The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
1034120 and 340321
Univerzita Karlova v Praze
PubMed
34299147
PubMed Central
PMC8303155
DOI
10.3390/ijms22147529
PII: ijms22147529
Knihovny.cz E-zdroje
- Klíčová slova
- bone, cartilage, chondrogenesis, craniofacial development, hyoid bone, jaw development, neural crest cells, osteogenesis, patterning, pharyngeal arches,
- MeSH
- chrupavka cytologie embryologie MeSH
- mandibula embryologie MeSH
- os hyoideum embryologie MeSH
- rozvržení tělního plánu * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Zobrazit více v PubMed
Kumar S., Hedges S.B. A Molecular Timescale for Vertebrate Evolution. Nature. 1998;392:917–920. doi: 10.1038/31927. PubMed DOI
Gebuijs I.G.E., Raterman S.T., Metz J.R., Swanenberg L., Zethof J., Van den Bos R., Carels C.E.L., Wagener F.A.D.T.G., Von den Hoff J.W. Fgf8a Mutation Affects Craniofacial Development and Skeletal Gene Expression in Zebrafish Larvae. Biol. Open. 2019;8:bio039834. doi: 10.1242/bio.039834. PubMed DOI PMC
Sun X., Zhang R., Chen H., Du X., Chen S., Huang J., Liu M., Xu M., Luo F., Jin M., et al. Fgfr3 Mutation Disrupts Chondrogenesis and Bone Ossification in Zebrafish Model Mimicking CATSHL Syndrome Partially via Enhanced Wnt/β-Catenin Signaling. Theranostics. 2020;10:7111–7130. doi: 10.7150/thno.45286. PubMed DOI PMC
Schwartz S., Max S.R., Panny S.R., Cohen M.M. Deletions of Proximal 15q and Non-Classical Prader-Willi Syndrome Phenotypes. Am. J. Med. Genet. 1985;20:255–263. doi: 10.1002/ajmg.1320200208. PubMed DOI
Jones N.C., Trainor P.A. The Therapeutic Potential of Stem Cells in the Treatment of Craniofacial Abnormalities. Expert Opin. Biol. Ther. 2004;4:645–657. doi: 10.1517/14712598.4.5.645. PubMed DOI
Noden D.M., Trainor P.A. Relations and Interactions between Cranial Mesoderm and Neural Crest Populations. J. Anat. 2005;207:575–601. doi: 10.1111/j.1469-7580.2005.00473.x. PubMed DOI PMC
Prasad M.S., Charney R.M., García-Castro M.I. Specification and Formation of the Neural Crest: Perspectives on Lineage Segregation. Genesis. 2019;57:e23276. doi: 10.1002/dvg.23276. PubMed DOI PMC
Sauka-Spengler T., Bronner-Fraser M. A Gene Regulatory Network Orchestrates Neural Crest Formation. Nat. Rev. Mol. Cell Biol. 2008;9:557–568. doi: 10.1038/nrm2428. PubMed DOI
Kontges G., Lumsden A. Rhombencephalic Neural Crest Segmentation Is Preserved throughout Craniofacial Ontogeny. Development. 1996;122:3229–3242. doi: 10.1242/dev.122.10.3229. PubMed DOI
D’Amico-Martel A., Noden D.M. Contributions of Placodal and Neural Crest Cells to Avian Cranial Peripheral Ganglia. Am. J. Anat. 1983;166:445–468. doi: 10.1002/aja.1001660406. PubMed DOI
Yoshida T., Vivatbutsiri P., Morriss-Kay G., Saga Y., Iseki S. Cell Lineage in Mammalian Craniofacial Mesenchyme. Mech. Dev. 2008;125:797–808. doi: 10.1016/j.mod.2008.06.007. PubMed DOI
Graham A. Deconstructing the Pharyngeal Metamere. J. Exp. Zool. B Mol. Dev. Evol. 2008;310:336–344. doi: 10.1002/jez.b.21182. PubMed DOI
McKinney M.C., McLennan R., Giniunaite R., Baker R.E., Maini P.K., Othmer H.G., Kulesa P.M. Visualizing Mesoderm and Neural Crest Cell Dynamics during Chick Head Morphogenesis. Dev. Biol. 2020;461:184–196. doi: 10.1016/j.ydbio.2020.02.010. PubMed DOI PMC
Gavalas A., Trainor P., Ariza-McNaughton L., Krumlauf R. Synergy between Hoxa1 and Hoxb1: The Relationship between Arch Patterning and the Generation of Cranial Neural Crest. Development. 2001;128:3017–3027. doi: 10.1242/dev.128.15.3017. PubMed DOI
Veitch E., Begbie J., Schilling T.F., Smith M.M., Graham A. Pharyngeal Arch Patterning in the Absence of Neural Crest. Curr. Biol. 1999;9:1481–1484. doi: 10.1016/S0960-9822(00)80118-9. PubMed DOI
Graham A., Poopalasundaram S., Shone V., Kiecker C. A Reappraisal and Revision of the Numbering of the Pharyngeal Arches. J. Anat. 2019;235:1019–1023. doi: 10.1111/joa.13067. PubMed DOI PMC
Passos-Bueno M.R., Ornelas C.C., Fanganiello R.D. Syndromes of the First and Second Pharyngeal Arches: A Review. Am. J. Med. Genet. Part A. 2009;149A:1853–1859. doi: 10.1002/ajmg.a.32950. PubMed DOI
Rodríguez-Vázquez J.F., Yamamoto M., Abe S., Katori Y., Murakami G. Development of the Human Incus with Special Reference to the Detachment From the Chondrocranium to Be Transferred into the Middle Ear. Anat. Rec. 2018;301:1405–1415. doi: 10.1002/ar.23832. PubMed DOI
Woronowicz K.C., Schneider R.A. Molecular and Cellular Mechanisms Underlying the Evolution of Form and Function in the Amniote Jaw. EvoDevo. 2019;10:17. doi: 10.1186/s13227-019-0131-8. PubMed DOI PMC
Gaupp E. Über Die Ala Temporalis Des Säugerschädels Und Die Regio Orbtailis Einiger Anderer Wirbeltierschädel. Anat. Hefte. 1902;19:155–230. doi: 10.1007/BF02169846. DOI
Frisdal A., Trainor P.A. Development and Evolution of the Pharyngeal Apparatus. Wiley Interdiscip. Rev. Dev. Biol. 2014;3:403–418. doi: 10.1002/wdev.147. PubMed DOI PMC
Bhaskar S.N., Weinmann J.P., Schour I. Role of Meckel’s Cartilage in the Development and Growth of the Rat Mandible. J. Dent. Res. 1953;32:398–410. doi: 10.1177/00220345530320031401. PubMed DOI
Ito Y., Bringas P., Mogharei A., Zhao J., Deng C., Chai Y. Receptor-Regulated and Inhibitory Smads Are Critical in Regulating Transforming Growth Factorβ–Mediated Meckel’s Cartilage Development. Dev. Dyn. 2002;224:69–78. doi: 10.1002/dvdy.10088. PubMed DOI
Shimo T., Kanyama M., Wu C., Sugito H., Billings P.C., Abrams W.R., Rosenbloom J., Iwamoto M., Pacifici M., Koyama E. Expression and Roles of Connective Tissue Growth Factor in Meckel’s Cartilage Development. Dev. Dyn. 2004;231:136–147. doi: 10.1002/dvdy.20109. PubMed DOI
Svandova E., Anthwal N., Tucker A.S., Matalova E. Diverse Fate of an Enigmatic Structure: 200 Years of Meckel’s Cartilage. Front. Cell Dev. Biol. 2020;8 doi: 10.3389/fcell.2020.00821. PubMed DOI PMC
Rodríguez-Vázquez J.F., Mérida-Velasco J.R., Mérida-Velasco J.A., Sánchez-Montesinos I., Espín-Ferra J., Jiménez-Collado J. Development of Meckel’s Cartilage in the Symphyseal Region in Man. Anat. Rec. 1997;249:249–254. doi: 10.1002/(SICI)1097-0185(199710)249:2<249::AID-AR12>3.0.CO;2-O. PubMed DOI
Eames B.F., Sharpe P.T., Helms J.A. Hierarchy Revealed in the Specification of Three Skeletal Fates by Sox9 and Runx2. Dev. Biol. 2004;274:188–200. doi: 10.1016/j.ydbio.2004.07.006. PubMed DOI
Harada Y., Ishizeki K. Evidence for Transformation of Chondrocytes and Site-Specific Resorption during the Degradation of Meckel’s Cartilage. Anat. Embryol. 1998;197:439–450. doi: 10.1007/s004290050155. PubMed DOI
Ishizeki K. Imaging Analysis of Osteogenic Transformation of Meckel’s Chondrocytes from Green Fluorescent Protein-Transgenic Mice during Intrasplenic Transplantation. Acta Histochem. 2012;114:608–619. doi: 10.1016/j.acthis.2011.11.008. PubMed DOI
Ishizeki K., Takigawa M., Nawa T., Suzuki F. Mouse Meckel’s cartilage chondrocytes evoke bone-like matrix and further transform into osteocyte-like cells in culture. Anat. Rec. 1996;245:25–35. doi: 10.1002/(SICI)1097-0185(199605)245:1<25::AID-AR5>3.0.CO;2-E. PubMed DOI
Ishizeki K., Saito H., Shinagawa T., Fujiwara N., Nawa T. Histochemical and Immunohistochemical Analysis of the Mechanism of Calcification of Meckel’s Cartilage during Mandible Development in Rodents. Pt 2J. Anat. 1999;194:265–277. doi: 10.1046/j.1469-7580.1999.19420265.x. PubMed DOI PMC
Ishizeki K., Kagiya T., Fujiwara N., Otsu K., Harada H. Expression of Osteogenic Proteins during the Intrasplenic Transplantation of Meckel’s Chondrocytes: A Histochemical and Immunohistochemical Study. Arch. Histol. Cytol. 2009;72:1–12. doi: 10.1679/aohc.72.1. PubMed DOI
Anthwal N., Joshi L., Tucker A.S. Evolution of the Mammalian Middle Ear and Jaw: Adaptations and Novel Structures. J. Anat. 2013;222:147–160. doi: 10.1111/j.1469-7580.2012.01526.x. PubMed DOI PMC
Ishizeki K., Takahashi N., Nawa T. Formation of the Sphenomandibular Ligament by Meckel’s Cartilage in the Mouse: Possible Involvement of Epidermal Growth Factor as Revealed by Studies in Vivo and in Vitro. Cell Tissue Res. 2001;304:67–80. doi: 10.1007/s004410100354. PubMed DOI
Cheynet F., Guyot L., Richard O., Layoun W., Gola R. Discomallear and Malleomandibular Ligaments: Anatomical Study and Clinical Applications. Surg. Radiol. Anat. 2003;25:152–157. doi: 10.1007/s00276-003-0097-y. PubMed DOI
Amano O., Doi T., Yamada T., Sasaki A., Sakiyama K., Kanegae H., Kindaichi K. Meckel’s Cartilage: Discovery, Embryology and Evolution: —Overview of the Specificity of Meckel’s Cartilage—. J. Oral Biosci. 2010;52:125–135. doi: 10.1016/S1349-0079(10)80041-6. DOI
Dash S., Trainor P.A. The Development, Patterning and Evolution of Neural Crest Cell Differentiation into Cartilage and Bone. Bone. 2020;137:115409. doi: 10.1016/j.bone.2020.115409. PubMed DOI
Rodríguez-Vázquez J.F., Mérida-Velasco J.R., Verdugo-López S., Sánchez-Montesinos I., Mérida-Velasco J.A. Morphogenesis of the Second Pharyngeal Arch Cartilage (Reichert’s Cartilage) in Human Embryos. J. Anat. 2006;208:179–189. doi: 10.1111/j.1469-7580.2006.00524.x. PubMed DOI PMC
Rodríguez-Vázquez J.F., Verdugo-López S., Abe H., Murakami G. The Origin of the Variations of the Hyoid Apparatus in Human. Anat. Rec. 2015;298:1395–1407. doi: 10.1002/ar.23166. PubMed DOI
Rodríguez-Vázquez J.F., Kim J.H., Verdugo-López S., Murakami G., Cho K.H., Asakawa S., Abe S.-I. Human Fetal Hyoid Body Origin Revisited. J. Anat. 2011;219:143–149. doi: 10.1111/j.1469-7580.2011.01387.x. PubMed DOI PMC
de Bakker B.S., de Bakker H.M., Soerdjbalie-Maikoe V., Dikkers F.G. The Development of the Human Hyoid-Larynx Complex Revisited. Laryngoscope. 2018;128:1829–1834. doi: 10.1002/lary.26987. PubMed DOI
Poopalasundaram S., Richardson J., Scott A., Donovan A., Liu K., Graham A. Diminution of Pharyngeal Segmentation and the Evolution of the Amniotes. Zool. Lett. 2019;5:6. doi: 10.1186/s40851-019-0123-5. PubMed DOI PMC
El Amm C.A., Denny A. Hyoid Bone Abnormalities in Pierre Robin Patients. J. Craniofacial Surg. 2008;19:259–263. doi: 10.1097/scs.0b013e31815c9460. PubMed DOI
Rajion Z.A., Townsend G.C., Netherway D.J., Anderson P.J., Hughes T., Shuaib I.L., Halim A.S., Samsudin A.R., McLean N.R., David D.J. The Hyoid Bone in Malay Infants with Cleft Lip and Palate. Cleft Palate-Craniofacial J. 2006;43:532–538. doi: 10.1597/05-085. PubMed DOI
Erdinc A.M.E., Dincer B., Sabah M.E. Evaluation of the Position of the Hyoid Bone in Relation to Vertical Facial Development. J. Clin. Pediatr. Dent. 2003;27:347–352. doi: 10.17796/jcpd.27.4.v619q30222674w30. PubMed DOI
Yoshida K., Yokoi T., Mori S., Achiwa M., Kuroiwa Y., Kurita K. Abnormal Ossification of the Hyoid Bone in Cleidocranial Dysplasia Rare Case and Literature Review. Int. J. Oral Maxillofac. Surg. 2017;46:375–376. doi: 10.1016/j.ijom.2017.02.1263. DOI
Heliövaara A., Hurmerinta K. Craniofacial Cephalometric Morphology in Children with CATCH 22 Syndrome. Orthod. Craniofacial Res. 2006;9:186–192. doi: 10.1111/j.1601-6343.2006.00373.x. PubMed DOI
Wells T.R., Gilsanz V., Senac M.O., Landing B.H., Vachon L., Takahashi M. Ossification Centre of the Hyoid Bone in DiGeorge Syndrome and Tetralogy of Fallot. Br. J. Radiol. 1986;59:1065–1068. doi: 10.1259/0007-1285-59-707-1065. PubMed DOI
Milligan B., Harris N., Franz-Odendaal T.A. Understanding Morphology: A Comparative Study on the Lower Jaw in Two Teleost Species: Lower Jaw Morphology. J. Appl. Ichthyol. 2012;28:346–352. doi: 10.1111/j.1439-0426.2012.01998.x. DOI
Cubbage C.C., Mabee P.M. Development of the Cranium and Paired Fins in the Zebrafish Danio Rerio (Ostariophysi, Cyprinidae) J. Morphol. 1996;229:121–160. doi: 10.1002/(SICI)1097-4687(199608)229:2<121::AID-JMOR1>3.0.CO;2-4. PubMed DOI
Graham A. The Development and Evolution of the Pharyngeal Arches. J. Anat. 2001;199:133–141. doi: 10.1046/j.1469-7580.2001.19910133.x. PubMed DOI PMC
Janvier P., Desbiens S., Willett J.A., Arsenault M. Lamprey-like Gills in a Gnathostome-Related Devonian Jawless Vertebrate. Nature. 2006;440:1183–1185. doi: 10.1038/nature04471. PubMed DOI
Santagati F., Rijli F.M. Cranial Neural Crest and the Building of the Vertebrate Head. Nat. Rev. Neurosci. 2003;4:806–818. doi: 10.1038/nrn1221. PubMed DOI
Trainor P.A., Krumlauf R. Hox Genes, Neural Crest Cells and Branchial Arch Patterning. Curr. Opin. Cell Biol. 2001;13:698–705. doi: 10.1016/S0955-0674(00)00273-8. PubMed DOI
Pearson J.C., Lemons D., McGinnis W. Modulating Hox Gene Functions during Animal Body Patterning. Nat. Rev. Genet. 2005;6:893–904. doi: 10.1038/nrg1726. PubMed DOI
Parker H.J., Pushel I., Krumlauf R. Coupling the Roles of Hox Genes to Regulatory Networks Patterning Cranial Neural Crest. Dev. Biol. 2018;444:S67–S78. doi: 10.1016/j.ydbio.2018.03.016. PubMed DOI
Lumsden A. Segmentation and Compartition in the Early Avian Hindbrain. Mech. Dev. 2004;121:1081–1088. doi: 10.1016/j.mod.2004.04.018. PubMed DOI
Couly G., Grapin-Botton A., Coltey P., Ruhin B., Le Douarin N.M. Determination of the Identity of the Derivatives of the Cephalic Neural Crest: Incompatibility between Hox Gene Expression and Lower Jaw Development. Development. 1998;125:3445–3459. doi: 10.1242/dev.125.17.3445. PubMed DOI
Jozefowicz C., McClintock J., Prince V. The fates of zebrafish Hox gene duplicates. In: Meyer A., Van de Peer Y., editors. Genome Evolution. Springer; Dordrecht, The Netherlands: 2003. pp. 185–194. PubMed
Hunt P., Krumlauf R. Hox Genes Coming to a Head. Curr. Biol. 1991;1:304–306. doi: 10.1016/0960-9822(91)90092-B. PubMed DOI
Hunt P., Krumlauf R. Deciphering the Hox Code: Clues to Patterning Branchial Regions of the Head. Cell. 1991;66:1075–1078. doi: 10.1016/0092-8674(91)90029-X. PubMed DOI
Makki N., Capecchi M.R. Hoxa1 Lineage Tracing Indicates a Direct Role for Hoxa1 in the Development of the Inner Ear, the Heart, and the Third Rhombomere. Dev. Biol. 2010;341:499–509. doi: 10.1016/j.ydbio.2010.02.014. PubMed DOI PMC
Murphy P., Hill R.E. Expression of the Mouse Labial-like Homeobox-Containing Genes, Hox 2.9 and Hox 1.6, during Segmentation of the Hindbrain. Development. 1991;111:61–74. doi: 10.1242/dev.111.1.61. PubMed DOI
Alexandre D., Clarke J.D., Oxtoby E., Yan Y.L., Jowett T., Holder N. Ectopic Expression of Hoxa-1 in the Zebrafish Alters the Fate of the Mandibular Arch Neural Crest and Phenocopies a Retinoic Acid-Induced Phenotype. Development. 1996;122:735–746. doi: 10.1242/dev.122.3.735. PubMed DOI
Gavalas A., Studer M., Lumsden A., Rijli F.M., Krumlauf R., Chambon P. Hoxa1 and Hoxb1 Synergize in Patterning the Hindbrain, Cranial Nerves and Second Pharyngeal Arch. Development. 1998;125:1123–1136. doi: 10.1242/dev.125.6.1123. PubMed DOI
Kanzler B., Kuschert S.J., Liu Y.H., Mallo M. Hoxa-2 Restricts the Chondrogenic Domain and Inhibits Bone Formation during Development of the Branchial Area. Development. 1998;125:2587–2597. doi: 10.1242/dev.125.14.2587. PubMed DOI
Gendron-Maguire M., Mallo M., Zhang M., Gridley T. Hoxa-2 Mutant Mice Exhibit Homeotic Transformation of Skeletal Elements Derived from Cranial Neural Crest. Cell. 1993;75:1317–1331. doi: 10.1016/0092-8674(93)90619-2. PubMed DOI
Rijli F.M., Mark M., Lakkaraju S., Dierich A., Dollé P., Chambon P. A Homeotic Transformation Is Generated in the Rostral Branchial Region of the Head by Disruption of Hoxa-2, Which Acts as a Selector Gene. Cell. 1993;75:1333–1349. doi: 10.1016/0092-8674(93)90620-6. PubMed DOI
Grammatopoulos G.A., Bell E., Toole L., Lumsden A., Tucker A.S. Homeotic Transformation of Branchial Arch Identity after Hoxa2 Overexpression. Development. 2000;127:5355–5365. doi: 10.1242/dev.127.24.5355. PubMed DOI
Hunter M.P., Prince V.E. Zebrafish Hox Paralogue Group 2 Genes Function Redundantly as Selector Genes to Pattern the Second Pharyngeal Arch. Dev. Biol. 2002;247:367–389. doi: 10.1006/dbio.2002.0701. PubMed DOI
Pasqualetti M., Ori M., Nardi I., Rijli F.M. Ectopic Hoxa2 Induction after Neural Crest Migration Results in Homeosis of Jaw Elements in Xenopus. Development. 2000;127:5367–5378. doi: 10.1242/dev.127.24.5367. PubMed DOI
Minoux M., Antonarakis G.S., Kmita M., Duboule D., Rijli F.M. Rostral and Caudal Pharyngeal Arches Share a Common Neural Crest Ground Pattern. Development. 2009;136:637–645. doi: 10.1242/dev.028621. PubMed DOI PMC
Schulte D., Geerts D. MEIS Transcription Factors in Development and Disease. Development. 2019;146 doi: 10.1242/dev.174706. PubMed DOI
Longobardi E., Penkov D., Mateos D., Florian G.D., Torres M., Blasi F. Biochemistry of the Tale Transcription Factors PREP, MEIS, and PBX in Vertebrates. Dev. Dyn. 2014;243:59–75. doi: 10.1002/dvdy.24016. PubMed DOI PMC
Waskiewicz A.J., Rikhof H.A., Hernandez R.E., Moens C.B. Zebrafish Meis Functions to Stabilize Pbx Proteins and Regulate Hindbrain Patterning. Development. 2001;128:4139–4151. doi: 10.1242/dev.128.21.4139. PubMed DOI
Choe S.-K., Lu P., Nakamura M., Lee J., Sagerström C.G. Meis Cofactors Control HDAC and CBP Accessibility at Hox-Regulated Promoters during Zebrafish Embryogenesis. Dev. Cell. 2009;17:561–567. doi: 10.1016/j.devcel.2009.08.007. PubMed DOI PMC
Amin S., Donaldson I.J., Zannino D.A., Hensman J., Rattray M., Losa M., Spitz F., Ladam F., Sagerström C., Bobola N. Hoxa2 Selectively Enhances Meis Binding to Change a Branchial Arch Ground State. Dev. Cell. 2015;32:265–277. doi: 10.1016/j.devcel.2014.12.024. PubMed DOI PMC
Machon O., Masek J., Machonova O., Krauss S., Kozmik Z. Meis2 Is Essential for Cranial and Cardiac Neural Crest Development. BMC Dev. Biol. 2015;15:40. doi: 10.1186/s12861-015-0093-6. PubMed DOI PMC
Fabik J., Kovacova K., Kozmik Z., Machon O. Neural Crest Cells Require Meis2 for Patterning the Mandibular Arch via the Sonic Hedgehog Pathway. Biol. Open. 2020;9 doi: 10.1242/bio.052043. PubMed DOI PMC
Crowley M.A., Conlin L.K., Zackai E.H., Deardorff M.A., Thiel B.D., Spinner N.B. Further Evidence for the Possible Role of MEIS2 in the Development of Cleft Palate and Cardiac Septum. Am. J. Med. Genet. A. 2010;152A:1326–1327. doi: 10.1002/ajmg.a.33375. PubMed DOI
Douglas G., Cho M.T., Telegrafi A., Winter S., Carmichael J., Zackai E.H., Deardorff M.A., Harr M., Williams L., Psychogios A., et al. De Novo Missense Variants in MEIS2 Recapitulate the Microdeletion Phenotype of Cardiac and Palate Abnormalities, Developmental Delay, Intellectual Disability and Dysmorphic Features. Am. J. Med. Genet. A. 2018;176:1845–1851. doi: 10.1002/ajmg.a.40368. PubMed DOI
Erdogan F., Ullmann R., Chen W., Schubert M., Adolph S., Hultschig C., Kalscheuer V., Ropers H.-H., Spaich C., Tzschach A. Characterization of a 5.3 Mb Deletion in 15q14 by Comparative Genomic Hybridization Using a Whole Genome “Tiling Path” BAC Array in a Girl with Heart Defect, Cleft Palate, and Developmental Delay. Am. J. Med. Genet. A. 2007;143A:172–178. doi: 10.1002/ajmg.a.31541. PubMed DOI
Giliberti A., Currò A., Papa F.T., Frullanti E., Ariani F., Coriolani G., Grosso S., Renieri A., Mari F. MEIS2 Gene Is Responsible for Intellectual Disability, Cardiac Defects and a Distinct Facial Phenotype. Eur J. Med. Genet. 2019 doi: 10.1016/j.ejmg.2019.01.017. PubMed DOI
Johansson S., Berland S., Gradek G.A., Bongers E., de Leeuw N., Pfundt R., Fannemel M., Rødningen O., Brendehaug A., Haukanes B.I., et al. Haploinsufficiency of MEIS2 Is Associated with Orofacial Clefting and Learning Disability. Am. J. Med. Genet. Part A. 2014;164:1622–1626. doi: 10.1002/ajmg.a.36498. PubMed DOI
Verheije R., Kupchik G.S., Isidor B., Kroes H.Y., Lynch S.A., Hawkes L., Hempel M., Gelb B.D., Ghoumid J., D’Amours G., et al. Heterozygous Loss-of-Function Variants of MEIS2 Cause a Triad of Palatal Defects, Congenital Heart Defects, and Intellectual Disability. Eur. J. Hum. Genet. 2019;27:278–290. doi: 10.1038/s41431-018-0281-5. PubMed DOI PMC
Parker H.J., De Kumar B., Green S.A., Prummel K.D., Hess C., Kaufman C.K., Mosimann C., Wiedemann L.M., Bronner M.E., Krumlauf R. A Hox-TALE Regulatory Circuit for Neural Crest Patterning Is Conserved across Vertebrates. Nat. Commun. 2019;10:1189. doi: 10.1038/s41467-019-09197-8. PubMed DOI PMC
Melvin V.S., Feng W., Hernandez-Lagunas L., Artinger K.B., Williams T. A Morpholino-Based Screen to Identify Novel Genes Involved in Craniofacial Morphogenesis. Dev. Dyn. 2013;242:817–831. doi: 10.1002/dvdy.23969. PubMed DOI PMC
Pöpperl H., Rikhof H., Chang H., Haffter P., Kimmel C.B., Moens C.B. Lazarus Is a Novel Pbx Gene That Globally Mediates Hox Gene Function in Zebrafish. Mol. Cell. 2000;6:255–267. doi: 10.1016/S1097-2765(00)00027-7. PubMed DOI
Ferretti E., Li B., Zewdu R., Wells V., Hebert J.M., Karner C., Anderson M.J., Williams T., Dixon J., Dixon M.J., et al. A Conserved Pbx-Wnt-P63-Irf6 Regulatory Module Controls Face Morphogenesis by Promoting Epithelial Apoptosis. Dev. Cell. 2011;21:627–641. doi: 10.1016/j.devcel.2011.08.005. PubMed DOI PMC
Vitobello A., Ferretti E., Lampe X., Vilain N., Ducret S., Ori M., Spetz J.-F., Selleri L., Rijli F.M. Hox and Pbx Factors Control Retinoic Acid Synthesis during Hindbrain Segmentation. Dev. Cell. 2011;20:469–482. doi: 10.1016/j.devcel.2011.03.011. PubMed DOI PMC
Selleri L., Depew M.J., Jacobs Y., Chanda S.K., Tsang K.Y., Cheah K.S.E., Rubenstein J.L.R., O’Gorman S., Cleary M.L. Requirement for Pbx1 in Skeletal Patterning and Programming Chondrocyte Proliferation and Differentiation. Development. 2001;128:3543–3557. doi: 10.1242/dev.128.18.3543. PubMed DOI
ten Berge D., Brouwer A., Korving J., Martin J.F., Meijlink F. Prx1 and Prx2 in Skeletogenesis: Roles in the Craniofacial Region, Inner Ear and Limbs. Development. 1998;125:3831–3842. doi: 10.1242/dev.125.19.3831. PubMed DOI
Czako L., Simko K., Thurzo A., Galis B., Varga I. The Syndrome of Elongated Styloid Process, the Eagle’s Syndrome—From Anatomical, Evolutionary and Embryological Backgrounds to 3D Printing and Personalized Surgery Planning. Report of Five Cases. Medicina. 2020;56:458. doi: 10.3390/medicina56090458. PubMed DOI PMC
Arai H., Hori S., Aramori I., Ohkubo H., Nakanishi S. Cloning and Expression of a CDNA Encoding an Endothelin Receptor. Nature. 1990;348 doi: 10.1038/348730a0. PubMed DOI
Sakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., Masaki T. Cloning of a CDNA Encoding a Non-Isopeptide-Selective Subtype of the Endothelin Receptor. Nature. 1990;348:732–735. doi: 10.1038/348732a0. PubMed DOI
Yanagisawa M. The Endothelin System. A New Target for Therapeutic Intervention. Circulation. 1994;89:1320–1322. doi: 10.1161/01.CIR.89.3.1320. PubMed DOI
Clouthier D.E., Williams S.C., Yanagisawa H., Wieduwilt M., Richardson J.A., Yanagisawa M. Signaling Pathways Crucial for Craniofacial Development Revealed by Endothelin-A Receptor-Deficient Mice. Dev. Biol. 2000;217:10–24. doi: 10.1006/dbio.1999.9527. PubMed DOI
Fukuhara S., Kurihara Y., Arima Y., Yamada N., Kurihara H. Temporal Requirement of Signaling Cascade Involving Endothelin-1/Endothelin Receptor Type A in Branchial Arch Development. Mech. Dev. 2004;121:1223–1233. doi: 10.1016/j.mod.2004.05.014. PubMed DOI
Thomas T., Kurihara H., Yamagishi H., Kurihara Y., Yazaki Y., Olson E.N., Srivastava D. A Signaling Cascade Involving Endothelin-1, DHAND and Msx1 Regulates Development of Neural-Crest-Derived Branchial Arch Mesenchyme. Development. 1998;125:3005–3014. doi: 10.1242/dev.125.16.3005. PubMed DOI
Clouthier D.E., Hosoda K., Richardson J.A., Williams S.C., Yanagisawa H., Kuwaki T., Kumada M., Hammer R.E., Yanagisawa M. Cranial and Cardiac Neural Crest Defects in Endothelin-A Receptor-Deficient Mice. Development. 1998;125:813–824. doi: 10.1242/dev.125.5.813. PubMed DOI
Kurihara Y., Kurihara H., Suzuki H., Kodama T., Maemura K., Nagai R., Oda H., Kuwaki T., Cao W.H., Kamada N. Elevated Blood Pressure and Craniofacial Abnormalities in Mice Deficient in Endothelin-1. Nature. 1994;368:703–710. doi: 10.1038/368703a0. PubMed DOI
Ruest L.-B., Xiang X., Lim K.-C., Levi G., Clouthier D.E. Endothelin-A Receptor-Dependent and -Independent Signaling Pathways in Establishing Mandibular Identity. Development. 2004;131:4413–4423. doi: 10.1242/dev.01291. PubMed DOI PMC
Ozeki H., Kurihara Y., Tonami K., Watatani S., Kurihara H. Endothelin-1 Regulates the Dorsoventral Branchial Arch Patterning in Mice. Mech. Dev. 2004;121:387–395. doi: 10.1016/j.mod.2004.02.002. PubMed DOI
Sato T., Kurihara Y., Asai R., Kawamura Y., Tonami K., Uchijima Y., Heude E., Ekker M., Levi G., Kurihara H. An Endothelin-1 Switch Specifies Maxillomandibular Identity. Proc. Natl. Acad. Sci. USA. 2008;105:18806–18811. doi: 10.1073/pnas.0807345105. PubMed DOI PMC
Tavares A.L.P., Cox T.C., Maxson R.M., Ford H.L., Clouthier D.E. Negative Regulation of Endothelin Signaling by SIX1 Is Required for Proper Maxillary Development. Development. 2017;144:2021–2031. doi: 10.1242/dev.145144. PubMed DOI PMC
Shimizu M., Narboux-Nême N., Gitton Y., de Lombares C., Fontaine A., Alfama G., Kitazawa T., Kawamura Y., Heude E., Marshall L., et al. Probing the Origin of Matching Functional Jaws: Roles of Dlx5/ 6 in Cranial Neural Crest Cells. Sci. Rep. 2018;8:14975. doi: 10.1038/s41598-018-33207-2. PubMed DOI PMC
Panganiban G., Rubenstein J.L.R. Developmental Functions of the Distal-Less/Dlx Homeobox Genes. Development. 2002;129:4371–4386. doi: 10.1242/dev.129.19.4371. PubMed DOI
Stock D.W., Ellies D.L., Zhao Z., Ekker M., Ruddle F.H., Weiss K.M. The Evolution of the Vertebrate Dlx Gene Family. Proc. Natl. Acad. Sci. USA. 1996;93:10858–10863. doi: 10.1073/pnas.93.20.10858. PubMed DOI PMC
Depew M.J., Simpson C.A., Morasso M., Rubenstein J.L. Reassessing the Dlx Code: The Genetic Regulation of Branchial Arch Skeletal Pattern and Development. J. Anat. 2005;207:501–561. doi: 10.1111/j.1469-7580.2005.00487.x. PubMed DOI PMC
Qiu M., Bulfone A., Martinez S., Meneses J.J., Shimamura K., Pedersen R.A., Rubenstein J.L. Null Mutation of Dlx-2 Results in Abnormal Morphogenesis of Proximal First and Second Branchial Arch Derivatives and Abnormal Differentiation in the Forebrain. Genes Dev. 1995;9:2523–2538. doi: 10.1101/gad.9.20.2523. PubMed DOI
Qiu M., Bulfone A., Ghattas I., Meneses J.J., Christensen L., Sharpe P.T., Presley R., Pedersen R.A., Rubenstein J.L. Role of the Dlx Homeobox Genes in Proximodistal Patterning of the Branchial Arches: Mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 Alter Morphogenesis of Proximal Skeletal and Soft Tissue Structures Derived from the First and Second Arches. Dev. Biol. 1997;185:165–184. doi: 10.1006/dbio.1997.8556. PubMed DOI
Acampora D., Merlo G.R., Paleari L., Zerega B., Postiglione M.P., Mantero S., Bober E., Barbieri O., Simeone A., Levi G. Craniofacial, Vestibular and Bone Defects in Mice Lacking the Distal-Less-Related Gene Dlx5. Development. 1999;126:3795–3809. doi: 10.1242/dev.126.17.3795. PubMed DOI
Depew M.J., Liu J.K., Long J.E., Presley R., Meneses J.J., Pedersen R.A., Rubenstein J.L. Dlx5 Regulates Regional Development of the Branchial Arches and Sensory Capsules. Development. 1999;126:3831–3846. doi: 10.1242/dev.126.17.3831. PubMed DOI
Beverdam A., Merlo G.R., Paleari L., Mantero S., Genova F., Barbieri O., Janvier P., Levi G. Jaw Transformation with Gain of Symmetry after Dlx5/Dlx6 Inactivation: Mirror of the Past? Genesis. 2002;34:221–227. doi: 10.1002/gene.10156. PubMed DOI
Depew M.J., Lufkin T., Rubenstein J.L.R. Specification of Jaw Subdivisions by Dlx Genes. Science. 2002;298:381–385. doi: 10.1126/science.1075703. PubMed DOI
Morasso M.I., Grinberg A., Robinson G., Sargent T.D., Mahon K.A. Placental Failure in Mice Lacking the Homeobox Gene Dlx3. Proc. Natl. Acad. Sci. USA. 1999;96:162–167. doi: 10.1073/pnas.96.1.162. PubMed DOI PMC
Jeong J., Li X., McEvilly R.J., Rosenfeld M.G., Lufkin T., Rubenstein J.L.R. Dlx Genes Pattern Mammalian Jaw Primordium by Regulating Both Lower Jaw-Specific and Upper Jaw-Specific Genetic Programs. Development. 2008;135:2905–2916. doi: 10.1242/dev.019778. PubMed DOI PMC
Verzi M.P., Agarwal P., Brown C., McCulley D.J., Schwarz J.J., Black B.L. The Transcription Factor MEF2C Is Required for Craniofacial Development. Dev. Cell. 2007;12:645–652. doi: 10.1016/j.devcel.2007.03.007. PubMed DOI PMC
Barron F., Woods C., Kuhn K., Bishop J., Howard M.J., Clouthier D.E. Downregulation of Dlx5 and Dlx6 Expression by Hand2 Is Essential for Initiation of Tongue Morphogenesis. Development. 2011;138:2249–2259. doi: 10.1242/dev.056929. PubMed DOI PMC
Vincentz J.W., Casasnovas J.J., Barnes R.M., Que J., Clouthier D.E., Wang J., Firulli A.B. Exclusion of Dlx5/6 Expression from the Distal-Most Mandibular Arches Enables BMP-Mediated Specification of the Distal Cap. Proc. Natl. Acad. Sci. USA. 2016;113:7563–7568. doi: 10.1073/pnas.1603930113. PubMed DOI PMC
Funato N., Chapman S.L., McKee M.D., Funato H., Morris J.A., Shelton J.M., Richardson J.A., Yanagisawa H. Hand2 Controls Osteoblast Differentiation in the Branchial Arch by Inhibiting DNA Binding of Runx2. Development. 2009;136:615–625. doi: 10.1242/dev.029355. PubMed DOI
Yanagisawa H., Clouthier D.E., Richardson J.A., Charité J., Olson E.N. Targeted Deletion of a Branchial Arch-Specific Enhancer Reveals a Role of DHAND in Craniofacial Development. Development. 2003;130:1069–1078. doi: 10.1242/dev.00337. PubMed DOI
Barbosa A.C., Funato N., Chapman S., McKee M.D., Richardson J.A., Olson E.N., Yanagisawa H. Hand Transcription Factors Cooperatively Regulate Development of the Distal Midline Mesenchyme. Dev. Biol. 2007;310:154–168. doi: 10.1016/j.ydbio.2007.07.036. PubMed DOI PMC
Firulli B.A., Fuchs R.K., Vincentz J.W., Clouthier D.E., Firulli A.B. Hand1 Phosphoregulation within the Distal Arch Neural Crest Is Essential for Craniofacial Morphogenesis. Development. 2014;141:3050–3061. doi: 10.1242/dev.107680. PubMed DOI PMC
Funato N., Kokubo H., Nakamura M., Yanagisawa H., Saga Y. Specification of Jaw Identity by the Hand2 Transcription Factor. Sci. Rep. 2016;6:28405. doi: 10.1038/srep28405. PubMed DOI PMC
Nair S., Li W., Cornell R., Schilling T.F. Requirements for Endothelin Type-A Receptors and Endothelin-1 Signaling in the Facial Ectoderm for the Patterning of Skeletogenic Neural Crest Cells in Zebrafish. Development. 2007;134:335–345. doi: 10.1242/dev.02704. PubMed DOI
Kimmel C.B., Ullmann B., Walker M., Miller C.T., Crump J.G. Endothelin 1-Mediated Regulation of Pharyngeal Bone Development in Zebrafish. Development. 2003;130:1339–1351. doi: 10.1242/dev.00338. PubMed DOI
Miller C.T., Schilling T.F., Lee K., Parker J., Kimmel C.B. Sucker Encodes a Zebrafish Endothelin-1 Required for Ventral Pharyngeal Arch Development. Development. 2000;127:3815–3828. doi: 10.1242/dev.127.17.3815. PubMed DOI
Miller C.T., Yelon D., Stainier D.Y.R., Kimmel C.B. Two Endothelin 1 Effectors, Hand2 and Bapx1, Pattern Ventral Pharyngeal Cartilage and the Jaw Joint. Development. 2003;130:1353–1365. doi: 10.1242/dev.00339. PubMed DOI
Zuniga E., Rippen M., Alexander C., Schilling T.F., Crump J.G. Gremlin 2 Regulates Distinct Roles of BMP and Endothelin 1 Signaling in Dorsoventral Patterning of the Facial Skeleton. Development. 2011;138:5147–5156. doi: 10.1242/dev.067785. PubMed DOI PMC
Sasaki M.M., Nichols J.T., Kimmel C.B. Edn1 and Hand2 Interact in Early Regulation of Pharyngeal Arch Outgrowth during Zebrafish Development. PLoS ONE. 2013;8:e67522. doi: 10.1371/journal.pone.0067522. PubMed DOI PMC
Talbot J.C., Johnson S.L., Kimmel C.B. Hand2 and Dlx Genes Specify Dorsal, Intermediate and Ventral Domains within Zebrafish Pharyngeal Arches. Development. 2010;137:2507–2517. doi: 10.1242/dev.049700. PubMed DOI PMC
Alexander C., Zuniga E., Blitz I.L., Wada N., Le Pabic P., Javidan Y., Zhang T., Cho K.W., Crump J.G., Schilling T.F. Combinatorial Roles for BMPs and Endothelin 1 in Patterning the Dorsal-Ventral Axis of the Craniofacial Skeleton. Development. 2011;138:5135–5146. doi: 10.1242/dev.067801. PubMed DOI PMC
Quint E., Zerucha T., Ekker M. Differential Expression of Orthologous Dlx Genes in Zebrafish and Mice: Implications for the Evolution of the Dlx Homeobox Gene Family. J. Exp. Zool. 2000;288:235–241. doi: 10.1002/1097-010X(20001015)288:3<235::AID-JEZ4>3.0.CO;2-J. PubMed DOI
Trumpp A., Depew M.J., Rubenstein J.L.R., Bishop J.M., Martin G.R. Cre-Mediated Gene Inactivation Demonstrates That FGF8 Is Required for Cell Survival and Patterning of the First Branchial Arch. Genes Dev. 1999;13:3136–3148. doi: 10.1101/gad.13.23.3136. PubMed DOI PMC
Tucker A.S., Yamada G., Grigoriou M., Pachnis V., Sharpe P.T. Fgf-8 Determines Rostral-Caudal Polarity in the First Branchial Arch. Development. 1999;126:51–61. doi: 10.1242/dev.126.1.51. PubMed DOI
Mina M., Kollar E.J. The Induction of Odontogenesis in Non-Dental Mesenchyme Combined with Early Murine Mandibular Arch Epithelium. Arch. Oral Biol. 1987;32:123–127. doi: 10.1016/0003-9969(87)90055-0. PubMed DOI
Lanctôt C., Moreau A., Chamberland M., Tremblay M.L., Drouin J. Hindlimb Patterning and Mandible Development Require the Ptx1 Gene. Development. 1999;126:1805–1810. doi: 10.1242/dev.126.9.1805. PubMed DOI
Lu M.F., Pressman C., Dyer R., Johnson R.L., Martin J.F. Function of Rieger Syndrome Gene in Left-Right Asymmetry and Craniofacial Development. Nature. 1999;401:276–278. doi: 10.1038/45797. PubMed DOI
Liu W., Selever J., Lu M.-F., Martin J.F. Genetic Dissection of Pitx2 in Craniofacial Development Uncovers New Functions in Branchial Arch Morphogenesis, Late Aspects of Tooth Morphogenesis and Cell Migration. Development. 2003;130:6375–6385. doi: 10.1242/dev.00849. PubMed DOI
Xu J., Liu H., Lan Y., Adam M., Clouthier D.E., Potter S., Jiang R. Hedgehog Signaling Patterns the Oral-Aboral Axis of the Mandibular Arch. eLife. 2019;8:e40315. doi: 10.7554/eLife.40315. PubMed DOI PMC
Jeong J., Mao J., Tenzen T., Kottmann A.H., McMahon A.P. Hedgehog Signaling in the Neural Crest Cells Regulates the Patterning and Growth of Facial Primordia. Genes Dev. 2004;18:937–951. doi: 10.1101/gad.1190304. PubMed DOI PMC
Tucker A.S., Matthews K.L., Sharpe P.T. Transformation of Tooth Type Induced by Inhibition of BMP Signaling. Science. 1998;282:1136–1138. doi: 10.1126/science.282.5391.1136. PubMed DOI
Dworkin S., Boglev Y., Owens H., Goldie S.J. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival. J. Dev. Biol. 2016;4:24. doi: 10.3390/jdb4030024. PubMed DOI PMC
Xavier G.M., Seppala M., Barrell W., Birjandi A.A., Geoghegan F., Cobourne M.T. Hedgehog Receptor Function during Craniofacial Development. Dev. Biol. 2016;415:198–215. doi: 10.1016/j.ydbio.2016.02.009. PubMed DOI
Billmyre K.K., Klingensmith J. Sonic Hedgehog from Pharyngeal Arch 1 Epithelium Is Necessary for Early Mandibular Arch Cell Survival and Later Cartilage Condensation Differentiation. Dev. Dyn. 2015;244:564–576. doi: 10.1002/dvdy.24256. PubMed DOI
Millington G., Elliott K.H., Chang Y.-T., Chang C.-F., Dlugosz A., Brugmann S.A. Cilia-Dependent GLI Processing in Neural Crest Cells Is Required for Tongue Development. Dev. Biol. 2017;424:124–137. doi: 10.1016/j.ydbio.2017.02.021. PubMed DOI PMC
Yamagishi C., Yamagishi H., Maeda J., Tsuchihashi T., Ivey K., Hu T., Srivastava D. Sonic Hedgehog Is Essential for First Pharyngeal Arch Development. Pediatr. Res. 2006;59:349–354. doi: 10.1203/01.pdr.0000199911.17287.3e. PubMed DOI
Brito J.M., Teillet M.-A., Le Douarin N.M. Induction of Mirror-Image Supernumerary Jaws in Chicken Mandibular Mesenchyme by Sonic Hedgehog-Producing Cells. Development. 2008;135:2311–2319. doi: 10.1242/dev.019125. PubMed DOI
Haworth K.E., Wilson J.M., Grevellec A., Cobourne M.T., Healy C., Helms J.A., Sharpe P.T., Tucker A.S. Sonic Hedgehog in the Pharyngeal Endoderm Controls Arch Pattern via Regulation of Fgf8 in Head Ectoderm. Dev. Biol. 2007;303:244–258. doi: 10.1016/j.ydbio.2006.11.009. PubMed DOI
Akiyama R., Kawakami H., Taketo M.M., Evans S.M., Wada N., Petryk A., Kawakami Y. Distinct Populations within Isl1 Lineages Contribute to Appendicular and Facial Skeletogenesis through the β-Catenin Pathway. Dev. Biol. 2014;387:37–48. doi: 10.1016/j.ydbio.2014.01.001. PubMed DOI PMC
Lin L., Bu L., Cai C.-L., Zhang X., Evans S. Isl1 Is Upstream of Sonic Hedgehog in a Pathway Required for Cardiac Morphogenesis. Dev. Biol. 2006;295:756–763. doi: 10.1016/j.ydbio.2006.03.053. PubMed DOI
Sun Y., Teng I., Huo R., Rosenfeld M.G., Olson L.E., Li X., Li X. Asymmetric Requirement of Surface Epithelial β-Catenin during the Upper and Lower Jaw Development. Dev. Dyn. 2012;241:663–674. doi: 10.1002/dvdy.23755. PubMed DOI PMC
Li F., Fu G., Liu Y., Miao X., Li Y., Yang X., Zhang X., Yu D., Gan L., Qiu M., et al. ISLET1-Dependent β-Catenin/Hedgehog Signaling Is Required for Outgrowth of the Lower Jaw. Mol. Cell. Biol. 2017;37 doi: 10.1128/MCB.00590-16. PubMed DOI PMC
Crump J.G., Maves L., Lawson N.D., Weinstein B.M., Kimmel C.B. An Essential Role for Fgfs in Endodermal Pouch Formation Influences Later Craniofacial Skeletal Patterning. Development. 2004;131:5703–5716. doi: 10.1242/dev.01444. PubMed DOI
Sperber S.M., Dawid I.B. Barx1 Is Necessary for Ectomesenchyme Proliferation and Osteochondroprogenitor Condensation in the Zebrafish Pharyngeal Arches. Dev. Biol. 2008;321:101–110. doi: 10.1016/j.ydbio.2008.06.004. PubMed DOI PMC
Iwasaki S. Evolution of the Structure and Function of the Vertebrate Tongue. J. Anat. 2002;201:1–13. doi: 10.1046/j.1469-7580.2002.00073.x. PubMed DOI PMC
Bell D.M., Leung K.K., Wheatley S.C., Ng L.J., Zhou S., Ling K.W., Sham M.H., Koopman P., Tam P.P., Cheah K.S. SOX9 Directly Regulates the Type-II Collagen Gene. Nat. Genet. 1997;16:174–178. doi: 10.1038/ng0697-174. PubMed DOI
Bi W., Deng J.M., Zhang Z., Behringer R.R., de Crombrugghe B. Sox9 Is Required for Cartilage Formation. Nat. Genet. 1999;22:85–89. doi: 10.1038/8792. PubMed DOI
Ducy P., Zhang R., Geoffroy V., Ridall A.L., Karsenty G. Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation. Cell. 1997;89:747–754. doi: 10.1016/S0092-8674(00)80257-3. PubMed DOI
Otto F., Thornell A.P., Crompton T., Denzel A., Gilmour K.C., Rosewell I.R., Stamp G.W.H., Beddington R.S.P., Mundlos S., Olsen B.R., et al. Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone Development. Cell. 1997;89:765–771. doi: 10.1016/S0092-8674(00)80259-7. PubMed DOI
Brault V., Moore R., Kutsch S., Ishibashi M., Rowitch D.H., McMahon A.P., Sommer L., Boussadia O., Kemler R. Inactivation of the Beta-Catenin Gene by Wnt1-Cre-Mediated Deletion Results in Dramatic Brain Malformation and Failure of Craniofacial Development. Development. 2001;128:1253–1264. doi: 10.1242/dev.128.8.1253. PubMed DOI
Day T.F., Guo X., Garrett-Beal L., Yang Y. Wnt/Beta-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis. Dev. Cell. 2005;8:739–750. doi: 10.1016/j.devcel.2005.03.016. PubMed DOI
Goodnough L.H., DiNuoscio G.J., Ferguson J.W., Williams T., Lang R.A., Atit R.P. Distinct Requirements for Cranial Ectoderm and Mesenchyme-Derived Wnts in Specification and Differentiation of Osteoblast and Dermal Progenitors. PLoS Genet. 2014;10:e1004152. doi: 10.1371/journal.pgen.1004152. PubMed DOI PMC
Nakashima K., Zhou X., Kunkel G., Zhang Z., Deng J.M., Behringer R.R., de Crombrugghe B. The Novel Zinc Finger-Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation. Cell. 2002;108:17–29. doi: 10.1016/S0092-8674(01)00622-5. PubMed DOI
Lefebvre V., Huang W., Harley V.R., Goodfellow P.N., de Crombrugghe B. SOX9 Is a Potent Activator of the Chondrocyte-Specific Enhancer of the pro Alpha1(II) Collagen Gene. Mol. Cell Biol. 1997;17:2336–2346. doi: 10.1128/MCB.17.4.2336. PubMed DOI PMC
Mori-Akiyama Y., Akiyama H., Rowitch D.H., de Crombrugghe B. Sox9 Is Required for Determination of the Chondrogenic Cell Lineage in the Cranial Neural Crest. Proc. Natl. Acad. Sci. USA. 2003;100:9360–9365. doi: 10.1073/pnas.1631288100. PubMed DOI PMC
Zhang Z., Wlodarczyk B.J., Niederreither K., Venugopalan S., Florez S., Finnell R.H., Amendt B.A. Fuz Regulates Craniofacial Development through Tissue Specific Responses to Signaling Factors. PLoS ONE. 2011;6:e24608. doi: 10.1371/journal.pone.0024608. PubMed DOI PMC
Komori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., Shimizu Y., Bronson R.T., Gao Y.-H., Inada M., et al. Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation Owing to Maturational Arrest of Osteoblasts. Cell. 1997;89:755–764. doi: 10.1016/S0092-8674(00)80258-5. PubMed DOI
Shirai Y., Kawabe K., Tosa I., Tsukamoto S., Yamada D., Takarada T. Runx2 Function in Cells of Neural Crest Origin during Intramembranous Ossification. Biochem. Biophys. Res. Commun. 2019;509:1028–1033. doi: 10.1016/j.bbrc.2019.01.059. PubMed DOI
Shibata S., Suda N., Yoda S., Fukuoka H., Ohyama K., Yamashita Y., Komori T. Runx2-Deficient Mice Lack Mandibular Condylar Cartilage and Have Deformed Meckel’s Cartilage. Anat. Embryol. 2004;208:273–280. doi: 10.1007/s00429-004-0393-2. PubMed DOI
Baek W.-Y., Kim Y.-J., de Crombrugghe B., Kim J.-E. Osterix Is Required for Cranial Neural Crest-Derived Craniofacial Bone Formation. Biochem. Biophys. Res. Commun. 2013;432:188–192. doi: 10.1016/j.bbrc.2012.12.138. PubMed DOI PMC
Semba I., Nonaka K., Takahashi I., Takahashi K., Dashner R., Shum L., Nuckolls G.H., Slavkin H.C. Positionally-Dependent Chondrogenesis Induced by BMP4 Is Co-Regulated by Sox9 and Msx2. Dev. Dyn. 2000;217:401–414. doi: 10.1002/(SICI)1097-0177(200004)217:4<401::AID-DVDY7>3.0.CO;2-D. PubMed DOI
Garcia-Miñaur S., Mavrogiannis L.A., Rannan-Eliya S.V., Hendry M.A., Liston W.A., Porteous M.E.M., Wilkie A.O.M. Parietal Foramina with Cleidocranial Dysplasia Is Caused by Mutation in MSX2. Eur. J. Hum. Genet. 2003;11:892–895. doi: 10.1038/sj.ejhg.5201062. PubMed DOI
Funato N., Nakamura M., Richardson J.A., Srivastava D., Yanagisawa H. Loss of Tbx1 Induces Bone Phenotypes Similar to Cleidocranial Dysplasia. Hum. Mol. Genet. 2015;24:424–435. doi: 10.1093/hmg/ddu458. PubMed DOI
Jabs E.W., Müller U., Li X., Ma L., Luo W., Haworth I.S., Klisak I., Sparkes R., Warman M.L., Mulliken J.B. A Mutation in the Homeodomain of the Human MSX2 Gene in a Family Affected with Autosomal Dominant Craniosynostosis. Cell. 1993;75:443–450. doi: 10.1016/0092-8674(93)90379-5. PubMed DOI
Liu Y.H., Kundu R., Wu L., Luo W., Ignelzi M.A., Snead M.L., Maxson R.E. Premature Suture Closure and Ectopic Cranial Bone in Mice Expressing Msx2 Transgenes in the Developing Skull. Proc. Natl. Acad. Sci. USA. 1995;92:6137–6141. doi: 10.1073/pnas.92.13.6137. PubMed DOI PMC
Wilkie A.O.M., Tang Z., Elanko N., Walsh S., Twigg S.R.F., Hurst J.A., Wall S.A., Chrzanowska K.H., Maxson R.E. Functional Haploinsufficiency of the Human Homeobox Gene MSX2 Causes Defects in Skull Ossification. Nat. Genet. 2000;24:387–390. doi: 10.1038/74224. PubMed DOI
Jumlongras D., Bei M., Stimson J.M., Wang W.-F., DePalma S.R., Seidman C.E., Felbor U., Maas R., Seidman J.G., Olsen B.R. A Nonsense Mutation in MSX1 Causes Witkop Syndrome. Am. J. Hum. Genet. 2001;69:67–74. doi: 10.1086/321271. PubMed DOI PMC
Winograd J., Reilly M.P., Roe R., Lutz J., Laughner E., Xu X., Hu L., Asakura T., vander Kolk C., Strandberg J.D., et al. Perinatal Lethality and Multiple Craniofacial Malformations in MSX2 Transgenic Mice. Hum. Mol. Genet. 1997;6:369–379. doi: 10.1093/hmg/6.3.369. PubMed DOI
Satokata I., Maas R. Msx1 Deficient Mice Exhibit Cleft Palate and Abnormalities of Craniofacial and Tooth Development. Nat. Genet. 1994;6:348–356. doi: 10.1038/ng0494-348. PubMed DOI
Ishii M., Han J., Yen H.-Y., Sucov H.M., Chai Y., Maxson R.E., Jr. Combined Deficiencies of Msx1 and Msx2 Cause Impaired Patterning and Survival of the Cranial Neural Crest. Development. 2005;132:4937–4950. doi: 10.1242/dev.02072. PubMed DOI
Wu M., Li J., Engleka K.A., Zhou B., Lu M.M., Plotkin J.B., Epstein J.A. Persistent Expression of Pax3 in the Neural Crest Causes Cleft Palate and Defective Osteogenesis in Mice. J. Clin. Investig. 2008;118:2076–2087. doi: 10.1172/JCI33715. PubMed DOI PMC
Tremblay P., Dietrich S., Mericskay M., Schubert F.R., Li Z., Paulin D. A Crucial Role for Pax3 in the Development of the Hypaxial Musculature and the Long-Range Migration of Muscle Precursors. Dev. Biol. 1998;203:49–61. doi: 10.1006/dbio.1998.9041. PubMed DOI
Parry D.A., Logan C.V., Stegmann A.P.A., Abdelhamed Z.A., Calder A., Khan S., Bonthron D.T., Clowes V., Sheridan E., Ghali N., et al. SAMS, a Syndrome of Short Stature, Auditory-Canal Atresia, Mandibular Hypoplasia, and Skeletal Abnormalities Is a Unique Neurocristopathy Caused by Mutations in Goosecoid. Am. J. Hum. Genet. 2013;93:1135–1142. doi: 10.1016/j.ajhg.2013.10.027. PubMed DOI PMC
Gaunt S.J., Blum M., De Robertis E.M. Expression of the Mouse Goosecoid Gene during Mid-Embryogenesis May Mark Mesenchymal Cell Lineages in the Developing Head, Limbs and Body Wall. Development. 1993;117:769–778. doi: 10.1242/dev.117.2.769. PubMed DOI
Rivera-Perez J.A., Mallo M., Gendron-Maguire M., Gridley T., Behringer R.R. Goosecoid Is Not an Essential Component of the Mouse Gastrula Organizer but Is Required for Craniofacial and Rib Development. Development. 1995;121:3005–3012. doi: 10.1242/dev.121.9.3005. PubMed DOI
Yamada G., Ueno K., Nakamura S., Hanamure Y., Yasui K., Uemura M., Eizuru Y., Mansouri A., Blum M., Sugimura K. Nasal and Pharyngeal Abnormalities Caused by the Mouse Goosecoid Gene Mutation. Biophys. Res. Commun. 1997;233:161–165. doi: 10.1006/bbrc.1997.6315. PubMed DOI
Cserjesi P., Lilly B., Bryson L., Wang Y., Sassoon D.A., Olson E.N. MHox: A Mesodermally Restricted Homeodomain Protein That Binds an Essential Site in the Muscle Creatine Kinase Enhancer. Development. 1992;115:1087–1101. doi: 10.1242/dev.115.4.1087. PubMed DOI
Opstelten D.-J.E., Vogels R., Robert B., Kalkhoven E., Zwartkruis F., de Laaf L., Destrée O.H., Deschamps J., Lawson K.A., Meijlink F. The Mouse Homeobox Gene, S8, Is Expressed during Embryogenesis Predominantly in Mesenchyme. Mech. Dev. 1991;34:29–41. doi: 10.1016/0925-4773(91)90089-O. PubMed DOI
Martin J.F., Bradley A., Olson E.N. The Paired-like Homeo Box Gene MHox Is Required for Early Events of Skeletogenesis in Multiple Lineages. Genes Dev. 1995;9:1237–1249. doi: 10.1101/gad.9.10.1237. PubMed DOI
ten Berge D., Brouwer A., Korving J., Reijnen M.J., van Raaij E.J., Verbeek F., Gaffield W., Meijlink F. Prx1 and Prx2 Are Upstream Regulators of Sonic Hedgehog and Control Cell Proliferation during Mandibular Arch Morphogenesis. Development. 2001;128:2929–2938. doi: 10.1242/dev.128.15.2929. PubMed DOI
Balic A., Adams D., Mina M. Prx1 and Prx2 Cooperatively Regulate the Morphogenesis of the Medial Region of the Mandibular Process. Dev. Dyn. 2009;238:2599–2613. doi: 10.1002/dvdy.22092. PubMed DOI PMC
Çelik T., Simsek P.O., Sozen T., Ozyuncu O., Utine G.E., Talim B., Yiğit Ş., Boduroglu K., Kamnasaran D. PRRX1 Is Mutated in an Otocephalic Newborn Infant Conceived by Consanguineous Parents. Clin. Genet. 2012;81:294–297. doi: 10.1111/j.1399-0004.2011.01730.x. PubMed DOI
Dasouki M., Andrews B., Parimi P., Kamnasaran D. Recurrent Agnathia–Otocephaly Caused by DNA Replication Slippage in PRRX1. Am. J. Med. Genet. Part A. 2013;161:803–808. doi: 10.1002/ajmg.a.35879. PubMed DOI
Donnelly M., Todd E., Wheeler M., Winn V.D., Kamnasaran D. Prenatal Diagnosis and Identification of Heterozygous Frameshift Mutation in PRRX1 in an Infant with Agnathia-Otocephaly. Prenat. Diagn. 2012;32:903–905. doi: 10.1002/pd.3910. PubMed DOI
Herman S., Delio M., Morrow B., Samanich J. Agnathia–Otocephaly Complex: A Case Report and Examination of the OTX2 and PRRX1 Genes. Gene. 2012;494:124–129. doi: 10.1016/j.gene.2011.11.033. PubMed DOI
Sergi C., Kamnasaran D. PRRX1 Is Mutated in a Fetus with Agnathia-Otocephaly. Clin. Genet. 2011;79:293–295. doi: 10.1111/j.1399-0004.2010.01531.x. PubMed DOI
Shibukawa Y., Young B., Wu C., Yamada S., Long F., Pacifici M., Koyama E. Temporomandibular Joint Formation and Condyle Growth Require Indian Hedgehog Signaling. Dev. Dyn. 2007;236:426–434. doi: 10.1002/dvdy.21036. PubMed DOI
Sugito H., Shibukawa Y., Kinumatsu T., Yasuda T., Nagayama M., Yamada S., Minugh-Purvis N., Pacifici M., Koyama E. Ihh Signaling Regulates Mandibular Symphysis Development and Growth. J. Dent. Res. 2011;90:625–631. doi: 10.1177/0022034510397836. PubMed DOI
Yang L., Gu S., Ye W., Song Y., Chen Y. Augmented Indian Hedgehog Signaling in Cranial Neural Crest Cells Leads to Craniofacial Abnormalities and Dysplastic Temporomandibular Joint in Mice. Cell Tissue Res. 2016;364:105–115. doi: 10.1007/s00441-015-2306-5. PubMed DOI PMC
Bechtold T.E., Kurio N., Nah H.-D., Saunders C., Billings P.C., Koyama E. The Roles of Indian Hedgehog Signaling in TMJ Formation. Int. J. Mol. Sci. 2019;20:6300. doi: 10.3390/ijms20246300. PubMed DOI PMC
Bertolacini C.D.P., Ribeiro-Bicudo L.A., Petrin A., Richieri-Costa A., Murray J.C. Clinical Findings in Patients with GLI2 Mutations--Phenotypic Variability. Clin. Genet. 2012;81:70–75. doi: 10.1111/j.1399-0004.2010.01606.x. PubMed DOI PMC
Chai Y., Mah A., Crohin C., Groff S., Bringas P., Le T., Santos V., Slavkin H.C. Specific Transforming Growth Factor-Beta Subtypes Regulate Embryonic Mouse Meckel’s Cartilage and Tooth Development. Dev. Biol. 1994;162:85–103. doi: 10.1006/dbio.1994.1069. PubMed DOI
Zhao H., Oka K., Bringas P., Kaartinen V., Chai Y. TGF-Beta Type I Receptor Alk5 Regulates Tooth Initiation and Mandible Patterning in a Type II Receptor-Independent Manner. Dev. Biol. 2008;320:19–29. doi: 10.1016/j.ydbio.2008.03.045. PubMed DOI PMC
Dudas M., Kim J., Li W.-Y., Nagy A., Larsson J., Karlsson S., Chai Y., Kaartinen V. Epithelial and Ectomesenchymal Role of the Type I TGF-β Receptor ALK5 during Facial Morphogenesis and Palatal Fusion. Dev. Biol. 2006;296:298–314. doi: 10.1016/j.ydbio.2006.05.030. PubMed DOI PMC
Ito Y., Yeo J.Y., Chytil A., Han J., Bringas P., Nakajima A., Shuler C.F., Moses H.L., Chai Y. Conditional Inactivation of Tgfbr2 in Cranial Neural Crest Causes Cleft Palate and Calvaria Defects. Development. 2003;130:5269–5280. doi: 10.1242/dev.00708. PubMed DOI
Iwata J., Parada C., Chai Y. The Mechanism of TGF-β Signaling during Palate Development. Oral Dis. 2011;17:733–744. doi: 10.1111/j.1601-0825.2011.01806.x. PubMed DOI PMC
Oka K., Oka S., Hosokawa R., Bringas P., Brockhoff H.C., Nonaka K., Chai Y. TGF-β Mediated Dlx5 Signaling Plays a Crucial Role in Osteo-Chondroprogenitor Cell Lineage Determination during Mandible Development. Dev. Biol. 2008;321:303–309. doi: 10.1016/j.ydbio.2008.03.046. PubMed DOI PMC
Stottmann R.W., Anderson R.M., Klingensmith J. The BMP Antagonists Chordin and Noggin Have Essential but Redundant Roles in Mouse Mandibular Outgrowth. Dev. Biol. 2001;240:457–473. doi: 10.1006/dbio.2001.0479. PubMed DOI
Wang Y., Zheng Y., Chen D., Chen Y. Enhanced BMP Signaling Prevents Degeneration and Leads to Endochondral Ossification of Meckel′s Cartilage in Mice. Dev. Biol. 2013;381:301–311. doi: 10.1016/j.ydbio.2013.07.016. PubMed DOI PMC
Lana-Elola E., Tylzanowski P., Takatalo M., Alakurtti K., Veistinen L., Mitsiadis T.A., Graf D., Rice R., Luyten F.P., Rice D.P. Noggin Null Allele Mice Exhibit a Microform of Holoprosencephaly. Hum. Mol. Genet. 2011;20:4005–4015. doi: 10.1093/hmg/ddr329. PubMed DOI
He F., Hu X., Xiong W., Li L., Lin L., Shen B., Yang L., Gu S., Zhang Y., Chen Y. Directed Bmp4 Expression in Neural Crest Cells Generates a Genetic Model for the Rare Human Bony Syngnathia Birth Defect. Dev. Biol. 2014;391:170–181. doi: 10.1016/j.ydbio.2014.04.013. PubMed DOI PMC
Chen Y., Wang Z., Chen Y., Zhang Y. Conditional Deletion of Bmp2 in Cranial Neural Crest Cells Recapitulates Pierre Robin Sequence in Mice. Cell Tissue Res. 2019;376:199–210. doi: 10.1007/s00441-018-2944-5. PubMed DOI PMC
Bonilla-Claudio M., Wang J., Bai Y., Klysik E., Selever J., Martin J.F. Bmp Signaling Regulates a Dose-Dependent Transcriptional Program to Control Facial Skeletal Development. Development. 2012;139:709–719. doi: 10.1242/dev.073197. PubMed DOI PMC
Ho A.M., Marker P.C., Peng H., Quintero A.J., Kingsley D.M., Huard J. Dominant Negative Bmp5mutation Reveals Key Role of BMPs in Skeletal Response to Mechanical Stimulation. BMC Dev. Biol. 2008;8:35. doi: 10.1186/1471-213X-8-35. PubMed DOI PMC
Kouskoura T., Kozlova A., Alexiou M., Blumer S., Zouvelou V., Katsaros C., Chiquet M., Mitsiadis T.A., Graf D. The Etiology of Cleft Palate Formation in BMP7-Deficient Mice. PLoS ONE. 2013;8:e59463. doi: 10.1371/journal.pone.0059463. PubMed DOI PMC
Trokovic N., Trokovic R., Mai P., Partanen J. Fgfr1 Regulates Patterning of the Pharyngeal Region. Genes Dev. 2003;17:141–153. doi: 10.1101/gad.250703. PubMed DOI PMC
Trokovic N., Trokovic R., Partanen J. Fibroblast Growth Factor Signalling and Regional Specification of the Pharyngeal Ectoderm. Int. J. Dev. Biol. 2005;49:797–805. doi: 10.1387/ijdb.051976nt. PubMed DOI
Hoch R.V., Soriano P. Context-Specific Requirements for Fgfr1 Signaling through Frs2 and Frs3 during Mouse Development. Development. 2006;133:663–673. doi: 10.1242/dev.02242. PubMed DOI
Kameda Y., Ito M., Nishimaki T., Gotoh N. FRS2alpha Is Required for the Separation, Migration, and Survival of Pharyngeal-Endoderm Derived Organs Including Thyroid, Ultimobranchial Body, Parathyroid, and Thymus. Dev. Dyn. 2009;238:503–513. doi: 10.1002/dvdy.21867. PubMed DOI
Jackson A., Kasah S., Mansour S.L., Morrow B., Basson M.A. Endoderm-Specific Deletion of Tbx1 Reveals an FGF-Independent Role for Tbx1 in Pharyngeal Apparatus Morphogenesis. Dev. Dyn. 2014;243:1143–1151. doi: 10.1002/dvdy.24147. PubMed DOI PMC
Wang C., Chang J.Y.F., Yang C., Huang Y., Liu J., You P., McKeehan W.L., Wang F., Li X. Type 1 Fibroblast Growth Factor Receptor in Cranial Neural Crest Cell-Derived Mesenchyme Is Required for Palatogenesis. J. Biol. Chem. 2013;288:22174–22183. doi: 10.1074/jbc.M113.463620. PubMed DOI PMC
Motch Perrine S.M., Wu M., Stephens N.B., Kriti D., van Bakel H., Jabs E.W., Richtsmeier J.T. Mandibular Dysmorphology Due to Abnormal Embryonic Osteogenesis in FGFR2-Related Craniosynostosis Mice. Dis. Models Mech. 2019;12 doi: 10.1242/dmm.038513. PubMed DOI PMC
Biosse Duplan M., Komla-Ebri D., Heuzé Y., Estibals V., Gaudas E., Kaci N., Benoist-Lasselin C., Zerah M., Kramer I., Kneissel M., et al. Meckel’s and Condylar Cartilages Anomalies in Achondroplasia Result in Defective Development and Growth of the Mandible. Hum. Mol. Genet. 2016;25:2997–3010. doi: 10.1093/hmg/ddw153. PubMed DOI PMC
Melnick M., Witcher D., Bringas P., Carlsson P., Jaskoll T. Meckel’s Cartilage Differentiation Is Dependent on Hedgehog Signaling. Cells Tissues Organs. 2005;179:146–157. doi: 10.1159/000085950. PubMed DOI
Shao M., Liu C., Song Y., Ye W., He W., Yuan G., Gu S., Lin C., Ma L., Zhang Y., et al. FGF8 Signaling Sustains Progenitor Status and Multipotency of Cranial Neural Crest-Derived Mesenchymal Cells in Vivo and in Vitro. J. Mol. Cell Biol. 2015;7:441–454. doi: 10.1093/jmcb/mjv052. PubMed DOI PMC
Abu-Issa R., Smyth G., Smoak I., Yamamura K., Meyers E.N. Fgf8 Is Required for Pharyngeal Arch and Cardiovascular Development in the Mouse. Development. 2002;129:4613–4625. doi: 10.1242/dev.129.19.4613. PubMed DOI
Terao F., Takahashi I., Mitani H., Haruyama N., Sasano Y., Suzuki O., Takano-Yamamoto T. Fibroblast Growth Factor 10 Regulates Meckel’s Cartilage Formation during Early Mandibular Morphogenesis in Rats. Dev. Biol. 2011;350:337–347. doi: 10.1016/j.ydbio.2010.11.029. PubMed DOI
Cruz C.V., Mattos C.T., Maia J.C., Granjeiro J.M., Reis M.F., Mucha J.N., Vilella B., Ruellas A.C., Luiz R.R., Costa M.C., et al. Genetic Polymorphisms Underlying the Skeletal Class III Phenotype. Am. J. Orthod. Dentofac. Orthop. 2017;151:700–707. doi: 10.1016/j.ajodo.2016.09.013. PubMed DOI
Taniguchi K., Ayada T., Ichiyama K., Kohno R.-I., Yonemitsu Y., Minami Y., Kikuchi A., Maehara Y., Yoshimura A. Sprouty2 and Sprouty4 Are Essential for Embryonic Morphogenesis and Regulation of FGF Signaling. Biochem. Biophys. Res. Commun. 2007;352:896–902. doi: 10.1016/j.bbrc.2006.11.107. PubMed DOI
Curtin E., Hickey G., Kamel G., Davidson A.J., Liao E.C. Zebrafish Wnt9a Is Expressed in Pharyngeal Ectoderm and Is Required for Palate and Lower Jaw Development. Mech. Dev. 2011;128:104–115. doi: 10.1016/j.mod.2010.11.003. PubMed DOI
Kamel G., Hoyos T., Rochard L., Dougherty M., Kong Y., Tse W., Shubinets V., Grimaldi M., Liao E.C. Requirement for Frzb and Fzd7a in Cranial Neural Crest Convergence and Extension Mechanisms during Zebrafish Palate and Jaw Morphogenesis. Dev. Biol. 2013;381:423–433. doi: 10.1016/j.ydbio.2013.06.012. PubMed DOI
Lin Q., He Y., Gui J.-F., Mei J. Sox9a, Not Sox9b Is Required for Normal Cartilage Development in Zebrafish. Aquac. Fish. 2021;6:254–259. doi: 10.1016/j.aaf.2019.12.009. DOI
Yan Y.-L., Willoughby J., Liu D., Crump J.G., Wilson C., Miller C.T., Singer A., Kimmel C., Westerfield M., Postlethwait J.H. A Pair of Sox: Distinct and Overlapping Functions of Zebrafish Sox9 Co-Orthologs in Craniofacial and Pectoral Fin Development. Development. 2005;132:1069–1083. doi: 10.1242/dev.01674. PubMed DOI
Flores M.V., Tsang V.W.K., Hu W., Kalev-Zylinska M., Postlethwait J., Crosier P., Crosier K., Fisher S. Duplicate Zebrafish Runx2 Orthologues Are Expressed in Developing Skeletal Elements. Gene Expr. Patterns. 2004;4:573–581. doi: 10.1016/j.modgep.2004.01.016. PubMed DOI
Flores M.V., Lam E.Y.N., Crosier P., Crosier K. A Hierarchy of Runx Transcription Factors Modulate the Onset of Chondrogenesis in Craniofacial Endochondral Bones in Zebrafish. Dev. Dyn. 2006;235:3166–3176. doi: 10.1002/dvdy.20957. PubMed DOI
Felber K., Elks P.M., Lecca M., Roehl H.H. Expression of Osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation. PLoS ONE. 2015;10:e0144982. doi: 10.1371/journal.pone.0144982. PubMed DOI PMC
Dalcq J., Pasque V., Ghaye A., Larbuisson A., Motte P., Martial J.A., Muller M. RUNX3, EGR1 and SOX9B Form a Regulatory Cascade Required to Modulate BMP-Signaling during Cranial Cartilage Development in Zebrafish. PLoS ONE. 2012;7:e50140. doi: 10.1371/journal.pone.0050140. PubMed DOI PMC
Nakada C., Iida A., Tabata Y., Watanabe S. Forkhead Transcription Factor Foxe1 Regulates Chondrogenesis in Zebrafish. J. Exp. Zool. 2009;312B:827–840. doi: 10.1002/jez.b.21298. PubMed DOI
Li N., Felber K., Elks P., Croucher P., Roehl H.H. Tracking Gene Expression during Zebrafish Osteoblast Differentiation. Dev. Dyn. 2009;238:459–466. doi: 10.1002/dvdy.21838. PubMed DOI
Chen Z., Song Z., Yang J., Huang J., Jiang H. Sp7/Osterix Positively Regulates Dlx2b and Bglap to Affect Tooth Development and Bone Mineralization in Zebrafish Larvae. J. Biosci. 2019;44:127. doi: 10.1007/s12038-019-9948-5. PubMed DOI
Niu P., Zhong Z., Wang M., Huang G., Xu S., Hou Y., Yan Y., Wang H. Zinc Finger Transcription Factor Sp7/Osterix Acts on Bone Formation and Regulates Col10a1a Expression in Zebrafish. Sci. Bull. 2017;62:174–184. doi: 10.1016/j.scib.2017.01.009. PubMed DOI
Eberhart J.K., Swartz M.E., Crump J.G., Kimmel C.B. Early Hedgehog Signaling from Neural to Oral Epithelium Organizes Anterior Craniofacial Development. Development. 2006;133:1069–1077. doi: 10.1242/dev.02281. PubMed DOI
Schwend T., Ahlgren S.C. Zebrafish Con/Disp1 Reveals Multiple Spatiotemporal Requirements for Hedgehog-Signaling in Craniofacial Development. BMC Dev. Biol. 2009;9:59. doi: 10.1186/1471-213X-9-59. PubMed DOI PMC
Felber K., Croucher P., Roehl H.H. Hedgehog Signalling Is Required for Perichondral Osteoblast Differentiation in Zebrafish. Mech. Dev. 2011;128:141–152. doi: 10.1016/j.mod.2010.11.006. PubMed DOI
Hammond C.L., Schulte-Merker S. Two Populations of Endochondral Osteoblasts with Differential Sensitivity to Hedgehog Signalling. Development. 2009;136:3991–4000. doi: 10.1242/dev.042150. PubMed DOI
Huycke T.R., Eames B.F., Kimmel C.B. Hedgehog-Dependent Proliferation Drives Modular Growth during Morphogenesis of a Dermal Bone. Development. 2012;139:2371–2380. doi: 10.1242/dev.079806. PubMed DOI PMC
Hu Z., Chen B., Zhao Q. Hedgehog Signaling Regulates Osteoblast Differentiation in Zebrafish Larvae through Modulation of Autophagy. Biol. Open. 2019;8:bio040840. doi: 10.1242/bio.040840. PubMed DOI PMC
Barske L., Askary A., Zuniga E., Balczerski B., Bump P., Nichols J.T., Crump J.G. Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face. PLoS Genet. 2016;12:e1005967. doi: 10.1371/journal.pgen.1005967. PubMed DOI PMC
Swartz M.E., Sheehan-Rooney K., Dixon M.J., Eberhart J.K. Examination of a Palatogenic Gene Program in Zebrafish. Dev. Dyn. 2011;240:2204–2220. doi: 10.1002/dvdy.22713. PubMed DOI PMC
Cheah F.S.H., Winkler C., Jabs E.W., Chong S.S. Tgfβ3 Regulation of Chondrogenesis and Osteogenesis in Zebrafish Is Mediated through Formation and Survival of a Subpopulation of the Cranial Neural Crest. Mech. Dev. 2010;127:329–344. doi: 10.1016/j.mod.2010.04.003. PubMed DOI
Windhausen T., Squifflet S., Renn J., Muller M. BMP Signaling Regulates Bone Morphogenesis in Zebrafish through Promoting Osteoblast Function as Assessed by Their Nitric Oxide Production. Molecules. 2015;20:7586–7601. doi: 10.3390/molecules20057586. PubMed DOI PMC
Phillips B.T., Kwon H.-J., Melton C., Houghtaling P., Fritz A., Riley B.B. Zebrafish MsxB, MsxC and MsxE Function Together to Refine the Neural–Nonneural Border and Regulate Cranial Placodes and Neural Crest Development. Dev. Biol. 2006;294:376–390. doi: 10.1016/j.ydbio.2006.03.001. PubMed DOI
Meis2 controls skeletal formation in the hyoid region