Neural crest cells require Meis2 for patterning the mandibular arch via the Sonic hedgehog pathway
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32616504
PubMed Central
PMC7331463
DOI
10.1242/bio.052043
PII: 9/6/bio052043
Knihovny.cz E-resources
- Keywords
- Craniofacial, Meis, Pharyngeal arch, Sonic hedgehog (Shh) signalling,
- MeSH
- Alleles MeSH
- Biomarkers MeSH
- Neural Crest cytology embryology MeSH
- Gene Deletion MeSH
- Phenotype MeSH
- Homeodomain Proteins genetics metabolism MeSH
- Immunohistochemistry MeSH
- Calcinosis genetics metabolism MeSH
- Mandible embryology MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- Organogenesis genetics MeSH
- Hedgehog Proteins metabolism MeSH
- Body Patterning * genetics MeSH
- Signal Transduction * MeSH
- Dental Arch embryology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Homeodomain Proteins MeSH
- Mrg1 protein, mouse MeSH Browser
- Hedgehog Proteins MeSH
Cranial neural crest cells (cNCCs) originate in the anterior neural tube and populate pharyngeal arches in which they contribute to formation of bone and cartilage. This cell population also provides molecular signals for the development of tissues of non-neural crest origin, such as the tongue muscles, teeth enamel or gland epithelium. Here we show that the transcription factor Meis2 is expressed in the oral region of the first pharyngeal arch (PA1) and later in the tongue primordium. Conditional inactivation of Meis2 in cNCCs resulted in loss of Sonic hedgehog signalling in the oropharyngeal epithelium and impaired patterning of PA1 along the lateral-medial and oral-aboral axis. Failure of molecular specification of PA1, illustrated by altered expression of Hand1/2, Dlx5, Barx1, Gsc and other markers, led to hypoplastic tongue and ectopic ossification of the mandible. Meis2-mutant mice thus display craniofacial defects that are reminiscent of several human syndromes and patients with mutations in the Meis2 gene.
See more in PubMed
Agoston Z., Heine P., Brill M. S., Grebbin B. M., Hau A.-C., Kallenborn-Gerhardt W., Schramm J., Götz M. and Schulte D. (2014). Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development 141, 28-38. 10.1242/dev.097295 PubMed DOI
Antosova B., Smolikova J., Klimova L., Lachova J., Bendova M., Kozmikova I., Machon O. and Kozmik Z. (2016). The gene regulatory network of lens induction is wired through meis-dependent shadow enhancers of Pax6. PLoS Genet. 12, e1006441 10.1371/journal.pgen.1006441 PubMed DOI PMC
Baggiolini A., Varum S., Mateos J. M., Bettosini D., John N., Bonalli M., Ziegler U., Dimou L., Clevers H., Furrer R., et al. (2015). Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16, 314-322. 10.1016/j.stem.2015.02.017 PubMed DOI
Barron F., Woods C., Kuhn K., Bishop J., Howard M. J. and Clouthier D. E. (2011). Downregulation of Dlx5 and Dlx6 expression by Hand2 is essential for initiation of tongue morphogenesis. Development 138, 2249-2259. 10.1242/dev.056929 PubMed DOI PMC
Billmyre K. K. and Klingensmith J. (2015). Sonic hedgehog from pharyngeal arch 1 epithelium is necessary for early mandibular arch cell survival and later cartilage condensation differentiation. Dev. Dyn. 244, 564-576. 10.1002/dvdy.24256 PubMed DOI
Charité J., McFadden D. G., Merlo G., Levi G., Clouthier D. E., Yanagisawa M., Richardson J. A. and Olson E. N. (2001). Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer. Genes Dev. 15, 3039-3049. 10.1101/gad.931701 PubMed DOI PMC
Chen C.-P., Chen C.-Y., Chern S.-R., Wu P.-S., Chen Y.-N., Chen S.-W., Chen L.-F., Yang C.-W. and Wang W. (2016). Prenatal diagnosis and molecular cytogenetic characterization of a de novo 4.858-Mb microdeletion in 15q14 associated with ACTC1 and MEIS2 haploinsufficiency and tetralogy of Fallot. Taiwan. J. Obstet. Gynecol. 55, 270-274. 10.1016/j.tjog.2016.02.013 PubMed DOI
Clouthier D. E., Garcia E. and Schilling T. F. (2010). Regulation of facial morphogenesis by endothelin signaling: insights from mice and fish. Am. J. Med. Genet. A 152A, 2962-2973. 10.1002/ajmg.a.33568 PubMed DOI PMC
Cobourne M. T., Iseki S., Birjandi A. A., Adel Al-Lami H., Thauvin-Robinet C., Xavier G. M. and Liu K. J. (2019). How to make a tongue: cellular and molecular regulation of muscle and connective tissue formation during mammalian tongue development. Semin. Cell Dev. Biol. 91, 45-54. 10.1016/j.semcdb.2018.04.016 PubMed DOI
Conte I., Carrella S., Avellino R., Karali M., Marco-Ferreres R., Bovolenta P. and Banfi S. (2010). miR-204 is required for lens and retinal development via Meis2 targeting. Proc. Natl. Acad. Sci. USA 107, 15491-15496. 10.1073/pnas.0914785107 PubMed DOI PMC
Crowley M. A., Conlin L. K., Zackai E. H., Deardorff M. A., Thiel B. D. and Spinner N. B. (2010). Further evidence for the possible role of MEIS2 in the development of cleft palate and cardiac septum. Am. J. Med. Genet. A 152A, 1326-1327. PubMed
Depew M. J., Lufkin T. and Rubenstein J. L. R. (2002). Specification of jaw subdivisions by Dlx genes. Science 298, 381-385. 10.1126/science.1075703 PubMed DOI
Depew M. J., Simpson C. A., Morasso M. and Rubenstein J. L. (2005). Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J. Anat. 207, 501-561. 10.1111/j.1469-7580.2005.00487.x PubMed DOI PMC
Douglas G., Cho M. T., Telegrafi A., Winter S., Carmichael J., Zackai E. H., Deardorff M. A., Harr M., Williams L., Psychogios A., et al. (2018). De novo missense variants in MEIS2 recapitulate the microdeletion phenotype of cardiac and palate abnormalities, developmental delay, intellectual disability and dysmorphic features. Am. J. Med. Genet. A 176, 1845-1851. 10.1002/ajmg.a.40368 PubMed DOI
Erdogan F., Ullmann R., Chen W., Schubert M., Adolph S., Hultschig C., Kalscheuer V., Ropers H.-H., Spaich C. and Tzschach A. (2007). Characterization of a 5.3 Mb deletion in 15q14 by comparative genomic hybridization using a whole genome “tiling path” BAC array in a girl with heart defect, cleft palate, and developmental delay. Am. J. Med. Genet. A 143A, 172-178. 10.1002/ajmg.a.31541 PubMed DOI
Frisdal A. and Trainor P. A. (2014). Development and Evolution of the Pharyngeal Apparatus. Wiley Interdiscip Rev. Dev. Biol. 3, 403-418. 10.1002/wdev.147 PubMed DOI PMC
Funato N., Chapman S. L., McKee M. D., Funato H., Morris J. A., Shelton J. M., Richardson J. A. and Yanagisawa H. (2009). Hand2 controls osteoblast differentiation in the branchial arch by inhibiting DNA binding of Runx2. Development 136, 615-625. 10.1242/dev.029355 PubMed DOI
Giliberti A., Currò A., Papa F. T., Frullanti E., Ariani F., Coriolani G., Grosso S., Renieri A. and Mari F. (2019). MEIS2 gene is responsible for intellectual disability, cardiac defects and a distinct facial phenotype. Eur. J. Med. Genet. 63, 103627 10.1016/j.ejmg.2019.01.017 PubMed DOI
Harel I., Nathan E., Tirosh-Finkel L., Zigdon H., Guimarães-Camboa N., Evans S. M. and Tzahor E. (2009). Distinct origins and genetic programs of head muscle satellite cells. Dev. Cell 16, 822-832. 10.1016/j.devcel.2009.05.007 PubMed DOI PMC
Jeong J., Mao J., Tenzen T., Kottmann A. H. and McMahon A. P. (2004). Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev. 18, 937-951. 10.1101/gad.1190304 PubMed DOI PMC
Johansson S., Berland S., Gradek G. A., Bongers E., de Leeuw N., Pfundt R., Fannemel M., Rødningen O., Brendehaug A., Haukanes B. I., et al. (2014). Haploinsufficiency of MEIS2 is associated with orofacial clefting and learning disability. Am. J. Med. Genet. A 164, 1622-1626. 10.1002/ajmg.a.36498 PubMed DOI
Jung H. S., Oropeza V. and Thesleff I. (1999). Shh, Bmp-2, Bmp-4 and Fgf-8 are associated with initiation and patterning of mouse tongue papillae. Mech. Dev. 81, 179-182. 10.1016/S0925-4773(98)00234-2 PubMed DOI
Lan Y. and Jiang R. (2009). Sonic hedgehog signaling regulates reciprocal epithelial-mesenchymal interactions controlling palatal outgrowth. Development 136, 1387-1396. 10.1242/dev.028167 PubMed DOI PMC
Lewis A. E., Vasudevan H. N., O'Neill A. K., Soriano P. and Bush J. O. (2013). The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Dev. Biol. 379, 229-234. 10.1016/j.ydbio.2013.04.026 PubMed DOI PMC
Liu H.-X., MacCallum D. K., Edwards C., Gaffield W. and Mistretta C. M. (2004). Sonic hedgehog exerts distinct, stage-specific effects on tongue and taste papilla development. Dev. Biol. 276, 280-300. 10.1016/j.ydbio.2004.07.042 PubMed DOI
Liu A. P. Y., Tang W. F., Lau E. T., Chan K. Y. K., Kan A. S. Y., Wong K. Y., Tso W. W. Y., Jalal K., Lee S. L., Chau C. S. K., et al. (2013). Expanded Prader–Willi syndrome due to chromosome 15q11.2–14 deletion: Report and a review of literature. Am. J. Med. Genet. A 161, 1309-1318. 10.1002/ajmg.a.35909 PubMed DOI
Machon O., Masek J., Machonova O., Krauss S. and Kozmik Z. (2015). Meis2 is essential for cranial and cardiac neural crest development. BMC Dev. Biol. 15, 40 10.1186/s12861-015-0093-6 PubMed DOI PMC
Medeiros D. M. and Crump J. G. (2012). New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw. Dev. Biol. 371, 121-135. 10.1016/j.ydbio.2012.08.026 PubMed DOI PMC
Millington G., Elliott K. H., Chang Y.-T., Chang C.-F., Dlugosz A. and Brugmann S. A. (2017). Cilia-dependent GLI processing in neural crest cells is required for tongue development. Dev. Biol. 424, 124-137. 10.1016/j.ydbio.2017.02.021 PubMed DOI PMC
Noden D. M. and Trainor P. A. (2005). Relations and interactions between cranial mesoderm and neural crest populations. J. Anat. 207, 575-601. 10.1111/j.1469-7580.2005.00473.x PubMed DOI PMC
Okuhara S., Birjandi A. A., Al-Lami H. A., Sagai T., Amano T., Shiroishi T., Xavier G. M., Liu K. J., Cobourne M. T. and Iseki S. (2019). Temporospatial sonic hedgehog signalling is essential for neural crest-dependent patterning of the intrinsic tongue musculature. Development 146, dev180075 10.1242/dev.180075 PubMed DOI
Parada C. and Chai Y. (2015). Mandible and tongue development. Curr. Top. Dev. Biol. 115, 31-58. 10.1016/bs.ctdb.2015.07.023 PubMed DOI PMC
Parada C., Han D. and Chai Y. (2012). Molecular and cellular regulatory mechanisms of tongue myogenesis. J. Dent. Res. 91, 528-535. 10.1177/0022034511434055 PubMed DOI PMC
Parker H. J., Pushel I. and Krumlauf R. (2018). Coupling the roles of Hox genes to regulatory networks patterning cranial neural crest. Dev. Biol. 444, S67-S78. 10.1016/j.ydbio.2018.03.016 PubMed DOI
Rice R., Spencer-Dene B., Connor E. C., Gritli-Linde A., McMahon A. P., Dickson C., Thesleff I. and Rice D. P. C. (2004). Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate. J. Clin. Invest. 113, 1692-1700. 10.1172/JCI20384 PubMed DOI PMC
Roberti M. C., Surace C., Digilio M. C., D'Elia G., Sirleto P., Capolino R., Lombardo A., Tomaiuolo A. C., Petrocchi S. and Angioni A. (2011). Complex chromosome rearrangements related 15q14 microdeletion plays a relevant role in phenotype expression and delineates a novel recurrent syndrome. Orphanet J. Rare Dis. 6, 17 10.1186/1750-1172-6-17 PubMed DOI PMC
Robledo R. F., Rajan L., Li X. and Lufkin T. (2002). The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev. 16, 1089-1101. 10.1101/gad.988402 PubMed DOI PMC
Samee N., Geoffroy V., Marty C., Schiltz C., Vieux-Rochas M., Levi G. and de Vernejoul M.-C. (2008). Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling. Am. J. Pathol. 173, 773-780. 10.2353/ajpath.2008.080243 PubMed DOI PMC
Schulte D. and Geerts D. (2019). MEIS transcription factors in development and disease. Development 146, dev174706 10.1242/dev.174706 PubMed DOI
Shimojima K., Ondo Y., Okamoto N. and Yamamoto T. (2017). A 15q14 microdeletion involving MEIS2 identified in a patient with autism spectrum disorder. Hum Genome Var 4, 17029 10.1038/hgv.2017.29 PubMed DOI PMC
Tabler J. M., Rigney M. M., Berman G. J., Gopalakrishnan S., Heude E., Al-lami H. A., Yannakoudakis B. Z., Fitch R. D., Carter C., Vokes S., et al. (2017). Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx. eLife 6, e19153 10.7554/eLife.19153 PubMed DOI PMC
Tajbakhsh S. and Cossu G. (1997). Establishing myogenic identity during somitogenesis. Curr. Opin. Genet. Dev. 7, 634-641. 10.1016/S0959-437X(97)80011-1 PubMed DOI
Tucker A. S., Matthews K. L. and Sharpe P. T. (1998). Transformation of tooth type induced by inhibition of BMP signaling. Science 282, 1136-1138. 10.1126/science.282.5391.1136 PubMed DOI
Tucker A. S., Yamada G., Grigoriou M., Pachnis V. and Sharpe P. T. (1999). Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development 126, 51-61. PubMed
Verheije R., Kupchik G. S., Isidor B., Kroes H. Y., Lynch S. A., Hawkes L., Hempel M., Gelb B. D., Ghoumid J., D'Amours G., et al. (2019). Heterozygous loss-of-function variants of MEIS2 cause a triad of palatal defects, congenital heart defects, and intellectual disability. Eur. J. Hum. Genet. 27, 278-290. 10.1038/s41431-018-0281-5 PubMed DOI PMC
Vincentz J. W., Casasnovas J. J., Barnes R. M., Que J., Clouthier D. E., Wang J. and Firulli A. B. (2016). Exclusion of Dlx5/6 expression from the distal-most mandibular arches enables BMP-mediated specification of the distal cap. Proc. Natl. Acad. Sci. USA 113, 7563-7568. 10.1073/pnas.1603930113 PubMed DOI PMC
Wu M., Li J., Engleka K. A., Zhou B., Lu M. M., Plotkin J. B. and Epstein J. A. (2008). Persistent expression of Pax3 in the neural crest causes cleft palate and defective osteogenesis in mice. J. Clin. Invest. 118, 2076-2087. 10.1172/JCI33715 PubMed DOI PMC
Wu Y.-H., Zhao H., Zhou L.-P., Zhao C.-X., Wu Y.-F., Zhen L.-X., Li J., Ge D.-X., Xu L., Lin L., et al. (2015). miR-134 Modulates the proliferation of human cardiomyocyte progenitor cells by targeting Meis2. Int. J. Mol. Sci. 16, 25199-25213. 10.3390/ijms161025199 PubMed DOI PMC
Xu J., Liu H., Lan Y., Adam M., Clouthier D. E., Potter S. and Jiang R. (2019). Hedgehog signaling patterns the oral-aboral axis of the mandibular arch. eLife 8, e40315 10.7554/eLife.40315 PubMed DOI PMC
Yamagishi C., Yamagishi H., Maeda J., Tsuchihashi T., Ivey K., Hu T. and Srivastava D. (2006). Sonic hedgehog is essential for first pharyngeal arch development. Pediatr. Res. 59, 349-354. 10.1203/01.pdr.0000199911.17287.3e PubMed DOI
Zhang X., Rowan S., Yue Y., Heaney S., Pan Y., Brendolan A., Selleri L. and Maas R. L. (2006). Pax6 is regulated by Meis and Pbx homeoproteins during pancreatic development. Dev. Biol. 300, 748-757. 10.1016/j.ydbio.2006.06.030 PubMed DOI
Zhou H.-M., Wang J., Rogers R. and Conway S. J. (2008). Lineage-specific responses to reduced embryonic Pax3 expression levels. Dev. Biol. 315, 369-382. 10.1016/j.ydbio.2007.12.020 PubMed DOI PMC
Mesenchymal Meis2 controls whisker development independently from trigeminal sensory innervation
Meis2 controls skeletal formation in the hyoid region
The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage