Standard deviation: Standardized bat monitoring techniques work better in some ecosystems
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39666782
PubMed Central
PMC11637392
DOI
10.1371/journal.pone.0311553
PII: PONE-D-24-27876
Knihovny.cz E-resources
- MeSH
- Chiroptera * physiology MeSH
- Ecosystem * MeSH
- Forests MeSH
- Environmental Monitoring methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Croatia MeSH
- Mexico MeSH
Standardized monitoring strategies are often used to study spatial and temporal ecological patterns and trends. Such approaches are applied for many study taxa, including bats (Mammalia, Chiroptera). However, local characteristics of individual field sites, including species assemblages, terrain, climatic factors, and presence or lack of landscape features, may affect the efficacy of these standardized surveys. In this paper, we completed mist-netting surveys for bats in two widely separated field sites, Calakmul Biosphere Reserve (CBR), a Mexican lowland tropical forest, and Krka National Park (KNP), a Mediterranean dry scrub forest in Croatia. Standardized surveys were conducted along predefined transects for six hours. We also completed targeted surveys in KNP that focused on the key bat activity period (the first two to three hours after sunset), with nets being deployed at sites of known or assumed value to bats (independent of predefined transects). We analyzed how survey success differed in standardized surveys between CBR and KNP and between standardized and targeted surveys in KNP. Survey success was measured through three parameters: capture rate = the number of individual bats captured per net hour, inventory rate = the number of unique bat species recorded per net hour, and inventory efficacy = the percentage of known species assemblage recorded per net hour across all surveys. Results for all three parameters indicate that standardized surveys in CBR were vastly more effective than those in KNP (e.g., mist-netting in CBR detected 69.8% of the species assemblage, compared to just 8.3% in KNP), and it was only by employing targeted mist-netting in KNP that meaningful capture rates could be achieved. This study contributes further evidence to discussions around how and when standardized survey methods should be employed, and the alternative approaches that can be taken in ecosystems where generally effective methods underperform.
Department of Ecology and Environmental Science Umeå University Umeå Sweden
Faculty of Science and Engineering University of Wolverhampton Wolverhampton United Kingdom
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Operation Wallacea Ltd Old Bolingbroke Spilsby Lincolnshire United Kingdom
rePLANET Ltd Old Bolingbroke Spilsby Lincolnshire United Kingdom
See more in PubMed
Before Blossey B., during and after: the need for long-term monitoring in invasive plant species management. Biol Invasions. 1999; 1: 301–311. doi: 10.1023/A:1010084724526 DOI
Burt TP, Howden NJK, Worrall F, Whelan MJ. Importance of long-term monitoring for detecting environmental change: lessons from a lowland river in south east England, Biogeosciences. 2008; 5: 1529–1535. doi: 10.5194/bg-5-1529-2008 DOI
Gagnon JW, Dodd NL, Ogren KS, Schweinsburg RE. Factors associated with use of wildlife underpasses and importance of long-term monitoring. J Wildl Manag. 2011; 75: 1477–1487. doi: 10.1002/jwmg.160 DOI
Beaudrot L, Ahumada JA, O’Brien T, Alvarez-Loayza P, Boekee K, Campos-Arceiz A, et al.. Standardized assessment of biodiversity trends in tropical forest protected areas: the end is not in sight. PLoS Biol. 2016; 14: e1002357. doi: 10.1371/journal.pbio.1002357 PubMed DOI PMC
Guralnick R, Walls R, Jetz W. Humboldt Core–toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography. 2018; 41: 713–725. doi: 10.1111/ecog.02942 DOI
Houle A, Chapman CA, Vickery WL. Tree climbing strategies for primate ecological studies. Int J Primatol. 2004; 25: 237–260. doi: 10.1023/B:IJOP.0000014652.83830.e4 DOI
Lowman MD, Rinker HB. Forest canopies. Second edition. London: Elsevier Academic Press; 2004.
Soares AO, Haelewaters D, Ameixa OMCC, Borges I, Brown PMJ, Cardoso P, et al.. A roadmap for ladybird conservation and recovery. Conserv Biol. 2020. doi: 10.1111/cobi.13965 PubMed DOI
Cazabonne J, Bartrop L, Dierickx G, Gafforov Y, Hofmann TA, Martin TE, et al.. Molecular-based diversity studies and field surveys are not mutually exclusive: On the importance of integrated methodologies in mycological research. Front Fungal Biol. 2022; 3: 860777. doi: 10.3389/ffunb.2022.860777 PubMed DOI PMC
Martin TE, Nightingale J, Baddams J, Monkhouse J, Kaban A, Sastranegara H, et al.. Variability in the effectiveness of two ornithological survey methods between tropical forest ecosystems. PLoS ONE. 2017; 12: e0169786. doi: 10.1371/journal.pone.0169786 PubMed DOI PMC
Lim BK, Engstrom MD. Bat community structure at Iwokrama Forest. J Trop Ecol. 2001; 17: 647–665. doi: 10.1017/S0266467401001481 DOI
Medina-Van Berkum P, Vulinec K, Crace D, López Gallego Z, Martin TE. Community composition of bats in Cusuco National Park, Honduras, a mesoamerican cloud forest. Neotrop Nat. 2020; 3: 1–24.
Carlson CJ, Hopkins S, Bell KC, Doña J, Godfrey SS, Kwak ML, et al.. A global parasite conservation plan. Biol Conserv. 2020; 250: 108596. doi: 10.1016/j.biocon.2020.108596 DOI
Fraissinet M, Ancillotto L, Migliozzi A, Capasso S, Bosso L, Chamberlain DE, et al.. Responses of avian assemblages to spatiotemporal landscape dynamics in urban ecosystems. Landsc Ecol. 2023; 38: 293–305. doi: 10.1007/s10980-022-01550-5 DOI
Xie B, Jones P, Dwivedi R, Bao L, Liang R. Evaluation, comparison, and unique features of ecological security in southwest China: A case study of Yunnan Province. Ecol Indic. 2023; 153: 110453. doi: 10.1016/j.ecolind.2023.110453 DOI
Johnston A, Newson SE, Risely K, Musgrove AJ, Massimino D, Baillie SR, et al.. Species traits explain variation in detectability of UK birds. Bird Study. 2014; 61: 340–350. doi: 10.1080/00063657.2014.941787 DOI
Betke M, Hirsh DE, Makris NC, McCracken GF, Procopio M, Hristov NI, et al.. Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. J Mammal. 2008; 89: 18–24. doi: 10.1644/07-MAMM-A-011.1 DOI
Frick WF. Acoustic monitoring of bats, considerations of options for long-term monitoring. Therya. 2013; 4: 69–78. doi: 10.12933/therya-13-109 DOI
Walsh A, Catto C. Survey and monitoring. In: Mitchell-Jones AJ, McLeish AP (eds) Bat workers’ manual. 3rd edition. Online: Joint Nature Conservation Committee; 2004. p. 29–40. Available from: https://data.jncc.gov.uk/data/e5888ae1-3306-4f17-9441-51a5f4dc416a/Batwork-manual-3rd-edn.pdf
Collins J. Bat surveys for professional ecologists: good practice guidelines. 4th edition. London: Bat Conservation Trust; 2023.
Battersby J. Guidelines for surveillance and monitoring of European bats. EUROBATS Publ Ser 5. Bonn: UNEP/EUROBATS Secretariat; 2010. Available from: https://www.eurobats.org/sites/default/files/documents/publications/publication_series/EUROBATS_PublSer_No5_3rd_edition.pdf
Talbot B, Vonhof MJ, Broders HG, Fenton B, Keyghobadi N. Comparative analysis of landscape effects on spatial genetic structure of the big brown bat and one of its cimicid ectoparasites. Ecol Evol. 2017; 7: 8210–8219. doi: 10.1002/ece3.3329 PubMed DOI PMC
Kunz TH, Kurta A. Capture methods and holding devices. In: Kunz TH (ed) Ecological and behavioural methods for the study of bats. Boston: Smithsonian; 1988. p. 1–30.
Barlow K. Expedition field techniques. London: Royal Geographical Society; 1999.
Weller TJ, Lee DC. Mist net effort required to inventory a forest bat species assemblage. J Wildl Manag. 2007; 71: 251–257. doi: 10.2193/2005-384 DOI
Hughes M, Brown SK, Kaburu SSK, Maddock ST, Young CH. Advanced survey effort required to obtain bat assemblage data in temperate woodlands (Chiroptera). Lynx n s. 2021; 51: 41–48. doi: 10.37520/lynx.2020.004 DOI
Vester HFM, Lawrence D, Eastman JR, Turner BL, Calmé S, Dickson R, et al.. Land change in the southern Yucatan and Calakmul Biosphere Reserve: effects on habitat and biodiversity. Ecol Appl. 2007; 17: 989–1003. doi: 10.1890/05-1106 PubMed DOI
Lawrence D, Foster D. Changes in forest biomass, litter dynamics and soils following shifting cultivation in southern Mexico: an overview. Interciencia. 2002; 27: 400–408.
Martínez E, Galindo-Leal C. La vegetación de Calakmul, Campeche, México: clasificación, descripción y distribución. Bol Soc Bot México. 2002; 71: 7–32. doi: 10.17129/botsci.1660 DOI
Chowdhury RR. Landscape change in the Calakmul Biosphere Reserve, Mexico: Modeling the driving forces of smallholder deforestation in land parcels. Appl Geogr. 2006; 26: 129–152. doi: 10.1016/j.apgeog.2005.11.004 DOI
Slater K. Informe del Proyecto de Monitoreo de Flora y Fauna de Operation Wallacea y Pronatura Península de Yucatán en la Reserva de la Biosfera de Calakmul, 2014–2018. Old Bolingbroke: Operation Wallacea; 2019.
Krka National Park Authority. Climate. Šibenik: Public Institute of Krka National Park; 2021. https://www.npkrka.hr/en_US/prirodna-bastina/geologija/kako-je-sve-pocelo-reljef/kako-je-sve-pocelo-klima/
Marguš D. The Krka River: a gift of nature. Natural history monograph of Krka National Park. Šibenik: Public Institute of Krka National Park; 2019.
Hamidović D, Kipson M, Fressel N, Presetnik P, Corben C, Puechmaille S, et al.. Pregled stanja istraženosti faune šišmiša širega područja Nacionalnog parka “Krka“. In: Marguš D (ed) Vizija i izazovi upravljanja zaštićenim područjima prirode u republici hrvatskoj: aktivna zaštita i održivo upravljanje u Nacionalnom parku “Krka”. Šibenik: Javna ustanova “Nacionalni park Krka”; 2015.
Hughes M, Bailey JJ. Operation Wallacea science report 2023. Krka National Park, Croatia. Old Bolingbroke: Operation Wallacea; 2023.
Medina-van Berkum P, Vulinec K, Crace D, López Gallego Z, Martin TE. Community composition of bats in Cusuco National Park, Honduras, a Mesoamerican cloud park, including new regional and altitudinal records. Neotrop Nat. 2020; 3: 1–24.
Medina-van Berkum P, Haelewaters D, Thompson JRE, Uribe E, Vulinec K, Martin TE. Bat assemblages and their ectoparasites in a Honduran cloud forest: Effects of disturbance and altitude. J Mesoam Biol. 2021; 1: 51–69.
Hughes M, Thomas O, Suvorova A, Saunders T, Krajnović M, Jelić D, et al.. The skynet, a new method to capture bats over water. J Bat Res Conserv. 2022; 14: 215–221. doi: 10.14709/BarbJ.14.1.2021.18 DOI
Dietz C, Kiefer A. Bats of Britain and Europe. London: Bloomsbury; 2014.
Hughes M, Brown SK, Kaburu SSK, Maddock ST, Young CH. Advanced survey effort required to obtain bat assemblage data in temperate woodlands (Chiroptera). Lynx N Ser. 2020; 51: 41–48. doi: 10.37520/lynx.2020.004 DOI
R Development Core Team. R: A language and environment for statistical computing. [online]. Vienna, R Foundation for Statistical Computing: 2014. [cited 2024 Sep 11]. Available from: http://www.r-project.org.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2009.
Braun de Torrez EC, Samoray ST, Silas KA, Wallrichs MA, Gumbert MW, Ober HK, et al.. Acoustic lure allows for capture of a high‐flying, endangered bat. Wildl Soc Bull. 2017; 41: 322–328. doi: 10.1002/wsb.778 DOI
Brinkley ER, Weier SM, Parker DM, Taylor PJ. Three decades later in the Northern Kruger National Park: multiple acoustic and capture surveys may underestimate the true local richness of bats based on historical collections. Hystrix It J Mamm. 2021; 32: 109–117. doi: 10.4404/hystrix-00319-2020 DOI
Van Gunst KJ, Klinger C, Hamilton B, Slocum K, Rhea-Fournier DJ. Rapid biodiversity sampling for bat assemblages in northwestern Nevada. J Fish Wildl Manag. 2020; 11: 300–310. doi: 10.3996/022019-JFWM-009 DOI
Razgour O, Korine C, Saltz D. Does interspecific competition drive patterns of habitat use in desert bat communities? Oecologia. 2011; 167: 493–502. doi: 10.1007/s00442-011-1995-z PubMed DOI
Razgour O, Persey M, Shamir U, Korine C. The role of climate, water and biotic interactions in shaping biodiversity patterns in arid environments across spatial scales. Divers. Distrib. 2018; 24: 1440–1452. doi: 10.1111/ddi.12773 DOI
Schneider NA, Griesser M. Influence and value of different water regimes on avian species richness in arid inland Australia. Biodivers Conserv. 2009; 18: 457–471. doi: 10.1007/s10531-008-9501-6 DOI
EUROBATS. Agreement on the conservation of bats in Europe (EUROBATS). Third report to the national implementation of the agreement in the Croatia. 2003–2004. Zagreb: Croatian Natural History Museum; 2004. Available from: https://www.eurobats.org/sites/default/files/documents/pdf/National_Reports/nat_rep_Croa_2004.pdf
Winter Y, von Helversen O. The energy cost of flight: Do small bats fly more cheaply than birds? J Comp Physiol B. 1998; 168: 105–111. doi: 10.1007/s003600050126 PubMed DOI
Encarnação JA, Becker NI, Ekschmitt K. When do daubenton’s bats (myotis daubentonii) fly far for dinner? Can J Zool. 2010; 88: 1192–1201. doi: 10.1139/Z10-085 DOI
Grodzinski U, Spiegel O, Korine C, Holderied MW. Context-dependent flight speed: Evidence for energetically optimal flight speed in the bat Pipistrellus kuhlii? J Anim Ecol. 2009; 78: 540–548. doi: 10.1111/j.1365-2656.2009.01526.x PubMed DOI
Aharon G, Sadot M, Yovel Y. Bats use path integration rather than acoustic flow to assess flight distance along flyways. Curr Biol. 2017; 27: 3650–3657. doi: 10.1016/j.cub.2017.10.012 PubMed DOI
Schaub A, Schnitzler HU. Flight and echolocation behaviour of three vespertilionid bat species while commuting on flyways. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007; 193: 1185–1194. doi: 10.1007/s00359-007-0269-z PubMed DOI
Palmeirim JM, Etherdige K. The influence of man-made trails on foraging by tropical frugivorous bats. Influencia de los senderos hechos porel hombre en elforrajeo de murciélagos frugívoros tropicales. Biotropica. 1985; 17: 82–83. doi: 10.2307/2388385 DOI
Martin TE, Jelić D, Hyett B, Haelewaters D, Thomas O, Lansley T, et al.. Operation Wallacea Croatia Terrestrial Research Program. 2021 end of season report. Old Bolingbroke: Operation Wallacea; 2021.
Walker MJ, Dorrestein A, Camacho JJ, Meckler LA, Silas KA, Hiller T, et al.. A tripartite survey of hyperparasitic fungi associated with ectoparasitic flies on bats (Mammalia: Chiroptera) in a neotropical cloud forest in Panama. Parasite. 2018; 25: 19. doi: 10.1051/parasite/2018017 PubMed DOI PMC
Samudio R Jr., Pino JL. Historia de la Mastozoología en Panamá. In: Ortega J, Martínez JL, Tirira DG (eds) Historia de La mastozoología en Latinoamérica, las Guayanas y el Caribe. Quito: Editorial Murciélago Blanco y Asociación Ecuatoriana de Mastozoologiá; 2014. p. 329–344.
Angehr G, Christian D. Distributional records from the highlands of the Serranía de Majé, an isolated mountain range in eastern Panama. Bull Brit Ornithol Club. 2000; 120: 173–178.
Ortiz OO, Baldini RM, Berguido G, Croat TB. New species of Anthurium (Araceae) from Chucantí Nature Reserve, eastern Panama. Phytotaxa. 2016; 255: 47–56. doi: 10.11646/phytotaxa.255.1.4 DOI
Sardà-Palomera F, Brotons L, Villero., Sierdsema H, Newson, Jiguet F. Mapping from heterogeneous biodiversity monitoring data sources. Biodivers Conserv. 2012; 21: 2927–2948. doi: 10.1007/s10531-012-0347-6 DOI
Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J, Ambarlı D, et al.. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 2019; 574: 671–674. doi: 10.1038/s41586-019-1684-3 PubMed DOI