Mesenchymal Meis2 controls whisker development independently from trigeminal sensory innervation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-10660S
Czech Science Foundation
MUNI/A/1598/2023
Masaryk University
NanoEnviCZ
MEYS Czech Republic
LM2018124
MEYS Czech Republic
CZ.02.1.01/0.0/0.0/16_013/0001821
EU Structural Funds Pro-NanoEnviCz
23-06160S
Czech Science Foundation
PubMed
40183774
PubMed Central
PMC11970903
DOI
10.7554/elife.100854
PII: 100854
Knihovny.cz E-zdroje
- Klíčová slova
- Foxd1, Meis2, Sox2, cranial nerves, developmental biology, hair follicle placode, mouse, whisker follicle,
- MeSH
- crista neuralis MeSH
- forkhead transkripční faktory metabolismus genetika MeSH
- homeodoménové proteiny * metabolismus genetika MeSH
- mezoderm * metabolismus MeSH
- myši MeSH
- nervus trigeminus * MeSH
- vibrissae * inervace růst a vývoj embryologie MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- forkhead transkripční faktory MeSH
- Foxd1 protein, mouse MeSH Prohlížeč
- homeodoménové proteiny * MeSH
Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.
Department of Cell Biology Faculty of Science Charles University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
doi: 10.1101/2024.08.13.607774 PubMed
Před aktualizacídoi: 10.7554/eLife.100854.1 PubMed
Před aktualizacídoi: 10.7554/eLife.100854.2 PubMed
Zobrazit více v PubMed
Adameyko I, Fried K. The nervous system orchestrates and integrates craniofacial development: A review. Frontiers in Physiology. 2016;7:49. doi: 10.3389/fphys.2016.00049. PubMed DOI PMC
Andrés FL, Van der Loos H. Whisker patterns form in cultured non-innervated muzzle skin from mouse embryos. Neuroscience Letters. 1982;30:37–41. doi: 10.1016/0304-3940(82)90008-8. PubMed DOI
Andrés FL, Van Der Loos H. Cultured embryonic non-innervated mouse muzzle is capable of generating a whisker pattern. International Journal of Developmental Neuroscience. 1983;1:319–338. doi: 10.1016/0736-5748(83)90034-5. PubMed DOI
Biggs LC, Mäkelä OJ, Myllymäki SM, Das Roy R, Närhi K, Pispa J, Mustonen T, Mikkola ML. Hair follicle dermal condensation forms via Fgf20 primed cell cycle exit, cell motility, and aggregation. eLife. 2018;7:e36468. doi: 10.7554/eLife.36468. PubMed DOI PMC
Botchkarev VA, Danielian PS, Dassule HR, Karavanova I, Li J, Lewis PM, McMahon JA, McMahon AP, Paus R, St-Jacques B. Sonic hedgehog signaling is essential for hair development. Current Biology. 1998;8:1058–1068. doi: 10.1016/s0960-9822(98)70443-9. PubMed DOI
Chen D, Jarrell A, Guo C, Lang R, Atit R. Dermal β-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development. 2012;139:1522–1533. doi: 10.1242/dev.076463. PubMed DOI PMC
Cheng HJ, Bagri A, Yaron A, Stein E, Pleasure SJ, Tessier-Lavigne M. Plexin-A3 mediates semaphorin signaling and regulates the development of hippocampal axonal projections. Neuron. 2001;32:249–263. doi: 10.1016/s0896-6273(01)00478-0. PubMed DOI
DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development. 1999;126:4557–4568. doi: 10.1242/dev.126.20.4557. PubMed DOI
Davies AM, Lumsden AG. Fasciculation in the early mouse trigeminal nerve is not ordered in relation to the emerging pattern of whisker follicles. The Journal of Comparative Neurology. 1986;253:13–24. doi: 10.1002/cne.902530103. PubMed DOI
Dent EW, Barnes AM, Tang F, Kalil K. Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton. The Journal of Neuroscience. 2004;24:3002–3012. doi: 10.1523/JNEUROSCI.4963-03.2004. PubMed DOI PMC
Duan Y, Liang Y, Yang F, Ma Y. Neural regulations in tooth development and tooth-periodontium complex homeostasis: A literature review. International Journal of Molecular Sciences. 2022;23:14150. doi: 10.3390/ijms232214150. PubMed DOI PMC
Erdélyi G, Fried K, Hildebrand C. Nerve growth to tooth buds after homotopic or heterotopic autotransplantation. Developmental Brain Research. 1987;33:39–47. doi: 10.1016/0165-3806(87)90174-X. PubMed DOI
Fabik J, Kovacova K, Kozmik Z, Machon O. Neural crest cells require Meis2 for patterning the mandibular arch via the Sonic hedgehog pathway. Biology Open. 2020;9:052043. doi: 10.1242/bio.052043. PubMed DOI PMC
Ge W, Tan SJ, Wang SH, Li L, Sun XF, Shen W, Wang X. Single-cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development. Theranostics. 2020;10:7581–7598. doi: 10.7150/thno.44306. PubMed DOI PMC
Glover JD, Wells KL, Matthäus F, Painter KJ, Ho W, Riddell J, Johansson JA, Ford MJ, Jahoda CAB, Klika V, Mort RL, Headon DJ. Hierarchical patterning modes orchestrate hair follicle morphogenesis. PLOS Biology. 2017;15:e2002117. doi: 10.1371/journal.pbio.2002117. PubMed DOI PMC
Gupta K, Levinsohn J, Linderman G, Chen D, Sun TY, Dong D, Taketo MM, Bosenberg M, Kluger Y, Choate K, Myung P. Single-cell analysis reveals a hair follicle dermal niche molecular differentiation trajectory that begins prior to morphogenesis. Developmental Cell. 2019;48:17–31. doi: 10.1016/j.devcel.2018.11.032. PubMed DOI PMC
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587. doi: 10.1016/j.cell.2021.04.048. PubMed DOI PMC
Hudacova E, Abaffy P, Kaplan MM, Krausova M, Kubista M, Machon O. Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis. Bone. 2025;190:117297. doi: 10.1016/j.bone.2024.117297. PubMed DOI
Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell. 2001;105:533–545. doi: 10.1016/s0092-8674(01)00336-1. PubMed DOI
Huh SH, Närhi K, Lindfors PH, Häärä O, Yang L, Ornitz DM, Mikkola ML. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes & Development. 2013;27:450–458. doi: 10.1101/gad.198945.112. PubMed DOI PMC
Kaplan MM. Whisker_scRNA. swh:1:rev:acb01843bee3a40f97987c8bce2d4deeac20a77bSoftware Heritage. 2025 https://archive.softwareheritage.org/swh:1:dir:a262681da0087d4b73deb245990dde371adeea4a;origin=https://github.com/kaplanmm/whisker_scRNA;visit=swh:1:snp:13acd9d21a0c017a2ab445a68703e8ed3f480451;anchor=swh:1:rev:acb01843bee3a40f97987c8bce2d4deeac20a77b
Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, Blom H, Brismar H, Lopes NA, Pachnis V, Suter U, Clevers H, Thesleff I, Sharpe P, Ernfors P, Fried K, Adameyko I. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513:551–554. doi: 10.1038/nature13536. PubMed DOI
Kratochwil K, Dull M, Farinas I, Galceran J, Grosschedl R. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes & Development. 1996;10:1382–1394. doi: 10.1101/gad.10.11.1382. PubMed DOI
Leonard CE, Quiros J, Lefcort F, Taneyhill LA. Loss of Elp1 disrupts trigeminal ganglion neurodevelopment in a model of familial dysautonomia. eLife. 2022;11:e71455. doi: 10.7554/eLife.71455. PubMed DOI PMC
Lewis AE, Vasudevan HN, O’Neill AK, Soriano P, Bush JO. The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Developmental Biology. 2013;379:229–234. doi: 10.1016/j.ydbio.2013.04.026. PubMed DOI PMC
Lillesaar C, Hildebrand C. Denervation does not affect the growth of rat vibrissae. Neuroscience Letters. 1999;261:69–72. doi: 10.1016/s0304-3940(98)01015-5. PubMed DOI
Løes S, Kettunen P, Kvinnsland I, Luukko K. Mouse rudimentary diastema tooth primordia are devoid of peripheral nerve fibers. Anatomy and Embryology. 2002;205:187–191. doi: 10.1007/s00429-002-0247-8. PubMed DOI
Lumsden AG, Buchanan JA. An experimental study of timing and topography of early tooth development in the mouse embryo with an analysis of the role of innervation. Archives of Oral Biology. 1986;31:301–311. doi: 10.1016/0003-9969(86)90044-0. PubMed DOI
Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron. 1998;20:469–482. doi: 10.1016/s0896-6273(00)80988-5. PubMed DOI
Machon O, Backman M, Machonova O, Kozmik Z, Vacik T, Andersen L, Krauss S. A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Developmental Biology. 2007;311:223–237. doi: 10.1016/j.ydbio.2007.08.038. PubMed DOI
Machon O, Masek J, Machonova O, Krauss S, Kozmik Z. Meis2 is essential for cranial and cardiac neural crest development. BMC Developmental Biology. 2015;15:40. doi: 10.1186/s12861-015-0093-6. PubMed DOI PMC
Maeda Y, Miwa Y, Sato I. Distribution of the neuropeptide calcitonin gene-related peptide-α of tooth germ during formation of the mouse mandible. Annals of Anatomy = Anatomischer Anzeiger. 2019;221:38–47. doi: 10.1016/j.aanat.2018.09.001. PubMed DOI
Mäkelä OJM, Mikkola ML. Mesenchyme governs hair follicle induction. Development. 2023;150:dev202140. doi: 10.1242/dev.202140. PubMed DOI
Maklad A, Conway M, Hodges C, Hansen LA. Development of innervation to maxillary whiskers in mice. The Anatomical Record. 2010;293:1553–1567. doi: 10.1002/ar.21194. PubMed DOI
Manti PG, Darbellay F, Leleu M, Coughlan AY, Moret B, Cuennet J, Droux F, Stoudmann M, Mancini GF, Hautier A, Sordet-Dessimoz J, Vincent SD, Testa G, Cossu G, Barrandon Y. The transcriptional regulator Prdm1 is essential for the early development of the sensory whisker follicle and is linked to the beta-catenin first dermal signal. Biomedicines. 2022;10:2647. doi: 10.3390/biomedicines10102647. PubMed DOI PMC
Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB, Volpin D, Bressan GM, Piccolo S. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. PNAS. 2003;100:3299–3304. doi: 10.1073/pnas.0434590100. PubMed DOI PMC
Matos I, Asare A, Levorse J, Ouspenskaia T, de la Cruz-Racelis J, Schuhmacher LN, Fuchs E. Progenitors oppositely polarize WNT activators and inhibitors to orchestrate tissue development. eLife. 2020;9:e54304. doi: 10.7554/eLife.54304. PubMed DOI PMC
Moe K, Sijaona A, Shrestha A, Kettunen P, Taniguchi M, Luukko K. Semaphorin 3A controls timing and patterning of the dental pulp innervation. Differentiation; Research in Biological Diversity. 2012;84:371–379. doi: 10.1016/j.diff.2012.09.003. PubMed DOI
Moiseiwitsch JRD, Lauder JM. Stimulation of murine tooth development in organotypic culture by the neurotransmitter serotonin. Archives of Oral Biology. 1996;41:161–165. doi: 10.1016/0003-9969(95)00117-4. PubMed DOI
Mok KW, Saxena N, Heitman N, Grisanti L, Srivastava D, Muraro MJ, Jacob T, Sennett R, Wang Z, Su Y, Yang LM, Ma’ayan A, Ornitz DM, Kasper M, Rendl M. Dermal condensate niche fate specification occurs prior to formation and is placode progenitor dependent. Developmental Cell. 2019;48:32–48. doi: 10.1016/j.devcel.2018.11.034. PubMed DOI PMC
North HA, Karim A, Jacquin MF, Donoghue MJ. EphA4 is necessary for spatially selective peripheral somatosensory topography. Developmental Dynamics. 2010;239:630–638. doi: 10.1002/dvdy.22185. PubMed DOI PMC
Oh WJ, Gu C. Establishment of neurovascular congruency in the mouse whisker system by an independent patterning mechanism. Neuron. 2013;80:458–469. doi: 10.1016/j.neuron.2013.09.005. PubMed DOI PMC
Ouspenskaia T, Matos I, Mertz AF, Fiore VF, Fuchs E. WNT-SHH antagonism specifies and expands stem cells prior to niche formation. Cell. 2016;164:156–169. doi: 10.1016/j.cell.2015.11.058. PubMed DOI PMC
Reddy S, Andl T, Bagasra A, Lu MM, Epstein DJ, Morrisey EE, Millar SE. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mechanisms of Development. 2001;107:69–82. doi: 10.1016/S0925-4773(01)00452-X. PubMed DOI
Sandor B, Fintor K, Felszeghy S, Juhasz T, Reglodi D, Mark L, Kiss P, Jungling A, Fulop BD, Nagy AD, Hashimoto H, Zakany R, Nagy A, Tamas A. Structural and morphometric comparison of the molar teeth in pre-eruptive developmental stage of PACAP-deficient and wild-type mice. Journal of Molecular Neuroscience. 2014;54:331–341. doi: 10.1007/s12031-014-0392-6. PubMed DOI
Schwarz Q, Vieira JM, Howard B, Eickholt BJ, Ruhrberg C. Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development. 2008a;135:1605–1613. doi: 10.1242/dev.015412. PubMed DOI PMC
Schwarz Q, Waimey KE, Golding M, Takamatsu H, Kumanogoh A, Fujisawa H, Cheng HJ, Ruhrberg C. Plexin A3 and plexin A4 convey semaphorin signals during facial nerve development. Developmental Biology. 2008b;324:1–9. doi: 10.1016/j.ydbio.2008.08.020. PubMed DOI PMC
Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Seminars in Cell & Developmental Biology. 2012;23:917–927. doi: 10.1016/j.semcdb.2012.08.011. PubMed DOI PMC
Sennett R, Wang Z, Rezza A, Grisanti L, Roitershtein N, Sicchio C, Mok KW, Heitman NJ, Clavel C, Ma’ayan A, Rendl M. An integrated transcriptome atlas of embryonic hair follicle progenitors, their niche, and the developing skin. Developmental Cell. 2015;34:577–591. doi: 10.1016/j.devcel.2015.06.023. PubMed DOI PMC
Stainier DY, Gilbert W. Pioneer neurons in the mouse trigeminal sensory system. PNAS. 1990;87:923–927. doi: 10.1073/pnas.87.3.923. PubMed DOI PMC
Tachibana R, Tatehara S, Kumasaka S, Tokuyama R, Satomura K. Effect of melatonin on human dental papilla cells. International Journal of Molecular Sciences. 2014;15:17304–17317. doi: 10.3390/ijms151017304. PubMed DOI PMC
Taniguchi M, Yuasa S, Fujisawa H, Naruse I, Saga S, Mishina M, Yagi T. Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron. 1997;19:519–530. doi: 10.1016/s0896-6273(00)80368-2. PubMed DOI
Ulupinar E, Datwani A, Behar O, Fujisawa H, Erzurumlu R. Role of semaphorin III in the developing rodent trigeminal system. Molecular and Cellular Neurosciences. 1999;13:281–292. doi: 10.1006/mcne.1999.0747. PubMed DOI PMC
Van Exan RJ, Hardy MH. A spatial relationship between innervation and the early differentiation of vibrissa follicles in the embryonic mouse. Journal of Anatomy. 1980;131:643–656. PubMed PMC
Weil M, Itin A, Keshet E. A role for mesenchyme-derived tachykinins in tooth and mammary gland morphogenesis. Development. 1995;121:2419–2428. doi: 10.1242/dev.121.8.2419. PubMed DOI
Wrenn JT, Wessells NK. The early development of mystacial vibrissae in the mouse. Development. 1984;83:137–156. doi: 10.1242/dev.83.1.137. PubMed DOI
Wu Z, Zhu Y, Liu H, Liu G, Li F. Wnt10b promotes hair follicles growth and dermal papilla cells proliferation via Wnt/β-Catenin signaling pathway in Rex rabbits. Bioscience Reports. 2020;40:BSR20191248. doi: 10.1042/BSR20191248. PubMed DOI PMC
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Yang JW, Kilb W, Kirischuk S, Unichenko P, Stüttgen MC, Luhmann HJ. Development of the whisker-to-barrel cortex system. Current Opinion in Neurobiology. 2018;53:29–34. doi: 10.1016/j.conb.2018.04.023. PubMed DOI
Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. GigaScience. 2018;7:giy083. doi: 10.1093/gigascience/giy083. PubMed DOI PMC
Zhang Y, Tomann P, Andl T, Gallant NM, Huelsken J, Jerchow B, Birchmeier W, Paus R, Piccolo S, Mikkola ML, Morrisey EE, Overbeek PA, Scheidereit C, Millar SE, Schmidt-Ullrich R. Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Developmental Cell. 2009;17:49–61. doi: 10.1016/j.devcel.2009.05.011. PubMed DOI PMC
Zhao H, Feng J, Seidel K, Shi S, Klein O, Sharpe P, Chai Y. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 2014;14:160–173. doi: 10.1016/j.stem.2013.12.013. PubMed DOI PMC
GEO
GSE262468