The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice

. 2020 Apr 17 ; 295 (16) : 5449-5460. [epub] 20200313

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32169905

Grantová podpora
R01 DE026482 NIDCR NIH HHS - United States

Odkazy

PubMed 32169905
PubMed Central PMC7170518
DOI 10.1074/jbc.ra120.012684
PII: S0021-9258(17)48561-9
Knihovny.cz E-zdroje

Haploinsufficiency of Meis homeobox 2 (MEIS2), encoding a transcriptional regulator, is associated with human cleft palate, and Meis2 inactivation leads to abnormal palate development in mice, implicating MEIS2 functions in palate development. However, its functional mechanisms remain unknown. Here we observed widespread MEIS2 expression in the developing palate in mice. Wnt1Cre -mediated Meis2 inactivation in cranial neural crest cells led to a secondary palate cleft. Importantly, about half of the Wnt1Cre ;Meis2f/f mice exhibited a submucous cleft, providing a model for studying palatal bone formation and patterning. Consistent with complete absence of palatal bones, the results from integrative analyses of MEIS2 by ChIP sequencing, RNA-Seq, and an assay for transposase-accessible chromatin sequencing identified key osteogenic genes regulated directly by MEIS2, indicating that it plays a fundamental role in palatal osteogenesis. De novo motif analysis uncovered that the MEIS2-bound regions are highly enriched in binding motifs for several key osteogenic transcription factors, particularly short stature homeobox 2 (SHOX2). Comparative ChIP sequencing analyses revealed genome-wide co-occupancy of MEIS2 and SHOX2 in addition to their colocalization in the developing palate and physical interaction, suggesting that SHOX2 and MEIS2 functionally interact. However, although SHOX2 was required for proper palatal bone formation and was a direct downstream target of MEIS2, Shox2 overexpression failed to rescue the palatal bone defects in a Meis2-mutant background. These results, together with the fact that Meis2 expression is associated with high osteogenic potential and required for chromatin accessibility of osteogenic genes, support a vital function of MEIS2 in setting up a ground state for palatal osteogenesis.

Zobrazit více v PubMed

Longobardi E., Penkov D., Mateos D., De Florian G., Torres M., and Blasi F. (2014) Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Dev. Dyn. 243, 59–75 10.1002/dvdy.24016 PubMed DOI PMC

Schulte D., and Geerts D. (2019) MEIS transcription factors in development and disease. Development 146, dev174706 10.1242/dev.174706 PubMed DOI

Amin S., Donaldson I. J., Zannino D. A., Hensman J., Rattray M., Losa M., Spitz F., Ladam F., Sagerström C., and Bobola N. (2015) Hoxa2 selectively enhances Meis binding to change a branchial arch ground state. Dev. Cell 32, 265–277 10.1016/j.devcel.2014.12.024 PubMed DOI PMC

Azcoitia V., Aracil M., Martínez-A C., Torres M. (2005) The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev. Biol. 280, 307–320 10.1016/j.ydbio.2005.01.004 PubMed DOI

Dibner C., Elias S., and Frank D. (2001) XMeis3 protein activity is required for proper hindbrain patterning in Xenopus laevis embryos. Development 128, 3415–3426 PubMed

Machon O., Masek J., Machonova O., Krauss S., and Kozmik Z. (2015) Meis2 is essential for cranial and cardiac neural crest development. BMC Dev. Biol. 15, 40 10.1186/s12861-015-0093-6 PubMed DOI PMC

Verheije R., Kupchik G. S., Isidor B., Kroes H. Y., Lynch S. A., Hawkes L., Hempel M., Gelb B. D., Ghoumid J., D'Amours G., Chandler K., Dubourg C., Loddo S., Tümer Z., Shaw-Smith C., et al. (2019) Heterozygous loss-of-function variants of MEIS2 cause a triad of palatal defects, congenital heart defects, and intellectual disability. Eur. J. Hum. Genet. 27, 278 10.1038/s41431-018-0281-5 PubMed DOI PMC

Li C., Lan Y., and Jiang R. (2017) Molecular and cellular mechanisms of palate development. J. Dent. Res. 96, 1184–1191 10.1177/0022034517703580 PubMed DOI PMC

Lane J., and Kaartinen V. (2014) Signaling networks in palate development. Wiley Interdiscip. Rev. Syst. Biol. Med. 6, 271–278 10.1002/wsbm.1265 PubMed DOI PMC

Suzuki A., Abdallah N., Gajera M., Jun G., Jia P., Zhao Z., and Iwata J. (2018) Genes and microRNAs associated with mouse cleft palate: a systematic review and bioinformatics analysis. Mech. Dev. 150, 21–27 10.1016/j.mod.2018.02.003 PubMed DOI PMC

Weatherley-White R. C., Sakura C. Y. Jr., Brenner L. D., Stewart J. M., and Ott J. E. (1972) Submucous cleft palate: its incidence, natural history, and indications for treatment. Plast. Reconstr. Surg. 49, 297–304 10.1097/00006534-197203000-00010 PubMed DOI

Baek J.-A., Lan Y., Liu H., Maltby K. M., Mishina Y., and Jiang R. (2011) Bmpr1a signaling plays critical roles in palatal shelf growth and palatal bone formation. Dev. Biol. 350, 520–531 10.1016/j.ydbio.2010.12.028 PubMed DOI PMC

Pauws E., Hoshino A., Bentley L., Prajapati S., Keller C., Hammond P., Martinez-Barbera J.-P., Moore G. E., and Stanier P. (2009) Tbx22 null mice have a submucous cleft palate due to reduced palatal bone formation and also display ankyloglossia and choanal atresia phenotypes. Hum. Mol. Genet. 18, 4171–4179 10.1093/hmg/ddp368 PubMed DOI PMC

Yu L., Gu S., Alappat S., Song Y., Yan M., Zhang X., Zhang G., Jiang Y., Zhang Z., Zhang Y., and Chen Y. (2005) Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate. Development 132, 4397–4406 10.1242/dev.02013 PubMed DOI

Xu J., Wang L., Li H., Yang T., Zhang Y., Hu T., Huang Z., and Chen Y. (2019) Shox2 regulates osteogenic differentiation and pattern formation during hard palate development in mice. J. Biol. Chem. 294, 18294–18305 10.1074/jbc.RA119.008801 PubMed DOI PMC

Ye W., Song Y., Huang Z., Osterwalder M., Ljubojevic A., Xu J., Bobick B., Abassah-Oppong S., Ruan N., Shamby R., Yu D., Zhang L., Cai C. L., Visel A., Zhang Y., et al. (2016) A unique stylopod patterning mechanism by Shox2-controlled osteogenesis. Development 143, 2548–2560 10.1242/dev.138750 PubMed DOI PMC

Uslu V. V., Petretich M., Ruf S., Langenfeld K., Fonseca N. A., Marioni J. C., and Spitz F. (2014) Long-range enhancers regulating Myc expression are required for normal facial morphogenesis. Nat. Genet. 46, 753–758 10.1038/ng.2971 PubMed DOI

Gu S., Wei N., Yu X., Jiang Y., Fei J., and Chen Y. (2008) Mice with an anterior cleft of the palate survive neonatal lethality. Dev. Dyn. 237, 1509–1516 10.1002/dvdy.21534 PubMed DOI PMC

Scott A., Hasegawa H., Sakurai K., Yaron A., Cobb J., and Wang F. (2011) Transcription factor short stature homeobox 2 is required for proper development of tropomyosin-related kinase B-expressing mechanosensory neurons. J. Neurosci. 31, 6741–6749 10.1523/JNEUROSCI.5883-10.2011 PubMed DOI PMC

Louw J. J., Corveleyn A., Jia Y., Hens G., Gewillig M., and Devriendt K. (2015) MEIS2 involvement in cardiac development, cleft palate, and intellectual disability. Am. J. Med. Genet. A 167A, 1142–1146 10.1002/ajmg.a.36989 PubMed DOI

Johansson S., Berland S., Gradek G. A., Bongers E., de Leeuw N., Pfundt R., Fannemel M., Rødningen O., Brendehaug A., and Haukanes B. I. (2014) Haploinsufficiency of MEIS2 is associated with orofacial clefting and learning disability. Am. J. Med. Genet. A 164A, 1622–1626 10.1002/ajmg.a.36498 PubMed DOI

Giliberti A., Currò A., Papa F. T., Frullanti E., Ariani F., Coriolani G., Grosso S., Renieri A., and Mari F. (2020) MEIS2 gene is responsible for intellectual disability, cardiac defects and a distinct facial phenotype. Eur. J. Med. Genet. 63, 103627 PubMed

Noda K., Mishina Y., and Komatsu Y. (2016) Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice. Dev. Biol. 415, 306–313 10.1016/j.ydbio.2015.06.014 PubMed DOI PMC

Ducy P., Zhang R., Geoffroy V., Ridall A. L., and Karsenty G. (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 10.1016/S0092-8674(00)80257-3 PubMed DOI

Welsh I. C., Hart J., Brown J. M., Hansen K., Rocha Marques M., Aho R. J., Grishina I., Hurtado R., Herzlinger D., Ferretti E., Garcia-Garcia M. J., and Selleri L. (2018) Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface. J. Anat. 233, 222–242 10.1111/joa.12821 PubMed DOI PMC

Choi K. Y., Kim H. J., Lee M. H., Kwon T. G., Nah H. D., Furuichi T., Komori T., Nam S. H., Kim Y. J., Kim H. J., and Ryoo H. M. (2005) Runx2 regulates FGF2-induced Bmp2 expression during cranial bone development. Dev. Dyn. 233, 115–121 10.1002/dvdy.20323 PubMed DOI

Mammadova A., Zhou H., Carels C. E., and Von den Hoff J. W. (2016) Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 92, 326–335 10.1016/j.diff.2016.05.001 PubMed DOI

Fakhouri W. D., Metwalli K., Naji A., Bakhiet S., Quispe-Salcedo A., Nitschke L., Kousa Y. A., and Schutte B. C. (2017) Intercellular genetic interaction between Irf6 and Twist1 during craniofacial development. Sci. Rep. 7, 7129 10.1038/s41598-017-06310-z PubMed DOI PMC

Choe S.-K., Ladam F., and Sagerström C. G. (2014) TALE factors poise promoters for activation by Hox proteins. Dev. Cell 28, 203–211 10.1016/j.devcel.2013.12.011 PubMed DOI PMC

Huang H., Rastegar M., Bodner C., Goh S.-L., Rambaldi I., and Featherstone M. (2005) MEIS C termini harbor transcriptional activation domains that respond to cell signaling. J. Biol. Chem. 280, 10119–10127 10.1074/jbc.M413963200 PubMed DOI

Joo S., Wang M. H., Lui G., Lee J., Barnas A., Kim E., Sudek S., Worden A. Z., and Lee J.-H. (2018) Common ancestry of heterodimerizing TALE homeobox transcription factors across Metazoa and Archaeplastida. BMC Biol. 16, 136 10.1186/s12915-018-0605-5 PubMed DOI PMC

Sun C., Zhang T., Liu C., Gu S., and Chen Y. (2013) Generation of Shox2-Cre allele for tissue specific manipulation of genes in the developing heart, palate, and limb. Genesis 51, 515–522 10.1002/dvg.22397 PubMed DOI PMC

Danielian P. S., Muccino D., Rowitch D. H., Michael S. K., and McMahon A. P. (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 10.1016/S0960-9822(07)00562-3 PubMed DOI

Muzumdar M. D., Tasic B., Miyamichi K., Li L., and Luo L. (2007) A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 10.1002/dvg.20335 PubMed DOI

Wang J., Bai Y., Li N., Ye W., Zhang M., Greene S. B., Tao Y., Chen Y., Wehrens X. H., and Martin J. F. (2014) Pitx2-microRNA pathway that delimits sinoatrial node development and inhibits predisposition to atrial fibrillation. Proc. Natl. Acad. Sci. U.S.A. 111, 9181–9186 10.1073/pnas.1405411111 PubMed DOI PMC

Wang F., Flanagan J., Su N., Wang L.-C., Bui S., Nielson A., Wu X., Vo H.-T., Ma X.-J., and Luo Y. (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 10.1016/j.jmoldx.2011.08.002 PubMed DOI PMC

Zhang Z., Yu X., Zhang Y., Geronimo B., Lovlie A., Fromm S. H., and Chen Y. (2000) Targeted misexpression of constitutively active BMP receptor-IB causes bifurcation, duplication, and posterior transformation of digit in mouse limb. Dev. Biol. 220, 154–167 10.1006/dbio.2000.9637 PubMed DOI

Kim D., Langmead B., and Salzberg S. L. (2015) HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 10.1038/nmeth.3317 PubMed DOI PMC

Liao Y., Smyth G. K., and Shi W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 PubMed

Love M. I., Huber W., and Anders S. (2014) Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15, 550 10.1186/s13059-014-0550-8 PubMed DOI PMC

Yu G., Wang L.-G., Han Y., and He Q.-Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 10.1089/omi.2011.0118 PubMed DOI PMC

Daum J. M., Keles Ö., Holwerda S. J., Kohler H., Rijli F. M., Stadler M., and Roska B. (2017) The formation of the light-sensing compartment of cone photoreceptors coincides with a transcriptional switch. Elife 6, e31437 10.7554/eLife.31437 PubMed DOI PMC

Langmead B., and Salzberg S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 10.1038/nmeth.1923 PubMed DOI PMC

Ramírez F., Ryan D. P., Grüning B., Bhardwaj V., Kilpert F., Richter A. S., Heyne S., Dündar F., and Manke T. (2016) deepTools2: a next generation web server for deep-Sequencing data analysis. Nucleic Acids Res. 44, W160–W165 10.1093/nar/gkw257 PubMed DOI PMC

Zhang Y., Liu T., Meyer C. A., Eeckhoute J., Johnson D. S., Bernstein B. E., Nusbaum C., Myers R. M., Brown M., Li W., and Liu X. S. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 10.1186/gb-2008-9-9-r137 PubMed DOI PMC

Ross-Innes C. S., Stark R., Teschendorff A. E., Holmes K. A., Ali H. R., Dunning M. J., Brown G. D., Gojis O., Ellis I. O., Green A. R., Ali S., Chin S. F., Palmieri C., Caldas C., and Carroll J. S. (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 10.1038/nature10730 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Meis2 controls skeletal formation in the hyoid region

. 2022 ; 10 () : 951063. [epub] 20220928

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...