• This record comes from PubMed

Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H2O and CO2 Capture and Construction of Porous Chiral Networks

. 2023 Feb 01 ; 15 (3) : . [epub] 20230201

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
21-02183S Czech Science Foundation
CZ.02.2.69/0.0/0.0/19_073/0016935 Grant Schemes at CU

Two series of hyper-cross-linked microporous polyacetylene networks containing either -[CH=C(CH=O)]- or -[CH=C(CH2OH)]- monomeric units are reported. Networks are prepared by chain-growth copolymerization of acetal-protected propargyl aldehyde and acetal-protected propargyl alcohol with a 1,3,5-triethynylbenzene cross-linker followed by hydrolytic deprotection/detemplating. Deprotection not only liberates reactive CH=O and CH2OH groups in the networks but also modifies the texture of the networks towards higher microporosity and higher specific surface area. The final networks with CH=O and CH2OH groups attached directly to the polyene main chains of the networks have a specific surface area from 400 to 800 m2/g and contain functional groups in a high amount, up to 9.6 mmol/g. The CH=O and CH2OH groups in the networks serve as active centres for the reversible capture of CO2 and water vapour. The water vapour capture capacities of the networks (up to 445 mg/g at 297 K) are among the highest values reported for porous polymers, making these materials promising for cyclic water harvesting from the air. Covalent modification of the networks with (R)-(+)-3-aminopyrrolidine and (S)-(+)-2-methylbutyric acid enables the preparation of porous chiral networks and shows networks with CH=O and CH2OH groups as reactive supports suitable for the anchoring of various functional molecules.

See more in PubMed

Dawson R., Cooper A.I., Adams D.J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2011;37:530–563. doi: 10.1016/j.progpolymsci.2011.09.002. DOI

Taylor D., Dalgarno S.J., Xu Z., Vilela F. Conjugated porous polymers: Incredibly versatile materials with far-reaching applications. Chem. Soc. Rev. 2020;49:3981–4042. doi: 10.1039/C9CS00315K. PubMed DOI

Zhou Y.-B., Zhan Z.-P. Conjugated Microporous Polymers for Heterogeneous Catalysis. Chem. Asian J. 2017;13:9–19. doi: 10.1002/asia.201701107. PubMed DOI

Bhanja P., Modak A., Bhaumik A. Porous Organic Polymers for CO2 Storage and Conversion Reactions. Chemcatchem. 2018;11:244–257. doi: 10.1002/cctc.201801046. DOI

Cousins K., Zhang R. Highly Porous Organic Polymers for Hydrogen Fuel Storage. Polymers. 2019;11:690. doi: 10.3390/polym11040690. PubMed DOI PMC

Chowdhury A., Bhattacharjee S., Chatterjee R., Bhaumik A. A new nitrogen rich porous organic polymer for ultra-high CO2 uptake and as an excellent organocatalyst for CO2 fixation reactions. J. CO2 Util. 2022;65:102236. doi: 10.1016/j.jcou.2022.102236. DOI

Song K.S., Fritz P.W., Coskun A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev. 2022;51:9831–9852. doi: 10.1039/D2CS00727D. PubMed DOI PMC

Zhou L., Hu Y., Li G. Conjugated Microporous Polymers with Built-In Magnetic Nanoparticles for Excellent Enrichment of Trace Hydroxylated Polycyclic Aromatic Hydrocarbons in Human Urine. Anal. Chem. 2016;88:6930–6938. doi: 10.1021/acs.analchem.6b01708. PubMed DOI

Havelková L., Hašková A., Bashta B., Brus J., Lhotka M., Vrbková E., Kindl M., Vyskočilová E., Sedláček J. Synthesis of hyper-cross-linked microporous poly(phenylacetylene)s having aldehyde and other groups and their chemisorption and physisorption ability. Eur. Polym. J. 2019;114:279–286. doi: 10.1016/j.eurpolymj.2019.02.039. DOI

Zhang Q., Yu S., Wang Q., Xiao Q., Yue Y., Ren S. Fluorene-Based Conjugated Microporous Polymers: Preparation and Chemical Sensing Application. Macromol. Rapid Commun. 2017;38:1700445. doi: 10.1002/marc.201700445. PubMed DOI

Debruyne M., Van Speybroeck V., Van Der Voort P., Stevens C.V. Porous organic polymers as metal free heterogeneous organocatalysts. Green Chem. 2021;23:7361–7434. doi: 10.1039/D1GC02319E. DOI

Sekerová L., Březinová P., Do T.T., Vyskočilová E., Krupka J., Červený L., Havelková L., Bashta B., Sedlacek J. Sulfonated Hyper-cross-linked Porous Polyacetylene Networks as Versatile Heterogeneous Acid Catalysts. Chemcatchem. 2019;12:1075–1084. doi: 10.1002/cctc.201901815. DOI

Zheng Y., Wang X., Liu C., Yu B., Li W., Wang H., Sun T., Jiang J. Triptycene-supported bimetallic salen porous organic polymers for high efficiency CO2 fixation to cyclic carbonates. Inorg. Chem. Front. 2021;8:2880–2888. doi: 10.1039/D1QI00163A. DOI

Bonfant G., Balestri D., Perego J., Comotti A., Bracco S., Koepf M., Gennari M., Marchiò L. Phosphine Oxide Porous Organic Polymers Incorporating Cobalt(II) Ions: Synthesis, Characterization, and Investigation of H2 Production. ACS Omega. 2022;7:6104–6112. doi: 10.1021/acsomega.1c06522. PubMed DOI PMC

Zhang T., Xing G., Chen W., Chen L. Porous organic polymers: A promising platform for efficient photocatalysis. Mater. Chem. Front. 2019;4:332–353. doi: 10.1039/C9QM00633H. DOI

Yuan D., Lu W., Zhao D., Zhou H.-C. Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities. Adv. Mater. 2011;23:3723–3725. doi: 10.1002/adma.201101759. PubMed DOI

Hašková A., Bashta B., Titlová S., Brus J., Vagenknechtová A., Vyskočilová E., Sedláček J. Microporous Hyper-Cross-Linked Polymers with High and Tuneable Content of Pyridine Units: Synthesis and Application for Reversible Sorption of Water and Carbon Dioxide. Macromol. Rapid Commun. 2021;42:e2100209. doi: 10.1002/marc.202100209. PubMed DOI

Dawson R., Cooper A.I., Adams D.J. Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polym. Int. 2013;62:345–352. doi: 10.1002/pi.4407. DOI

Byun Y., Je S.H., Talapaneni S.N., Coskun A. Advances in Porous Organic Polymers for Efficient Water Capture. Chem. A Eur. J. 2019;25:10262–10283. doi: 10.1002/chem.201900940. PubMed DOI

Byun J., Patel H., Thirion D., Yavuz C. Reversible water capture by a charged metal-free porous polymer. Polymer. 2017;126:308–313. doi: 10.1016/j.polymer.2017.05.071. DOI

Mukherjee S., Zeng Z., Shirolkar M.M., Samanta P., Chaudhari A.K., Tan J., Ghosh S.K. Self-Assembled, Fluorine-Rich Porous Organic Polymers: A Class of Mechanically Stiff and Hydrophobic Materials. Chem. A Eur. J. 2018;24:11771–11778. doi: 10.1002/chem.201802200. PubMed DOI

Zhang W., Li Y., Wu Y., Fu Y., Chen S., Zhang Z., He S., Yan T., Ma H. Fluorinated porous organic polymers for efficient recovery perfluorinated electronic specialty gas from exhaust gas of plasma etching. Sep. Purif. Technol. 2022;287:120561. doi: 10.1016/j.seppur.2022.120561. DOI

Ai C., Tang J., Zhang Q., Tang X., Wu S., Pan C., Yu G., Yuan J. A knitting copolymerization Strategy to Build Porous Polytriazolium Salts for Removal of Anionic Dyes and MnO4−. Macromol. Rapid Commun. 2022 doi: 10.1002/marc.202200170. PubMed DOI

Sedláček J., Sokol J., Zedník J., Faukner T., Kubů M., Brus J., Trhlíková O. Homo- and Copolycyclotrimerization of Aromatic Internal Diynes Catalyzed with Co2(CO)8: A Facile Route to Microporous Photoluminescent Polyphenylenes with Hyperbranched or Crosslinked Architecture. Macromol. Rapid Commun. 2017;39:1700518. doi: 10.1002/marc.201700518. PubMed DOI

Monterde C., Navarro R., Iglesias M., Sánchez F. Adamantyl-BINOL as platform for chiral porous polymer aromatic frameworks. Multiple applications as recyclable catalysts. J. Catal. 2019;377:609–618. doi: 10.1016/j.jcat.2019.07.059. DOI

Wu Z., Li T., Ding Y., Hu A. Synthesis of Chiral Porous Organic Polymers Through Nucleophilic Substitution for Chiral Separation. ACS Appl. Polym. Mater. 2020;2:5414–5422. doi: 10.1021/acsapm.0c00750. DOI

Song W., Zhang M., Huang X., Chen B., Ding Y., Zhang Y., Yu D., Kim I. Smart-borneol-loaded hierarchical hollow polymer nanospheres with antipollution and antibacterial capabilities. Mater. Today Chem. 2022;26:101252. doi: 10.1016/j.mtchem.2022.101252. DOI

Tang Y., Varyambath A., Ding Y., Chen B., Huang X., Zhang Y., Yu D.-G., Kim I., Song W. Porous organic polymers for drug delivery: Hierarchical pore structures, variable morphologies, and biological properties. Biomater. Sci. 2022;10:5369–5390. doi: 10.1039/d2bm00719c. PubMed DOI

Holst J.R., Stöckel E., Adams D.J., Cooper A.I. High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and “Click” Chemistry. Macromolecules. 2010;43:8531–8538. doi: 10.1021/ma101677t. DOI

Xu C., Bacsik Z., Hedin N. Adsorption of CO2 on a micro-/mesoporous polyimine modified with tris(2-aminoethyl)amine. J. Mater. Chem. A. 2015;3:16229–16234. doi: 10.1039/c5ta01321f. DOI

Xiong S., Tang X., Pan C., Li L., Tang J., Yu G. Carbazole-Bearing Porous Organic Polymers with a Mulberry-Like Morphology for Efficient Iodine Capture. ACS Appl. Mater. Interfaces. 2019;11:27335–27342. doi: 10.1021/acsami.9b07679. PubMed DOI

Bondarev D., Sivkova R., Šuly P., Polášková M., Krejčí O., Křikavová R., Trávníček Z., Zukal A., Kubů M., Sedláček J. Microporous conjugated polymers via homopolymerization of 2,5-diethynylthiophene. Eur. Polym. J. 2017;92:213–219. doi: 10.1016/j.eurpolymj.2017.04.042. DOI

Zhang Q., Zeng K., Wang C., Wei P., Zhao X., Wu F., Liu Z.-R. An imidazole functionalized porous organic polymer for the highly efficient extraction of uranium from aqueous solutions. New J. Chem. 2022;46:9238–9249. doi: 10.1039/D1NJ05896G. DOI

Rodríguez-González F.E., Niebla V., Velázquez-Tundidor M., Tagle L.H., Martin-Trasanco R., Coll D., Ortiz P.A., Escalona N., Pérez E., Jessop I.A., et al. A new porous organic polymer containing Tröger’s base units: Evaluation of the catalytic activity in Knoevenagel condensation reaction. React. Funct. Polym. 2021;167:104998. doi: 10.1016/j.reactfunctpolym.2021.104998. DOI

Dawson R., Laybourn A., Clowes R., Khimyak Y.Z., Adams D.J., Cooper A.I. Functionalized Conjugated Microporous Polymers. Macromolecules. 2009;42:8809–8816. doi: 10.1021/ma901801s. DOI

Wang T., Zhao Y.-C., Zhang L.-M., Cui Y., Zhang C.-S., Han B.-H. Novel approach to hydroxy-group-containing porous organic polymers from bisphenol A. Beilstein J. Org. Chem. 2017;13:2131–2137. doi: 10.3762/bjoc.13.211. PubMed DOI PMC

Wisser F.M., Eckhardt K., Wisser D., Böhlmann W., Grothe J., Brunner E., Kaskel S. Tailoring Pore Structure and Properties of Functionalized Porous Polymers by Cyclotrimerization. Macromolecules. 2014;47:4210–4216. doi: 10.1021/ma500512j. DOI

Li H., Han X., Yu W., Zhang L., Wei M., Wang Z., Kong F., Wang W. Dimethoxypillar[5]arene knitted porous polymers for efficient removal of organic micropollutants from water. Chem. Eng. J. Adv. 2022;12:100384. doi: 10.1016/j.ceja.2022.100384. DOI

Dong K., Sun Q., Meng X., Xiao F.-S. Strategies for the design of porous polymers as efficient heterogeneous catalysts: From co-polymerization to self-polymerization. Catal. Sci. Technol. 2017;7:1028–1039. doi: 10.1039/C6CY02458K. DOI

Stahlová S., Slováková E., Vaňkátová P., Zukal A., Kubů M., Brus J., Bondarev D., Moučka R., Sedláček J. Chain-growth copolymerization of functionalized ethynylarenes with 1,4-diethynylbenzene and 4,4′-diethynylbiphenyl into conjugated porous networks. Eur. Polym. J. 2015;67:252–263. doi: 10.1016/j.eurpolymj.2015.03.070. DOI

Petrášová S., Zukal A., Brus J., Balcar H., Pastva J., Zedník J., Sedláček J. New Hyper-Crosslinked Partly Conjugated Networks with Tunable Composition by Spontaneous Polymerization of Ethynylpyridines with Bis(bromomethyl)arenes: Synthesis, Spectral Properties, and Activity in CO2 Capture. Macromol. Chem. Phys. 2013;214:2856–2866. doi: 10.1002/macp.201300540. DOI

Seo M., Kim S., Oh J., Kim S.-J., Hillmyer M.A. Hierarchically Porous Polymers from Hyper-cross-linked Block Polymer Precursors. J. Am. Chem. Soc. 2015;137:600–603. doi: 10.1021/ja511581w. PubMed DOI

Lee J., Seo M. Downsizing of Block Polymer-Templated Nanopores to One Nanometer via Hyper-Cross-Linking of High χ–Low N Precursors. ACS Nano. 2021;15:9154–9166. doi: 10.1021/acsnano.1c02690. PubMed DOI

Slováková E., Ješelnik M., Žagar E., Zedník J., Sedláček J., Kovačič S. Chain-Growth Insertion Polymerization of 1,3-Diethynylbenzene High Internal Phase Emulsions into Reactive π-Conjugated Foams. Macromolecules. 2014;47:4864–4869. doi: 10.1021/ma501142d. DOI

Jurjevec S., Žerjav G., Pintar A., Žagar E., Kovačič S. Tunable poly(aryleneethynylene) networks prepared by emulsion templating for visible-light-driven photocatalysis. Catal. Today. 2020;361:146–151. doi: 10.1016/j.cattod.2020.01.049. DOI

Huang J., Zhou X., Lamprou A., Maya F., Svec F., Turner S.R. Nanoporous Polymers from Cross-Linked Polymer Precursors via tert-Butyl Group Deprotection and Their Carbon Dioxide Capture Properties. Chem. Mater. 2015;27:7388–7394. doi: 10.1021/acs.chemmater.5b03114. DOI

Bashta B., Hašková A., Faukner T., Elsawy M.A., Šorm D., Brus J., Sedláček J. Microporous hyper-cross-linked polyacetylene networks: Covalent structure and texture modification by reversible Schiff-base chemistry. Eur. Polym. J. 2020;136:109914. doi: 10.1016/j.eurpolymj.2020.109914. DOI

Bashta B., Havelková L., Sokol J., Brus J., Sedláček J. Microporous polymers prepared from non-porous hyper-cross-linked networks by removing covalently attached template molecules. Microporous Mesoporous Mater. 2021;330:111636. doi: 10.1016/j.micromeso.2021.111636. DOI

Sedláček J., Balcar H. Substituted Polyacetylenes Prepared with Rh Catalysts: From Linear to Network-Type Conjugated Polymers. Polym. Rev. 2016;57:31–51. doi: 10.1080/15583724.2016.1144207. DOI

Masuda T. Substituted Polyacetylenes: Synthesis, Properties, and Functions. Polym. Rev. 2016;57:1–14. doi: 10.1080/15583724.2016.1170701. DOI

Inoue Y., Ishida T., Sano N., Yajima T., Sogawa H., Sanda F. Platinum-Mediated Reversible Cross-linking/Decross-linking of Polyacetylenes Substituted with Phosphine Ligands: Catalytic Activity for Hydrosilylation. Macromolecules. 2022;55:5711–5722. doi: 10.1021/acs.macromol.2c00748. DOI

Perlmutter P. Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons; Hoboken, NJ, USA: 2001. Propargyl Aldehyde. DOI

Zhou L., Kaiser R.I., Gao L.G., Chang A.H.H., Liang M., Yung Y.L. Pathways to Oxygen-Bearing Molecules in the Interstellar Medium and in Planetary Atmospheres: Cyclopropenone (c-C3H2O) and Propynal (HCCCHO) Astrophys. J. 2008;686:1493–1502. doi: 10.1086/591072. DOI

Sekerová L., Lhotka M., Vyskočilová E., Faukner T., Slováková E., Brus J., Červený L., Sedláček J. Hyper-Cross-Linked Polyacetylene-Type Microporous Networks Decorated with Terminal Ethynyl Groups as Heterogeneous Acid Catalysts for Acetalization and Esterification Reactions. Chem. A Eur. J. 2018;24:14742–14749. doi: 10.1002/chem.201802432. PubMed DOI

Metrane A., Delhali A., Ouikhalfan M., Assen A.H., Belmabkhout Y. Water Vapor Adsorption by Porous Materials: From Chemistry to Practical Applications. J. Chem. Eng. Data. 2022;67:1617–1653. doi: 10.1021/acs.jced.2c00145. DOI

Chen Q., Liu D.-P., Zhu J.-H., Han B.-H. Mesoporous Conjugated Polycarbazole with High Porosity via Structure Tuning. Macromolecules. 2014;47:5926–5931. doi: 10.1021/ma501330v. DOI

Byun Y., Coskun A. Epoxy-Functionalized Porous Organic Polymers via the Diels-Alder Cycloaddition Reaction for Atmospheric Water Capture. Angew. Chem. Int. Ed. 2018;57:3173–3177. doi: 10.1002/anie.201800380. PubMed DOI

Karak S., Kandambeth S., Biswal B.P., Sasmal H.S., Kumar S., Pachfule P., Banerjee R. Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. J. Am. Chem. Soc. 2017;139:1856–1862. doi: 10.1021/jacs.6b08815. PubMed DOI

Nguyen H.L., Hanikel N., Lyle S.J., Zhu C., Proserpio D.M., Yaghi O.M. A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting. J. Am. Chem. Soc. 2020;142:2218–2221. doi: 10.1021/jacs.9b13094. PubMed DOI

Lu H., Shi W., Guo Y., Guan W., Lei C., Yu G. Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Adv. Mater. 2022;34:2110079. doi: 10.1002/adma.202110079. PubMed DOI

Singh G., Lee J., Karakoti A., Bahadur R., Yi J., Zhao D., AlBahily K., Vinu A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev. 2020;49:4360–4404. doi: 10.1039/D0CS00075B. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...