–141. 10.1111/j.1574-6968.2008.01186.x PubMed DOI
Phengsintham P., Braun U., McKenzie E. H. C., Chukeatirote E., Hyde K. D. (2013). Monograph of cercosporoid fungi from Thailand. Plant Pathol. Quar. 3, 67–138. 10.5943/ppq/3/2/2 DOI
Piepenbring M. (2015). Introduction to Mycology in the Tropics. St. Paul, MN: American Phytopathological Society. 10.1094/9780890546130 DOI
Piepenbring M., Caballero E., Fournier J., Guzmán G., Hou C.-L., Kirschner R., et al. . (2011). Pioneer forays for fungi in the Darién Province in eastern Panama: quintuplicating the knowledge on fungi in this area by five days of fieldwork. Biodivers. Conserv. 20, 2511–2526. 10.1007/s10531-011-0085-1 DOI
Piepenbring M., Hofmann T. A., Miranda E., Cáceres O., Unterseher M. (2015). Leaf shedding and weather in tropical dry-seasonal forest shape the phenology of fungi–lessons from two years of monthly surveys in southwestern Panama. Fungal Ecol. 18, 83–92. 10.1016/j.funeco.2015.08.004 DOI
Piepenbring M., Lotz-Winter H., Hofmann T. A. (2018). Incentives and challenges for mycologists in the tropics. Biosyst. Ecol. Ser. 34, 481–514.
Piepenbring M., Maciá-Vicente J. G., Codjia J. E. I., Glatthorn C., Kirk P., Meswaet Y., et al. . (2020). Mapping mycological ignorance – checklists and diversity patterns of fungi known for West Africa. IMA Fungus 11, 13. 10.1186/s43008-020-00034-y PubMed DOI PMC
Piepenbring M., Yorou N. S. (2017). Promoting teaching and research on African fungi by field schools on tropical mycology in Benin. IMA Fungus 8, 74–77. 10.1007/BF03449467 DOI
Pitt J. I., Hocking A. D., Glenn D. R. (1983). An improved medium for the detection of Aspergillus flavus and A. parasiticus. J. Appl. Bacteriol. 54, 109–114. 10.1111/j.1365-2672.1983.tb01307.x PubMed DOI
Powell J. R., Rillig M. C. (2018). Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol. 220, 1059–1075. 10.1111/nph.15119 PubMed DOI
Purahong W., Wubet T., Krüger D., Buscot F. (2019). Application of next-generation sequencing technologies to conservation of wood-inhabiting fungi. Conserv. Biol. 33, 716–724. 10.1111/cobi.13240 PubMed DOI
Reynolds N. K., Jusino M. A., Stajich J. E., Smith M. E. (2021). Understudied, underrepresented, and unknown: Methodological biases that limit detection of early diverging fungi from environmental samples. Mol. Ecol. Resour. 10.1111/1755-0998.13540 PubMed DOI
Ríos-Saldaña C. A., Delibes-Mateos M., Ferreira C. C. (2018). Are fieldwork studies being relegated to second place in conservation science? Glob. Ecol. Conserv. 14, e00389. 10.1016/j.gecco.2018.e00389 DOI
Rivas-Ferreiro M. (2021). Exploring the potential of opportunistic surveys and sequence databases: revealing the fungal diversity of Madagascar and the arrival of ectomycorrhizal fungi in the island. M.Sc. thesis. London: Royal Botanic Gardens, Kew.
Rodrigues P., Santos C., Venâncio A., Lima N. (2011). Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDI-TOF ICMS, and molecular approaches. J. Appl. Microbiol. 111, 877–892. 10.1111/j.1365-2672.2011.05116.x PubMed DOI
Rosa L. H., Pinto O. H. B., Šantl-Temkiv T., Convey P., Carvalho-Silva M., Rosa C. A., et al. . (2020). DNA metabarcoding of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica. Sci. Rep. 10, 21793. 10.1038/s41598-020-78630-6 PubMed DOI PMC
Runnel K., Drenkhan R., Adamson K., Lõhmus P., Rosenvald K., Rosenvald R., et al. . (2021). The factors and scales shaping fungal assemblages in fallen spruce trunks: a DNA metabarcoding study. For. Ecol. Manag. 495, 119381. 10.1016/j.foreco.2021.119381 DOI
Ryberg M., Nilsson R. H. (2018). New light on names and naming of dark taxa. MycoKeys 30, 31–39. 10.3897/mycokeys.30.24376 PubMed DOI PMC
Sadiković D., Kuštera M. (2013). Fungal conservation: protected species of fungi in South Serbia region. Biol. Nyssana 4, 35–40.
Schmit J. P., Lodge D. J. (2005). “Classical methods and modern analysis for studying fungal diversity,” in The Fungal Community, ed. Dighton J. (Boca Raton, FL: Marcel Dekker, Inc.), 193–214. 10.1201/9781420027891.ch10 DOI
Selbmann L., Isola D., Egidi E., Zucconi L., Gueidan C., de Hoog G. S., et al. . (2014). Mountain tips as reservoirs for new rock-fungal entities: Saxomyces gen. nov. and four new species from the Alps. Fungal Divers. 65, 167–182. 10.1007/s13225-013-0234-9 DOI
Sharma S. K., Saini S., Verma A., Sharma P. K., Lal R., Roy M., et al. . (2019). National agriculturally important microbial culture collection in the global context of microbial culture collection centres. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 89, 405–418. 10.1007/s40011-017-0882-8 DOI
Shrestha U. B., Bawa K. S. (2014). Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya. PLoS ONE 9, e106405. 10.1371/journal.pone.0106405 PubMed DOI PMC
Simões M. F., Pereira L., Santos C., Lima N. (2013). “Polyphasic identification and preservation of fungal diversity: Concepts and applications,” in Management of Microbial Resources in the Environment, eds. Malik A., Grohmann E., Alves M. (Dordrecht: Springer; ), 91–117. 10.1007/978-94-007-5931-2_5 DOI
Simpson G. (1960). Principles of Animal Taxonomy. New York, NY: Columbia University Press. 10.7312/simp92414 DOI
Spatafora J. W., Aime M. C., Grigoriev I. V., Martin F., Stajich J. E., Blackwell M. (2018). “The fungal tree of life: from molecular systematics to genome-scale phylogenies,” in The Fungal Kingdom, eds. Heitman J., Howlett B. J., Crous P. W., Stukenbrock E. H., James T. Y., Gow N. A. R. (Washington, DC: ASM Press; ), 1–34. 10.1128/9781555819583.ch1 PubMed DOI PMC
Stewart J. E., Kim M. S., Klopfenstein N. B. (2018). Molecular genetic approaches toward understanding forest-associated fungi and their interactive roles within forest ecosystems. Curr. For. Rep. 4, 72–84. 10.1007/s40725-018-0076-5 DOI
Suh S.-O., Zhang N., Nguyen N., Gross S., Blackwell M. (2008). Lab Manual for Yeast Study. Baton Rouge, LA: Louisiana State University.
Sundberg H., Ekman S., Kruys Å. (2018). A crush on small fungi: an efficient and quick method for obtaining DNA from minute ascomycetes. Methods Ecol. Evol. 9, 148–158. 10.1111/2041-210X.12850 DOI
Taylor D. L., Hollingsworth T. N., McFarland J. W., Lennon N. J., Nusbaum C., Ruess R. W. (2014). A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20. 10.1890/12-1693.1 DOI
Taylor J. W., Jacobson D. J., Kroken S., Kasuga T., Geiser D. M., Hibbett D. S., et al. . (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31, 21–32. 10.1006/fgbi.2000.1228 PubMed DOI
Tedersoo L., Bahram M., Põlme S., Kõljalg U., Yorou N. S., Wijesundera R., et al. . (2014). Global diversity and geography of soil fungi. Science 346, 1256688. 10.1126/science.1256688 PubMed DOI
Teke N. A., Kinge T. R., Bechem E., Nji T. M., Ndam L. M., Mih A. M. (2018). Ethnomycological study in the Kilum-Ijim mountain forest, Northwest Region, Cameroon. J. Ethnobiol. Ethnomed. 14, 25. 10.1186/s13002-018-0225-8 PubMed DOI PMC
Tomao A., Bonet J. A., Castaño C., de-Miguel S. (2020). How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manag. 457, 117678. 10.1016/j.foreco.2019.117678 DOI
Truong C., Mujic A. B., Healy R., Kuhar F., Furci G., Torres D., et al. . (2017). How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol. 214, 913–919. 10.1111/nph.14509 PubMed DOI
Turland N. J., Wiersema J. H., Barrie F. R., Greuter W., Hawksworth D. L., Herendeen P. S., et al. . (2018). “International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code),” in The Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159 (Glashütten: Koeltz Botanical Books; ). 10.12705/Code.2018 DOI
van der Linde S., Suz L. M., Orme C. D. L., Cox F., Andreae H., Asi E., et al. . (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248. 10.1038/s41586-018-0189-9 PubMed DOI
Vargas-Gastélum L., Romero-Olivares A. L., Escalante A. E., Rocha-Olivares A., Brizuela C., Riquelme M. (2015). Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. FEMS Microbiol. Ecol. 91, fiv044. 10.1093/femsec/fiv044 PubMed DOI
Vega F. E., Blackwell M. (2005). Insect-Fungal Associations: Ecology and Evolution. New York, NY: Oxford University Press.
Velázquez M. S., Biganzoli F., Cabello M. N. (2010). Arbuscular mycorrhizal fungi in El Palmar National Park (Entre Rios Province, Argentina) – a protected reserve. Sydowia 62, 149–163.
Wang X. W., Jiang J. H., Liu S. L., Gafforov Y., Zhou L. W. (2021). Species diversification of the coniferous pathogenic fungal genus Coniferiporia (Hymenochaetales, Basidiomycota) in association with its biogeography and host plants. Phytopathology. 112, 404–413. 10.1094/PHYTO-05-21-0181-R PubMed DOI
Weiss M., Selosse M. A., Rexer K. H., Urban A., Oberwinkler F. (2004). Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol. Res. 108, 1003–1010. 10.1017/S0953756204000772 PubMed DOI
Weiss S., Xu Z. Z., Peddada S., Amir A., Bittinger K., Gonzalez A., et al. . (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 104. 10.1186/s40168-017-0237-y PubMed DOI PMC
Wu B., Hussain M., Zhang W., Stadler M., Liu X., Xiang M. (2019). Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10, 127–140. 10.1080/21501203.2019.1614106 PubMed DOI PMC
Wutkowska M., Vader A., Mundra S., Cooper E. J., Eidesen P. B. (2019). Dead or alive; or does it really matter? Level of congruency between trophic modes in total and active fungal communities in high arctic soil. Front. Microbiol. 9, 3243. 10.3389/fmicb.2018.03243 PubMed DOI PMC
Yan D., Mills J. G., Gellie N. J., Bissett A., Lowe A. J., Breed M. F. (2018). High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol. Conserv. 217, 113–120. 10.1016/j.biocon.2017.10.035 DOI
Yan Y., Li Y., Wang W. J., He J. S., Yang R. H., Wu H. J., et al. . (2017). Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biol. Conserv. 206, 143–150. 10.1016/j.biocon.2016.12.023 DOI
Zhang Y., Qiao M., Xu J., Cao Y., Zhang K.-Q., Yu Z.-F. (2013). Genetic diversity and recombination in natural populations of the nematode-trapping fungus Arthrobotrys oligospora from China. Ecol. Evol. 3, 312–325. 10.1002/ece3.450 PubMed DOI PMC
Zhang Y., Zhang S., Wang M., Bai F., Liu X. (2010). High diversity of the fungal community structure in naturally-occurring Ophiocordyceps sinensis. PLoS ONE 5, e15570. 10.1371/journal.pone.0015570 PubMed DOI PMC
Standard deviation: Standardized bat monitoring techniques work better in some ecosystems
The power of citizen science to advance fungal conservation
Singleton-based species names and fungal rarity: Does the number really matter?