Meis2 controls skeletal formation in the hyoid region

. 2022 ; 10 () : 951063. [epub] 20220928

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36247013

A vertebrate skull is composed of many skeletal elements which display enormous diversity of shapes. Cranial bone formation embodies a multitude of processes, i.e., epithelial-mesenchymal induction, mesenchymal condensation, and endochondral or intramembranous ossification. Molecular pathways determining complex architecture and growth of the cranial skeleton during embryogenesis are poorly understood. Here, we present a model of the hyoid apparatus development in Wnt1-Cre2-induced Meis2 conditional knock-out (cKO) mice. Meis2 cKO embryos develop an aberrant hyoid apparatus-a complete skeletal chain from the base of the neurocranium to lesser horns of the hyoid, resembling extreme human pathologies of the hyoid-larynx region. We examined key stages of hyoid skeletogenesis to obtain a complex image of the hyoid apparatus formation. Lack of Meis2 resulted in ectopic loci of mesenchymal condensations, ectopic cartilage and bone formation, disinhibition of skeletogenesis, and elevated proliferation of cartilage precursors. We presume that all these mechanisms contribute to formation of the aberrant skeletal chain in the hyoid region. Moreover, Meis2 cKO embryos exhibit severely reduced expression of PBX1 and HAND2 in the hyoid region. Altogether, MEIS2 in conjunction with PBX1 and HAND2 affects mesenchymal condensation, specification and proliferation of cartilage precursors to ensure development of the anatomically correct hyoid apparatus.

Zobrazit více v PubMed

Abe M., Michikami I., Fukushi T., Abe A., Maeda Y., Ooshima T., et al. (2010). Hand2 regulates chondrogenesis in vitro and in vivo . Bone 46, 1359–1368. 10.1016/j.bone.2009.11.022 PubMed DOI

Amin S., Donaldson I. J., Zannino D. A., Hensman J., Rattray M., Losa M., et al. (2015). Hoxa2 selectively enhances meis binding to change a branchial arch ground state. Dev. Cell 32, 265–277. 10.1016/j.devcel.2014.12.024 PubMed DOI PMC

Balic A., Adams D., Mina M. (2009). Prx1 and Prx2 cooperatively regulate the morphogenesis of the medial region of the mandibular process. Dev. Dyn. 238, 2599–2613. 10.1002/dvdy.22092 PubMed DOI PMC

Barbosa A. C., Funato N., Chapman S., McKee M. D., Richardson J. A., Olson E. N., et al. (2007). Hand transcription factors cooperatively regulate development of the distal midline mesenchyme. Dev. Biol. 310, 154–168. 10.1016/j.ydbio.2007.07.036 PubMed DOI PMC

Barron F., Woods C., Kuhn K., Bishop J., Howard M. J., Clouthier D. E. (2011). Downregulation of Dlx5 and Dlx6 expression by Hand2 is essential for initiation of tongue morphogenesis. Development 138, 2249–2259. 10.1242/dev.056929 PubMed DOI PMC

Bell D. M., Leung K. K., Wheatley S. C., Ng L. J., Zhou S., Ling K. W., et al. (1997). SOX9 directly regulates the type-II collagen gene. Nat. Genet. 16, 174–178. 10.1038/ng0697-174 PubMed DOI

Billmyre K. K., Klingensmith J. (2015). Sonic hedgehog from pharyngeal arch 1 epithelium is necessary for early mandibular arch cell survival and later cartilage condensation differentiation. Dev. Dyn. 244, 564–576. 10.1002/dvdy.24256 PubMed DOI

Capellini T. D., Di Giacomo G., Salsi V., Brendolan A., Ferretti E., Srivastava D., et al. (2006). Pbx1/Pbx2 requirement for distal limb patterning is mediated by the hierarchical control of Hox gene spatial distribution and Shhexpression. Development 133, 2263–2273. 10.1242/dev.02395 PubMed DOI

Chiang K.-H., Chang P. Y., Chou A. S.-B., Ling C.-M., Lee W.-H., Lee C.-C., et al. (2004). Eagle’s syndrome with 3-D reconstructed CT: two cases report.

Choe S.-K., Lu P., Nakamura M., Lee J., Sagerström C. G. (2009). Meis cofactors control HDAC and CBP accessibility at Hox-regulated promoters during zebrafish embryogenesis. Dev. Cell 17, 561–567. 10.1016/j.devcel.2009.08.007 PubMed DOI PMC

de Bakker B. S., de Bakker H. M., Soerdjbalie-Maikoe V., Dikkers F. G. (2018). The development of the human hyoid-larynx complex revisited. Laryngoscope 128, 1829–1834. 10.1002/lary.26987 PubMed DOI

de Bakker B. S., de Bakker H. M., Soerdjbalie-Maikoe V., Dikkers F. G. (2019). Variants of the hyoid-larynx complex, with implications for forensic science and consequence for the diagnosis of Eagle’s syndrome. Sci. Rep. 9, 15950. 10.1038/s41598-019-52476-z PubMed DOI PMC

De Paz F. J., Rueda S., Barbosa M., García M., Pastor J. F. (2012). Biometry and statistical analysis of the styloid process. Anat. Rec. 295, 742–747. 10.1002/ar.22452 PubMed DOI

DeLise A. M., Tuan R. S. (2002). Alterations in the spatiotemporal expression pattern and function of N-Cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro . J. Cell. Biochem. 87, 342–359. 10.1002/jcb.10308 PubMed DOI

Eames B. F., Amores A., Yan Y.-L., Postlethwait J. H. (2012). Evolution of the osteoblast: Skeletogenesis in gar and zebrafish. BMC Evol. Biol. 12, 27. 10.1186/1471-2148-12-27 PubMed DOI PMC

Fabik J., Kovacova K., Kozmik Z., Machon O. (2020). Neural crest cells require Meis2 for patterning the mandibular arch via the Sonic hedgehog pathway. Biol. Open 9, bio052043. 10.1242/bio.052043 PubMed DOI PMC

Fabik J., Psutkova V., Machon O. (2021). The mandibular and hyoid arches—from molecular patterning to shaping bone and cartilage. Int. J. Mol. Sci. 22, 7529. 10.3390/ijms22147529 PubMed DOI PMC

Franz-Odendaal T. A. (2011). Induction and patterning of intramembranous bone. Front. Biosci. 16, 2734–2746. 10.2741/3882 PubMed DOI

Frisdal A., Trainor P. A. (2014). Development and evolution of the pharyngeal apparatus. Wiley Interdiscip. Rev. Dev. Biol. 3, 403–418. 10.1002/wdev.147 PubMed DOI PMC

Funato N., Chapman S. L., McKee M. D., Funato H., Morris J. A., Shelton J. M., et al. (2009). Hand2 controls osteoblast differentiation in the branchial arch by inhibiting DNA binding of Runx2. Develop. 136, 615–625. 1242/dev.029355 PubMed

Funato N., Kokubo H., Nakamura M., Yanagisawa H., Saga Y. (2016). Specification of jaw identity by the Hand2 transcription factor. Sci. Rep. 6, 28405. 10.1038/srep28405 PubMed DOI PMC

Gendron-Maguire M., Mallo M., Zhang M., Gridley T. (1993). Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75, 1317–1331. 10.1016/0092-8674(93)90619-2 PubMed DOI

Giffin J. L., Gaitor D., Franz-Odendaal T. A. (2019). The forgotten skeletogenic condensations: A comparison of early skeletal development amongst vertebrates. J. Dev. Biol. 7, E4. 10.3390/jdb7010004 PubMed DOI PMC

Gordon J. A. R., Hassan M. Q., Saini S., Montecino M., van Wijnen A. J., Stein G. S., et al. (2010). Pbx1 represses osteoblastogenesis by blocking hoxa10-mediated recruitment of chromatin remodeling factors. Mol. Cell. Biol. 30, 3531–3541. 10.1128/MCB.00889-09 PubMed DOI PMC

Hall B. K., Miyake T. (1992). The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat. Embryol. 186, 107–124. 10.1007/BF00174948 PubMed DOI

Hall B. K., Miyake T. (1995). Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int. J. Dev. Biol. 39, 881–893. PubMed

Hall B. K., Miyake T. (2000). All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22, 138–147. 10.1002/(SICI)1521-1878(200002)22:2<138::AID-BIES5>3.0.CO;2-4 PubMed DOI

Hall B. K. (2015a). “Chapter 19 - the membranous skeleton: Condensations,” in Bones and cartilage. Editor Hall B. K.. Second Edition (San Diego: Academic Press; ), 319–331.

Hall B. K. (2015b). “Chapter 20 - from condensation to differentiation,” in Bones and cartilage. Editor Hall B. K.. Second Edition (San Diego: Academic Press; ), 333–348.

Kanzler B., Kuschert S. J., Liu Y. H., Mallo M. (1998). Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 125, 2587–2597. 10.1242/dev.125.14.2587 PubMed DOI

Karsenty G. (2003). The complexities of skeletal biology. Nature 423, 316–318. 10.1038/nature01654 PubMed DOI

Kaucka M., Zikmund T., Tesarova M., Gyllborg D., Hellander A., Jaros J., et al. (2017). Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife 6, e25902. 10.7554/eLife.25902 PubMed DOI PMC

Kitazawa T., Fujisawa K., Narboux-Nême N., Arima Y., Kawamura Y., Inoue T., et al. (2015). Distinct effects of Hoxa2 overexpression in cranial neural crest populations reveal that the mammalian hyomandibular-ceratohyal boundary maps within the styloid process. Dev. Biol. 402, 162–174. 10.1016/j.ydbio.2015.04.007 PubMed DOI

Kobayashi S., Takebe T., Zheng Y.-W., Mizuno M., Yabuki Y., Maegawa J., et al. (2011). Presence of cartilage stem/progenitor cells in adult mice auricular perichondrium. PLOS ONE 6, e26393. 10.1371/journal.pone.0026393 PubMed DOI PMC

Komori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764. 10.1016/s0092-8674(00)80258-5 PubMed DOI

Komori T. (2006). Regulation of osteoblast differentiation by transcription factors. J. Cell. Biochem. 99, 1233–1239. 10.1002/jcb.20958 PubMed DOI

Koyama E., Leatherman J. L., Shimazu A., Nah H.-D., Pacifici M. (1995). Syndecan-3, tenascin-C, and the development of cartilaginous skeletal elements and joints in chick limbs. Dev. Dyn. 203, 152–162. 10.1002/aja.1002030204 PubMed DOI

Koyama E., Shimazu A., Leatherman J. L., Golden E. B., Nah H.-D., Pacifici M. (1996). Expression of syndecan-3 and tenascin-C: Possible involvement in periosteum development. J. Orthop. Res. 14, 403–412. 10.1002/jor.1100140310 PubMed DOI

Lefebvre V., Huang W., Harley V. R., Goodfellow P. N., de Crombrugghe B. (1997). SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol. Cell. Biol. 17, 2336–2346. 10.1128/mcb.17.4.2336 PubMed DOI PMC

Li L., Newton P. T., Bouderlique T., Sejnohova M., Zikmund T., Kozhemyakina E., et al. (2017). Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J. 31, 1067–1084. 10.1096/fj.201600918R PubMed DOI PMC

Longabaugh W. J. R., Davidson E. H., Bolouri H. (2005). Computational representation of developmental genetic regulatory networks. Dev. Biol. 283, 1–16. 10.1016/j.ydbio.2005.04.023 PubMed DOI

Longabaugh W. J. R., Davidson E. H., Bolouri H. (2009). Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochim. Biophys. Acta 1789, 363–374. 10.1016/j.bbagrm.2008.07.014 PubMed DOI PMC

Longobardi E., Penkov D., Mateos D., Florian G. D., Torres M., Blasi F. (2014). Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Dev. Dyn. 243, 59–75. 10.1002/dvdy.24016 PubMed DOI PMC

Lykaki G., Papadopoulos N. (1988). The ossified hyoid apparatus morphology, interpretation, clinical and functional significance. Presentation of a rare case and highlights of the literature. Anat. Anz. 166, 187–193. PubMed

Machon O., van den Bout C. J., Backman M., Røsok Ø., Caubit X., Fromm S. H., et al. (2002). Forebrain-specific promoter/enhancer D6 derived from the mouse Dach1 gene controls expression in neural stem cells. Neuroscience 112, 951–966. 10.1016/s0306-4522(02)00053-2 PubMed DOI

Machon O., Masek J., Machonova O., Krauss S., Kozmik Z. (2015). Meis2 is essential for cranial and cardiac neural crest development. BMC Dev. Biol. 15, 40. 10.1186/s12861-015-0093-6 PubMed DOI PMC

Maes C., Kobayashi T., Selig M. K., Torrekens S., Roth S. I., Mackem S., et al. (2010). Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 19, 329–344. 10.1016/j.devcel.2010.07.010 PubMed DOI PMC

Martin J. F., Bradley A., Olson E. N. (1995). The paired-like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev. 9, 1237–1249. 10.1101/gad.9.10.1237 PubMed DOI

Maves L., Tyler A., Moens C. B., Tapscott S. J. (2009). Pbx acts with Hand2 in early myocardial differentiation. Dev. Biol. 333, 409–418. 10.1016/j.ydbio.2009.07.004 PubMed DOI PMC

Mina M., Kollar E. J. (1987). The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch. Oral Biol. 32, 123–127. 10.1016/0003-9969(87)90055-0 PubMed DOI

Mori-Akiyama Y., Akiyama H., Rowitch D. H., de Crombrugghe B. (2003). Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc. Natl. Acad. Sci. U. S. A. 100, 9360–9365. 10.1073/pnas.1631288100 PubMed DOI PMC

Naimo P., O’Donnell C., Bassed R., Briggs C. (2015). The use of computed tomography in determining development, anomalies, and trauma of the hyoid bone. Forensic Sci. Med. Pathol. 11, 177–185. 10.1007/s12024-015-9655-y PubMed DOI

Osterwalder M., Speziale D., Shoukry M., Mohan R., Ivanek R., Kohler M., et al. (2014). HAND2 targets define a network of transcriptional regulators that compartmentalize the early limb bud mesenchyme. Dev. Cell 31, 345–357. 10.1016/j.devcel.2014.09.018 PubMed DOI PMC

Paquette S., Leinonen K., Longabaugh W. (2016). BioTapestry now provides a web application and improved drawing and layout tools [version 1; peer review: 3 approved. F1000Res. 5, 39. 10.12688/f1000research.7620.1 PubMed DOI PMC

Parker H. J., De Kumar B., Green S. A., Prummel K. D., Hess C., Kaufman C. K., et al. (2019). A Hox-TALE regulatory circuit for neural crest patterning is conserved across vertebrates. Nat. Commun. 10, 1189. 10.1038/s41467-019-09197-8 PubMed DOI PMC

Parker H. J., De Kumar B., Pushel I., Bronner M. E., Krumlauf R. (2021). Analysis of lamprey meis genes reveals that conserved inputs from Hox, Meis and Pbx proteins control their expression in the hindbrain and neural tube. Dev. Biol. 479, 61–76. 10.1016/j.ydbio.2021.07.014 PubMed DOI

Petrović B., Radak D., Kostić V., Covicković-Sternić N. (2008). Styloid syndrome: a review of literature. Srp. Arh. Celok. Lek. 136, 667–674. 10.2298/sarh0812667p PubMed DOI

Poopalasundaram S., Richardson J., Scott A., Donovan A., Liu K., Graham A. (2019). Diminution of pharyngeal segmentation and the evolution of the amniotes. Zool. Lett. 5, 6. 10.1186/s40851-019-0123-5 PubMed DOI PMC

Qiu M., Bulfone A., Martinez S., Meneses J. J., Shimamura K., Pedersen R. A., et al. (1995). Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev. 9, 2523–2538. 10.1101/gad.9.20.2523 PubMed DOI

Rijli F. M., Mark M., Lakkaraju S., Dierich A., Dollé P., Chambon P. (1993). A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75, 1333–1349. 10.1016/0092-8674(93)90620-6 PubMed DOI

Rodríguez-Vázquez J. F., Mérida-Velasco J. R., Verdugo-López S., Sánchez-Montesinos I., Mérida-Velasco J. A. (2006). Morphogenesis of the second pharyngeal arch cartilage (Reichert’s cartilage) in human embryos. J. Anat. 208, 179–189. 10.1111/j.1469-7580.2006.00524.x PubMed DOI PMC

Rodríguez-Vázquez J. F., Kim J. H., Verdugo-López S., Murakami G., Cho K. H., Asakawa S., et al. (2011). Human fetal hyoid body origin revisited. J. Anat. 219, 143–149. 10.1111/j.1469-7580.2011.01387.x PubMed DOI PMC

Rodríguez‐Vázquez J. F., Verdugo‐López S., Abe H., Murakami G. (2015). The origin of the variations of the hyoid apparatus in human. Anat. Rec. 298, 1395–1407. 10.1002/ar.23166 PubMed DOI

Ruhin B., Creuzet S., Vincent C., Benouaiche L., Le Douarin N. M., Couly G. (2003). Patterning of the hyoid cartilage depends upon signals arising from the ventral foregut endoderm. Dev. Dyn. 228, 239–246. 10.1002/dvdy.10380 PubMed DOI

Rundus V. R., Marshall G. B., Parker S. B., Bales E. S., Hertzberg E. L., Minkoff R. (1998). Association of cell and substrate adhesion molecules with connexin43 during intramembranous bone formation. Histochem. J. 30, 879–896. 10.1023/a:1003449525619 PubMed DOI

Schötz E.-M., Lanio M., Talbot J. A., Manning M. L. (2013). Glassy dynamics in three-dimensional embryonic tissues. J. R. Soc. Interface 10, 20130726. 10.1098/rsif.2013.0726 PubMed DOI PMC

Selleri L., Depew M. J., Jacobs Y., Chanda S. K., Tsang K. Y., Cheah K. S. E., et al. (2001). Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development 128, 3543–3557. 10.1242/dev.128.18.3543 PubMed DOI

Shul’ga I. A., Zaĭtsev N. V., Zaĭtseva V. S. (2006). [Variants of the structure of the stylohyoid complex. Vestn. Otorinolaringol. 6, 72–73. PubMed

ten Berge D., Brouwer A., Korving J., Reijnen M. J., van Raaij E. J., Verbeek F., et al. (2001). Prx1 and Prx2 are upstream regulators of sonic hedgehog and control cell proliferation during mandibular arch morphogenesis. Development 128, 2929–2938. 10.1242/dev.128.15.2929 PubMed DOI

Vougiouklakis T. (2006). Overview of the ossified stylohyoid ligament based in more than 1200 forensic autopsies. J. Clin. Forensic Med. 13, 268–270. 10.1016/j.jcfm.2005.09.006 PubMed DOI

Wang L., Tang Q., Xu J., Li H., Yang T., Li L., et al. (2020). The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice. J. Biol. Chem. 295, 5449–5460. 10.1074/jbc.RA120.012684 PubMed DOI PMC

Wei Q., Manley N. R., Condie B. G. (2011). Whole mount in situ hybridization of E8.5 to E11.5 mouse embryos. J. Vis. Exp. 56, e2797. 10.3791/2797 PubMed DOI PMC

Zhou C.-F., Bhullar B.-A. S., Neander A. I., Martin T., Luo Z.-X. (2019). New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science 365, 276–279. 10.1126/science.aau9345 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...