Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H2O and CO2 Capture and Construction of Porous Chiral Networks
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-02183S
Czech Science Foundation
CZ.02.2.69/0.0/0.0/19_073/0016935
Grant Schemes at CU
PubMed
36772045
PubMed Central
PMC9919244
DOI
10.3390/polym15030743
PII: polym15030743
Knihovny.cz E-resources
- Keywords
- chiral modification, hyper-cross-linked, polyacetylenes, porous polymers, water harvesting,
- Publication type
- Journal Article MeSH
Two series of hyper-cross-linked microporous polyacetylene networks containing either -[CH=C(CH=O)]- or -[CH=C(CH2OH)]- monomeric units are reported. Networks are prepared by chain-growth copolymerization of acetal-protected propargyl aldehyde and acetal-protected propargyl alcohol with a 1,3,5-triethynylbenzene cross-linker followed by hydrolytic deprotection/detemplating. Deprotection not only liberates reactive CH=O and CH2OH groups in the networks but also modifies the texture of the networks towards higher microporosity and higher specific surface area. The final networks with CH=O and CH2OH groups attached directly to the polyene main chains of the networks have a specific surface area from 400 to 800 m2/g and contain functional groups in a high amount, up to 9.6 mmol/g. The CH=O and CH2OH groups in the networks serve as active centres for the reversible capture of CO2 and water vapour. The water vapour capture capacities of the networks (up to 445 mg/g at 297 K) are among the highest values reported for porous polymers, making these materials promising for cyclic water harvesting from the air. Covalent modification of the networks with (R)-(+)-3-aminopyrrolidine and (S)-(+)-2-methylbutyric acid enables the preparation of porous chiral networks and shows networks with CH=O and CH2OH groups as reactive supports suitable for the anchoring of various functional molecules.
See more in PubMed
Dawson R., Cooper A.I., Adams D.J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2011;37:530–563. doi: 10.1016/j.progpolymsci.2011.09.002. DOI
Taylor D., Dalgarno S.J., Xu Z., Vilela F. Conjugated porous polymers: Incredibly versatile materials with far-reaching applications. Chem. Soc. Rev. 2020;49:3981–4042. doi: 10.1039/C9CS00315K. PubMed DOI
Zhou Y.-B., Zhan Z.-P. Conjugated Microporous Polymers for Heterogeneous Catalysis. Chem. Asian J. 2017;13:9–19. doi: 10.1002/asia.201701107. PubMed DOI
Bhanja P., Modak A., Bhaumik A. Porous Organic Polymers for CO2 Storage and Conversion Reactions. Chemcatchem. 2018;11:244–257. doi: 10.1002/cctc.201801046. DOI
Cousins K., Zhang R. Highly Porous Organic Polymers for Hydrogen Fuel Storage. Polymers. 2019;11:690. doi: 10.3390/polym11040690. PubMed DOI PMC
Chowdhury A., Bhattacharjee S., Chatterjee R., Bhaumik A. A new nitrogen rich porous organic polymer for ultra-high CO2 uptake and as an excellent organocatalyst for CO2 fixation reactions. J. CO2 Util. 2022;65:102236. doi: 10.1016/j.jcou.2022.102236. DOI
Song K.S., Fritz P.W., Coskun A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev. 2022;51:9831–9852. doi: 10.1039/D2CS00727D. PubMed DOI PMC
Zhou L., Hu Y., Li G. Conjugated Microporous Polymers with Built-In Magnetic Nanoparticles for Excellent Enrichment of Trace Hydroxylated Polycyclic Aromatic Hydrocarbons in Human Urine. Anal. Chem. 2016;88:6930–6938. doi: 10.1021/acs.analchem.6b01708. PubMed DOI
Havelková L., Hašková A., Bashta B., Brus J., Lhotka M., Vrbková E., Kindl M., Vyskočilová E., Sedláček J. Synthesis of hyper-cross-linked microporous poly(phenylacetylene)s having aldehyde and other groups and their chemisorption and physisorption ability. Eur. Polym. J. 2019;114:279–286. doi: 10.1016/j.eurpolymj.2019.02.039. DOI
Zhang Q., Yu S., Wang Q., Xiao Q., Yue Y., Ren S. Fluorene-Based Conjugated Microporous Polymers: Preparation and Chemical Sensing Application. Macromol. Rapid Commun. 2017;38:1700445. doi: 10.1002/marc.201700445. PubMed DOI
Debruyne M., Van Speybroeck V., Van Der Voort P., Stevens C.V. Porous organic polymers as metal free heterogeneous organocatalysts. Green Chem. 2021;23:7361–7434. doi: 10.1039/D1GC02319E. DOI
Sekerová L., Březinová P., Do T.T., Vyskočilová E., Krupka J., Červený L., Havelková L., Bashta B., Sedlacek J. Sulfonated Hyper-cross-linked Porous Polyacetylene Networks as Versatile Heterogeneous Acid Catalysts. Chemcatchem. 2019;12:1075–1084. doi: 10.1002/cctc.201901815. DOI
Zheng Y., Wang X., Liu C., Yu B., Li W., Wang H., Sun T., Jiang J. Triptycene-supported bimetallic salen porous organic polymers for high efficiency CO2 fixation to cyclic carbonates. Inorg. Chem. Front. 2021;8:2880–2888. doi: 10.1039/D1QI00163A. DOI
Bonfant G., Balestri D., Perego J., Comotti A., Bracco S., Koepf M., Gennari M., Marchiò L. Phosphine Oxide Porous Organic Polymers Incorporating Cobalt(II) Ions: Synthesis, Characterization, and Investigation of H2 Production. ACS Omega. 2022;7:6104–6112. doi: 10.1021/acsomega.1c06522. PubMed DOI PMC
Zhang T., Xing G., Chen W., Chen L. Porous organic polymers: A promising platform for efficient photocatalysis. Mater. Chem. Front. 2019;4:332–353. doi: 10.1039/C9QM00633H. DOI
Yuan D., Lu W., Zhao D., Zhou H.-C. Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities. Adv. Mater. 2011;23:3723–3725. doi: 10.1002/adma.201101759. PubMed DOI
Hašková A., Bashta B., Titlová S., Brus J., Vagenknechtová A., Vyskočilová E., Sedláček J. Microporous Hyper-Cross-Linked Polymers with High and Tuneable Content of Pyridine Units: Synthesis and Application for Reversible Sorption of Water and Carbon Dioxide. Macromol. Rapid Commun. 2021;42:e2100209. doi: 10.1002/marc.202100209. PubMed DOI
Dawson R., Cooper A.I., Adams D.J. Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polym. Int. 2013;62:345–352. doi: 10.1002/pi.4407. DOI
Byun Y., Je S.H., Talapaneni S.N., Coskun A. Advances in Porous Organic Polymers for Efficient Water Capture. Chem. A Eur. J. 2019;25:10262–10283. doi: 10.1002/chem.201900940. PubMed DOI
Byun J., Patel H., Thirion D., Yavuz C. Reversible water capture by a charged metal-free porous polymer. Polymer. 2017;126:308–313. doi: 10.1016/j.polymer.2017.05.071. DOI
Mukherjee S., Zeng Z., Shirolkar M.M., Samanta P., Chaudhari A.K., Tan J., Ghosh S.K. Self-Assembled, Fluorine-Rich Porous Organic Polymers: A Class of Mechanically Stiff and Hydrophobic Materials. Chem. A Eur. J. 2018;24:11771–11778. doi: 10.1002/chem.201802200. PubMed DOI
Zhang W., Li Y., Wu Y., Fu Y., Chen S., Zhang Z., He S., Yan T., Ma H. Fluorinated porous organic polymers for efficient recovery perfluorinated electronic specialty gas from exhaust gas of plasma etching. Sep. Purif. Technol. 2022;287:120561. doi: 10.1016/j.seppur.2022.120561. DOI
Ai C., Tang J., Zhang Q., Tang X., Wu S., Pan C., Yu G., Yuan J. A knitting copolymerization Strategy to Build Porous Polytriazolium Salts for Removal of Anionic Dyes and MnO4−. Macromol. Rapid Commun. 2022 doi: 10.1002/marc.202200170. PubMed DOI
Sedláček J., Sokol J., Zedník J., Faukner T., Kubů M., Brus J., Trhlíková O. Homo- and Copolycyclotrimerization of Aromatic Internal Diynes Catalyzed with Co2(CO)8: A Facile Route to Microporous Photoluminescent Polyphenylenes with Hyperbranched or Crosslinked Architecture. Macromol. Rapid Commun. 2017;39:1700518. doi: 10.1002/marc.201700518. PubMed DOI
Monterde C., Navarro R., Iglesias M., Sánchez F. Adamantyl-BINOL as platform for chiral porous polymer aromatic frameworks. Multiple applications as recyclable catalysts. J. Catal. 2019;377:609–618. doi: 10.1016/j.jcat.2019.07.059. DOI
Wu Z., Li T., Ding Y., Hu A. Synthesis of Chiral Porous Organic Polymers Through Nucleophilic Substitution for Chiral Separation. ACS Appl. Polym. Mater. 2020;2:5414–5422. doi: 10.1021/acsapm.0c00750. DOI
Song W., Zhang M., Huang X., Chen B., Ding Y., Zhang Y., Yu D., Kim I. Smart-borneol-loaded hierarchical hollow polymer nanospheres with antipollution and antibacterial capabilities. Mater. Today Chem. 2022;26:101252. doi: 10.1016/j.mtchem.2022.101252. DOI
Tang Y., Varyambath A., Ding Y., Chen B., Huang X., Zhang Y., Yu D.-G., Kim I., Song W. Porous organic polymers for drug delivery: Hierarchical pore structures, variable morphologies, and biological properties. Biomater. Sci. 2022;10:5369–5390. doi: 10.1039/d2bm00719c. PubMed DOI
Holst J.R., Stöckel E., Adams D.J., Cooper A.I. High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and “Click” Chemistry. Macromolecules. 2010;43:8531–8538. doi: 10.1021/ma101677t. DOI
Xu C., Bacsik Z., Hedin N. Adsorption of CO2 on a micro-/mesoporous polyimine modified with tris(2-aminoethyl)amine. J. Mater. Chem. A. 2015;3:16229–16234. doi: 10.1039/c5ta01321f. DOI
Xiong S., Tang X., Pan C., Li L., Tang J., Yu G. Carbazole-Bearing Porous Organic Polymers with a Mulberry-Like Morphology for Efficient Iodine Capture. ACS Appl. Mater. Interfaces. 2019;11:27335–27342. doi: 10.1021/acsami.9b07679. PubMed DOI
Bondarev D., Sivkova R., Šuly P., Polášková M., Krejčí O., Křikavová R., Trávníček Z., Zukal A., Kubů M., Sedláček J. Microporous conjugated polymers via homopolymerization of 2,5-diethynylthiophene. Eur. Polym. J. 2017;92:213–219. doi: 10.1016/j.eurpolymj.2017.04.042. DOI
Zhang Q., Zeng K., Wang C., Wei P., Zhao X., Wu F., Liu Z.-R. An imidazole functionalized porous organic polymer for the highly efficient extraction of uranium from aqueous solutions. New J. Chem. 2022;46:9238–9249. doi: 10.1039/D1NJ05896G. DOI
Rodríguez-González F.E., Niebla V., Velázquez-Tundidor M., Tagle L.H., Martin-Trasanco R., Coll D., Ortiz P.A., Escalona N., Pérez E., Jessop I.A., et al. A new porous organic polymer containing Tröger’s base units: Evaluation of the catalytic activity in Knoevenagel condensation reaction. React. Funct. Polym. 2021;167:104998. doi: 10.1016/j.reactfunctpolym.2021.104998. DOI
Dawson R., Laybourn A., Clowes R., Khimyak Y.Z., Adams D.J., Cooper A.I. Functionalized Conjugated Microporous Polymers. Macromolecules. 2009;42:8809–8816. doi: 10.1021/ma901801s. DOI
Wang T., Zhao Y.-C., Zhang L.-M., Cui Y., Zhang C.-S., Han B.-H. Novel approach to hydroxy-group-containing porous organic polymers from bisphenol A. Beilstein J. Org. Chem. 2017;13:2131–2137. doi: 10.3762/bjoc.13.211. PubMed DOI PMC
Wisser F.M., Eckhardt K., Wisser D., Böhlmann W., Grothe J., Brunner E., Kaskel S. Tailoring Pore Structure and Properties of Functionalized Porous Polymers by Cyclotrimerization. Macromolecules. 2014;47:4210–4216. doi: 10.1021/ma500512j. DOI
Li H., Han X., Yu W., Zhang L., Wei M., Wang Z., Kong F., Wang W. Dimethoxypillar[5]arene knitted porous polymers for efficient removal of organic micropollutants from water. Chem. Eng. J. Adv. 2022;12:100384. doi: 10.1016/j.ceja.2022.100384. DOI
Dong K., Sun Q., Meng X., Xiao F.-S. Strategies for the design of porous polymers as efficient heterogeneous catalysts: From co-polymerization to self-polymerization. Catal. Sci. Technol. 2017;7:1028–1039. doi: 10.1039/C6CY02458K. DOI
Stahlová S., Slováková E., Vaňkátová P., Zukal A., Kubů M., Brus J., Bondarev D., Moučka R., Sedláček J. Chain-growth copolymerization of functionalized ethynylarenes with 1,4-diethynylbenzene and 4,4′-diethynylbiphenyl into conjugated porous networks. Eur. Polym. J. 2015;67:252–263. doi: 10.1016/j.eurpolymj.2015.03.070. DOI
Petrášová S., Zukal A., Brus J., Balcar H., Pastva J., Zedník J., Sedláček J. New Hyper-Crosslinked Partly Conjugated Networks with Tunable Composition by Spontaneous Polymerization of Ethynylpyridines with Bis(bromomethyl)arenes: Synthesis, Spectral Properties, and Activity in CO2 Capture. Macromol. Chem. Phys. 2013;214:2856–2866. doi: 10.1002/macp.201300540. DOI
Seo M., Kim S., Oh J., Kim S.-J., Hillmyer M.A. Hierarchically Porous Polymers from Hyper-cross-linked Block Polymer Precursors. J. Am. Chem. Soc. 2015;137:600–603. doi: 10.1021/ja511581w. PubMed DOI
Lee J., Seo M. Downsizing of Block Polymer-Templated Nanopores to One Nanometer via Hyper-Cross-Linking of High χ–Low N Precursors. ACS Nano. 2021;15:9154–9166. doi: 10.1021/acsnano.1c02690. PubMed DOI
Slováková E., Ješelnik M., Žagar E., Zedník J., Sedláček J., Kovačič S. Chain-Growth Insertion Polymerization of 1,3-Diethynylbenzene High Internal Phase Emulsions into Reactive π-Conjugated Foams. Macromolecules. 2014;47:4864–4869. doi: 10.1021/ma501142d. DOI
Jurjevec S., Žerjav G., Pintar A., Žagar E., Kovačič S. Tunable poly(aryleneethynylene) networks prepared by emulsion templating for visible-light-driven photocatalysis. Catal. Today. 2020;361:146–151. doi: 10.1016/j.cattod.2020.01.049. DOI
Huang J., Zhou X., Lamprou A., Maya F., Svec F., Turner S.R. Nanoporous Polymers from Cross-Linked Polymer Precursors via tert-Butyl Group Deprotection and Their Carbon Dioxide Capture Properties. Chem. Mater. 2015;27:7388–7394. doi: 10.1021/acs.chemmater.5b03114. DOI
Bashta B., Hašková A., Faukner T., Elsawy M.A., Šorm D., Brus J., Sedláček J. Microporous hyper-cross-linked polyacetylene networks: Covalent structure and texture modification by reversible Schiff-base chemistry. Eur. Polym. J. 2020;136:109914. doi: 10.1016/j.eurpolymj.2020.109914. DOI
Bashta B., Havelková L., Sokol J., Brus J., Sedláček J. Microporous polymers prepared from non-porous hyper-cross-linked networks by removing covalently attached template molecules. Microporous Mesoporous Mater. 2021;330:111636. doi: 10.1016/j.micromeso.2021.111636. DOI
Sedláček J., Balcar H. Substituted Polyacetylenes Prepared with Rh Catalysts: From Linear to Network-Type Conjugated Polymers. Polym. Rev. 2016;57:31–51. doi: 10.1080/15583724.2016.1144207. DOI
Masuda T. Substituted Polyacetylenes: Synthesis, Properties, and Functions. Polym. Rev. 2016;57:1–14. doi: 10.1080/15583724.2016.1170701. DOI
Inoue Y., Ishida T., Sano N., Yajima T., Sogawa H., Sanda F. Platinum-Mediated Reversible Cross-linking/Decross-linking of Polyacetylenes Substituted with Phosphine Ligands: Catalytic Activity for Hydrosilylation. Macromolecules. 2022;55:5711–5722. doi: 10.1021/acs.macromol.2c00748. DOI
Perlmutter P. Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons; Hoboken, NJ, USA: 2001. Propargyl Aldehyde. DOI
Zhou L., Kaiser R.I., Gao L.G., Chang A.H.H., Liang M., Yung Y.L. Pathways to Oxygen-Bearing Molecules in the Interstellar Medium and in Planetary Atmospheres: Cyclopropenone (c-C3H2O) and Propynal (HCCCHO) Astrophys. J. 2008;686:1493–1502. doi: 10.1086/591072. DOI
Sekerová L., Lhotka M., Vyskočilová E., Faukner T., Slováková E., Brus J., Červený L., Sedláček J. Hyper-Cross-Linked Polyacetylene-Type Microporous Networks Decorated with Terminal Ethynyl Groups as Heterogeneous Acid Catalysts for Acetalization and Esterification Reactions. Chem. A Eur. J. 2018;24:14742–14749. doi: 10.1002/chem.201802432. PubMed DOI
Metrane A., Delhali A., Ouikhalfan M., Assen A.H., Belmabkhout Y. Water Vapor Adsorption by Porous Materials: From Chemistry to Practical Applications. J. Chem. Eng. Data. 2022;67:1617–1653. doi: 10.1021/acs.jced.2c00145. DOI
Chen Q., Liu D.-P., Zhu J.-H., Han B.-H. Mesoporous Conjugated Polycarbazole with High Porosity via Structure Tuning. Macromolecules. 2014;47:5926–5931. doi: 10.1021/ma501330v. DOI
Byun Y., Coskun A. Epoxy-Functionalized Porous Organic Polymers via the Diels-Alder Cycloaddition Reaction for Atmospheric Water Capture. Angew. Chem. Int. Ed. 2018;57:3173–3177. doi: 10.1002/anie.201800380. PubMed DOI
Karak S., Kandambeth S., Biswal B.P., Sasmal H.S., Kumar S., Pachfule P., Banerjee R. Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. J. Am. Chem. Soc. 2017;139:1856–1862. doi: 10.1021/jacs.6b08815. PubMed DOI
Nguyen H.L., Hanikel N., Lyle S.J., Zhu C., Proserpio D.M., Yaghi O.M. A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting. J. Am. Chem. Soc. 2020;142:2218–2221. doi: 10.1021/jacs.9b13094. PubMed DOI
Lu H., Shi W., Guo Y., Guan W., Lei C., Yu G. Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Adv. Mater. 2022;34:2110079. doi: 10.1002/adma.202110079. PubMed DOI
Singh G., Lee J., Karakoti A., Bahadur R., Yi J., Zhao D., AlBahily K., Vinu A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev. 2020;49:4360–4404. doi: 10.1039/D0CS00075B. PubMed DOI