A roadmap for ladybird conservation and recovery

. 2023 Feb ; 37 (1) : e13965. [epub] 20220927

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35686511

Ladybirds (Coleoptera: Coccinellidae) provide services that are critical to food production, and they fulfill an ecological role as a food source for predators. The richness, abundance, and distribution of ladybirds, however, are compromised by many anthropogenic threats. Meanwhile, a lack of knowledge of the conservation status of most species and the factors driving their population dynamics hinders the development and implementation of conservation strategies for ladybirds. We conducted a review of the literature on the ecology, diversity, and conservation of ladybirds to identify their key ecological threats. Ladybird populations are most affected by climate factors, landscape composition, and biological invasions. We suggest mitigating actions for ladybird conservation and recovery. Short-term actions include citizen science programs and education, protective measures for habitat recovery and threatened species, prevention of the introduction of non-native species, and the maintenance and restoration of natural areas and landscape heterogeneity. Mid-term actions involve the analysis of data from monitoring programs and insect collections to disentangle the effect of different threats to ladybird populations, understand habitat use by taxa on which there is limited knowledge, and quantify temporal trends of abundance, diversity, and biomass along a management-intensity gradient. Long-term actions include the development of a worldwide monitoring program based on standardized sampling to fill data gaps, increase explanatory power, streamline analyses, and facilitate global collaborations.

Las catarinas (Coleoptera: Coccinellidae) proporcionan servicios que son críticos para la producción de alimento, y juegan un papel ecológico como fuente de alimento para depredadores. Sin embargo, la riqueza, abundancia y distribución de catarinas están en peligro debido a muchas amenazas antropogénicas. La carencia de conocimiento sobre el estatus de conservación de la mayoría de las especies y los factores que inciden en su dinámica poblacional dificulta el desarrollo e implementación de estrategias de conservación para las catarinas. Realizamos una revisión de la literatura sobre la ecología, diversidad y conservación de catarinas para identificar sus amenazas ecológicas clave. Las poblaciones de catarinas fueron afectadas mayormente por factores climáticos, composición del paisaje e invasiones biológicas. Proponemos acciones de mitigación para la conservación y recuperación de catarinas. Acciones a corto plazo incluyen programas de ciencia y educación ciudadana, medidas de protección para la recuperación de hábitat y de especies amenazadas, prevención de la introducción de especies no nativas y el mantenimiento y restauración de áreas naturales y la heterogeneidad del paisaje. Acciones a mediano plazo implican el análisis de datos obtenidos de programas de monitoreo y colecciones de insectos para desenmarañar el efecto de las diferentes amenazas a las poblaciones de catarinas, comprender el uso del hábitat por taxa de los que se tiene conocimiento limitado y cuantifica las tendencias temporales de la abundancia, diversidad y biomasa a lo largo de un gradiente de intensidad de manejo. Acciones a largo plazo incluyen el desarrollo de un programa de monitoreo a nivel mundial basado en muestreos estandarizados para subsanar la falta de datos, incrementar el poder explicativo, optimizar los análisis y facilitar colaboraciones globales.

Agricultural Research Center Hays Department of Entomology Kansas State University Hays Kansas USA

Applied Ecology Research Group School of Life Sciences Anglia Ruskin University Cambridge UK

Biology Centre of the Czech Academy of Sciences Institute of Entomology České Budějovice Czech Republic

Center for Ecology Evolution and Environmental Changes Azorean Biodiversity Group Portugal

Centre for Environmental and Marine Studies and Department of Biology University of Aveiro Aveiro Portugal

Crop Research Institute Prague Czech Republic

Department of Biogeography Trier University Trier Germany

Department of Biology Faculty of Sciences Ghent University Ghent Belgium

Department of Biology Utah State University Logan Utah USA

Department of Entomology Cornell University Ithaca New York USA

Department of Zoology Faculty of Natural Sciences Comenius University Bratislava Slovak Republic

Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile Santiago Chile

Facultad de Ciencias Veterinarias y Pecuarias Universidad de Chile Santiago Chile

Faculty of Science University of South Bohemia České Budějovice Czech Republic

Institute of Forest Ecology Slovak Academy of Sciences Zvolen Slovak Republic

IUCN SSC Invertebrate Conservation Committee Trier Germany

IUCN SSC Ladybird Specialist Group

Laboratory for Integrative Biodiversity Research Finnish Museum of Natural History LUOMUS University of Helsinki Helsinki Finland

Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India

Research Institute for Nature and Forest Geraardsbergen Belgium

UK Centre for Ecology and Hydrology Wallingford UK

UMR RECOVER National Research Institute for Agriculture Food and the Environment and Aix Marseille University Aix en Provence France

Zobrazit více v PubMed

Adriaens, T., San Martin y Gomez, G., Bogeart, J., Crevecoeur, L., Beuckx, J.-P., & Maes, D. (2015). Testing the applicability of regional ICUN Red List Criteria on ladybirds (Coeloptera, Coccinellidae) in Flanders (north Belgium): Opportunities for conservation. Insect Conservation and Diversity, 8, 404-417.

Akçakaya, H. R., Bennett, E. L., Brooks, T. M., Grace, M. K., Heath, A., Hedges, S., Hilton-Taylor, C., Hoffmann, M., Keith, D. A., Long, B., Mallon, D. P., Meijaard, E., Milner-Gulland, E. J., Rodrigues, A. S. L., Rodriguez, J. P., Stephenson, P. J., Stuart, S. N., & Young, R. P. (2018). Quantifying species recovery and conservation success to develop, an IUCN Green List of Species. Conservation Biology, 32, 1128-1138.

Alyokhin, A., & Sewell, G. (2004). Changes in a lady beetle community following the establishment of three alien species. Biological Invasions, 6, 463-471.

Ameixa, O. M. C. C., Soares, A. O., Soares, A. M. V. M., & Lillebø, A. I. (2018). Ecosystem services provided by the little things that run the world. In B. Ṣen & O. Grillo (Eds.), Selected studies in biodiversity (pp. 267-302). IntechOpen Limited.

Bahlai, C. A., Colunga-Garcia, M., Gage, S. H., & Landis, D. A. (2013). Long-term functional dynamics of an aphidophagous coccinellid community remain unchanged despite repeated invasions. PLoS ONE, 8, e83407.

Bonebrake, T. C., Guo, F., Dingle, C., Baker, D. M., Kitching, R. L., & Ashton, L. A. (2019). Integrating proximal and horizon threats to biodiversity for conservation. Trends in Ecology & Evolution, 34, 781-788.

Booy, O., Mill, A. C., Roy, H. E., Hiley, A., Moore, N., Robertson, P., Baker, S., Brazier, M., Bue, M., Bullock, R., Campbell, S., Eyre, D., Foster, J., Hatton-Ellis, M., Long, J., Macadam, C., Morrison-Bell, C., Mumford, J., Newman, J., … Wyn, G. (2017). Risk management to prioritise the eradication of new and emerging invasive non-native species. Biological Invasions, 19, 2401-2417.

Borges, P. A. V., Cardoso, P., Kreft, H., Whittaker, R. J., Fattorini, S., Emerson, B. C., Gil, A., Gillespie, R. G., Matthews, T. J., Santos, A. M. C., Steinbauer, M. J., Thébaud, C., Ah-Peng, A., Amorim, I. R., Aranda, S. C., Arroz, A. M., Azevedo, J. M. N., Boieiro, M., Borda-de-Água, L., & Gabriel, R. (2018). Global Island Monitoring Scheme (GIMS): A proposal for the long-term coordinated survey and monitoring of native island forest biota. Biodiversity and Conservation, 27, 2567-2586.

Boullis, A., Detrain, C., Francis, F., & Verheggen, F. J. (2016). Will climate change affect insect pheromonal communication? Current Opinion in Insect Science, 17, 87-91.

Bredeson, M. M., & Lundgren, J. G. (2019). Thiamethoxam seed treatments reduce foliar predator and pollinator populations in sunflowers (Helianthus annuus), and extra-floral nectaries as a route of exposure for seed treatments to affect the predator, Coleomegilla maculata (Coleoptera: Coccinellidae). Crop Protection, 106, 86-92.

Bröder, L., Tatin, L., Hochkirch, A., Schuld, A., Pabst, L., & Besnard, A. (2020). Optimization of capture-recapture monitoring of elusive species illustrated with a threatened grasshopper. Conservation Biology, 34, 743-753.

Brown, P. M. J., & Roy, H. E. (2018). Decline in native ladybird species caused by the invasive harlequin ladybird Harmonia axyridis: Evidence from a long-term field study. Insect Conservation & Diversity, 11, 230-239.

Bruno, J. F., & Cardinale, B. J. (2008). Cascading effects of predator richness. Frontiers in Ecology and the Environment, 6, 539-546.

Bush, A., Mokany, K., Catullo, R., Hoffmann, A., Kellermann, V., Sgrò, C., McEvey, S., & Ferrier, S. (2016). Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecology Letters, 19, 1468-1478.

Caballero-López, B., Bommarco, R., Blanco-Moreno, J. M., Sans, F. X., Pujade-Villar, J., Rundlöf, M., & Smith, H. G. (2012). Aphids and their natural enemies are differently affected by habitat features at local and landscape scales. Biological Control, 63, 222-229.

Camacho-Cervantes, M., Ortega-Iturriaga, A., & Del-Val, E. (2017). From effective biocontrol agent to successful invader: the harlequin ladybird (Harmonia axyridis) as an example of good ideas that could go wrong. PeerJ, 16, e3296.

Cardoso, P., Borges, P. A. V., Triantis, K. A., Ferrández, M. A., & Martín, J. L. (2011). Adapting the IUCN Red List criteria for invertebrates. Biological Conservation, 144, 2432-2440.

Cardoso, P., Erwin, T. L., Borges, P. A. V., & New, T. R. (2011). The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation, 144, 2647-265.

Costopoulos, K., Kovacs, J. L., Kamins, A., & Gerardo, N. M. (2014). Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens. BMC Ecology, 14, 5.

Dasgupta, P. (2021). The economics of biodiversity: The Dasgupta review. HM Treasury.

Day, W. H., & Tatman, K. M. (2006). Changes in abundance of native and adventive Coccinellidae (Coleoptera) in alfalfa fields, in northern New Jersey (1993-2004) and Delaware (1999-2004), U.S.A. Entomological News, 117, 491-502.

de Jong, P. W., & Brakefield, P. M. (1998). Climate and change in clines for melanism in the two-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Proceedings of the Royal Society of London, Series B, Biological Sciences, 265, 39-43.

Derocles, S. A. P., Lunt, D. H., Berthe, S. C. F., Nichols, P. C., Moss, E. D., & Evans, D. M. (2018). Climate warming alters the structure of farmland tritrophic ecological networks and reduces crop yield. Molecular Ecology, 27, 4931-4946.

Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., Balvanera, P., Brauman, K. A., Butchart, S. H. M., Chan, K. M. A., Garibaldi, L. A., Ichii, K., Liu, J., Subramanian, S. M., Midgley, G. F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., & Zayas, C. N. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366, eaax3100.

Dixon, A. F., Honek, A., Keil, P., Kotela, M. A. A., Šizling, A. L., & Jarošík, V. (2009). Relationship between the minimum and maximum temperature thresholds for development in insects. Functional Ecology, 23, 257-264.

Dixon, A. F. G., Jarošik, V., & Honek, A. (2005). Thermal requirements for development and resource partitioning in aphidophagous guilds. European Journal of Entomology, 102, 407-411.

Donelson, J. M., Salinas, S., Munday, P. L., & Shama, L. N. S. (2018). Transgenerational plasticity and climate change experiments: Where do we go from here? Global Change Biology, 4, 13-34.

Eggleton, P. (2020). The state of the world's insects. Annual Review of Environment and Resources, 45, 61-82.

Egerer, M., Li, K., & Ong, T. W. Y. (2018). Context matters: Contrasting ladybird beetle responses to urban environments across two US regions. Sustainability, 10, 1829.

Evans, E. W. (2017). Fates of rare species under siege from invasion: Persistence of Coccinella novemnotata Herbst in western North America alongside an invasive congener. Frontiers in Ecology and Evolution, 5, 152.

Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. V., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14, 101-112.

Gardiner, M. M., Landis, D. A., Gratton, C., Schmidt, N., O'Neal, M., Mueller, E., Chacon, J., Heimpel, G. E., & DiFonzo, C. D. (2009). Landscape composition influences patterns of native and exotic lady beetle abundance. Diversity and Distribution, 15, 554-564.

Gardiner, M. M., Allee, L. L., Brown, P. M. J., Losey, J. E., Roy, H. E., & Smyth, R. R. (2012). Lessons from lady beetles: Accuracy of monitoring data from US and UK citizen-science programs. Frontiers in Ecology and the Environment, 10, 471-476.

Gardiner, M. M., Prajzner, S. P., Burkman, C. E., Sandra, A., & Grewal, P. S. (2013). Vacant land conversion to community gardens: Influences on generalist arthropod predators and biocontrol services in urban greenspaces. Urban Ecosystems, 17, 101-122.

Gardiner, M. M., Perry, K. I., Riley, C. B., Turo, K. J., Delgado de la flor, Y. A., & Sivakoff, F. S. (2021). Community science data suggests that urbanization and forest habitat loss threaten aphidophagous native lady beetles. Ecology and Evolution, 11, 2761-2774.

Gardiner, M. M., & Roy, H. E. (2022). The role of community science in entomology. Annual Review of Entomology, 67, 437-456.

Gontijo, L. M. (2019). Engineering natural enemy shelters to enhance conservation biological control in field crops. Biological Control, 130, 155-163.

Gordon, R. D. (1985). The Coccinellidae (Coleoptera) of America North of Mexico. Journal of the New York Entomological Society, 93, 1-912.

Grez, A. A., Rand, T. A., Zaviezo, T., & Castillo-Serey, F. (2013). Land use intensification differentially benefits alien over native predators in agricultural landscape mosaics. Diversity and Distributions, 19, 749-759.

Grez, A. A., Zaviezo, T., Casanoves, F., Oberti, R., & Pliscoff, P. (2021). The positive association between natural vegetation, native coccinellids and functional diversity of aphidophagous coccinellid communities in alfalfa. Insect Conservation and Diversity, 14, 464-475.

Grez, A. A., Zaviezo, T., Gardiner, M. M., & Alaniz, A. J. (2019). Urbanization filters coccinellids composition and functional trait distributions in greenspaces across greater Santiago, Chile. Urban Forestry & Urban Greening, 38, 337-345.

Grez, A. A., Zaviezo, T., Roy, H. E., Brown, P. M. J., & Bizama, G. (2016). Rapid spread of Harmonia axyridis in Chile and its effects on local coccinellid biodiversity. Diversity and Distributions, 22, 982-994.

Groom, Q., Pernat, N., Adriaens, T., de Groot, M., Jelaska, S. D., Marčiulynienė, D., Martinou, A. F., Skuhrovec, J., Tricarico, E., Wit, E. T., & Roy, H. E. (2021). Species interactions: Next level citizen science. Ecography, 44, 1781-1789.

Gutierrez, A. P., Ponti, L., d'Oultremont, T., & Ellis, C. K. (2008). Climate change effects on poikilotherm tritrophic interactions. Climatic Change, 87, 167-192.

Haelewaters, D., Hiller, T., Ceryngier, P., Eschen, R., Gorczak, M., Houston, M. L., Kisło, K., Knapp, M., Landeka, N., Pfliegler, W. P., Zach, P., Aime, M. C., & Nedvěd, O. (2022). Do biotic and abiotic factors influence the prevalence of a common parasite of the invasive alien ladybird Harmonia axyridis? Frontiers in Ecology and Evolution, 10, 773423.

Haelewaters, D., Hiller, T., Kemp, E. A., van Wielink, P. S., Shapiro-Ilan, D. I., Aime, M. C., Nedvěd, O., Pfister, D. H., & Cottrell, T. E. (2020). Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi. PeerJ, 8, e10110.

Haelewaters, D., Zhao, S. Y., Clusella-Trullas, S., Cottrell, T. E., De Kesel, A., Fiedler, L., Herz, A., Hesketh, H., Hui, C., Kleespies, R. G., Losey, J. E., Minnaar, I. A., Murray, K. M., Nedvěd, O., Pfliegler, W. P., Raak-van den Berg, C. L., Riddick, E. W., Shapiro-Ilan, D. I., Smyth, R. R., … Roy, H. E. (2017). Parasites of Harmonia axyridis: Current research and perspectives. BioControl, 62, 355-371.

Harmon, J. P., Moran, N. A., & Ives, A. R. (2009). Species response to environmental change: Impacts of food web interactions and evolution. Science, 323, 1347-1350.

Harvey, J. A., Heinen, R., Klein, A.-M., Armbrecht, I., Basset, Y., Baxter-Gilbert, J. H., Bezemer, M., Böhm, M., Bommarco, R., Borges, P. A. V., Cardoso, P., Clausnitzer, V., Cornelisse, T., Crone, E. E., Goulson, D., Dicke, M., Dijkstra, K.-D. B., Dyer, L., Ellers, J., … de Kroon, H. (2020). International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology & Evolution, 4, 174-176.

Harvey, J. A., Heinen, R., Gols, R., & Thakur, M. P. (2020). Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns. Global Change Biology, 26, 6685-6701.

Hawkins, C. L., Bacher, S., Essl, F., Hulme, P. E., Jeschke, J. M., Kuehn, I., Kumschick, S., Nentwig, W., Pergl, J., Pysek, P., Rabitsch, W., Richardson, D. M., Vila, M., Wilson, J. R. U., Genovesi, P., & Blackburn, T. M. (2015). Framework and guidelines for implementing the proposed IUCN Environmental Impact Classification for Alien Taxa (EICAT). Diversity and Distributions, 21, 1360-1363.

Hiller, T., & Haelewaters, D. (2019). A case of silent invasion: Citizen science confirms the presence of Harmonia axyridis (Coleoptera, Coccinellidae) in Central America. PLoS ONE, 14, e0220082.

Hochkirch, A., Samways, M., Gerlach, J., Bohm, M., Williams, P., Cardoso, P., Cumberlidge, N., Stephenson, P. J., Seddon, M., Clausnitzer, V., Borges, P. A. V., Mueller, G., Pearce-Kelly, P., Raimondo, D. C., Danielczak, A., & Dijkstra, K.-D. (2020). A strategy for the next decade to address data deficiency in neglected biodiversity. Conservation Biology, 35, 502-509.

Hodek, I., van Emden, H. F., & Honek, A. (2012). Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwell.

Holland, J. M., Jeanneret, P., Moonen, A. C., van der Werf, W., Rossing, W. A., Antichi, D., Entling, M. H., Giffard, B., Helsen, H., Szalai, M., & Rega, C. (2020). Approaches to identify the value of seminatural habitats for conservation biological control. Insects, 11, 195.

Honek, A. (2012). Distribution and habitats. In I. Hodek, H. F. van Emden, & A. Honek (Eds.), Ecology and behaviour of the ladybird beetles (Coccinellidae) (pp. 110-139). Wiley-Blackwell.

Honek, A., Dixon, A. F. G., Soares, A. O., Skuhrovec, J., & Martinkova, Z. (2017). Spatial and temporal changes in the abundance and composition of ladybird (Coleoptera: Coccinellidae) communities. Current Opinion in Insect Science, 20, 61-67.

Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L. P., Iosifidis, A., Leese, F., Mann, H. M. R., Meissner, K., Melvad, C., & Raitoharju, J. (2021). Deep learning and computer vision will transform entomology. Proceedings of the National Academy of Sciences of the United States of America, 118, e2002545117.

Hullé, M., d'Acier, A. C., Bankhead-Dronnet, S., & Harrington, R. (2010). Aphids in the face of global changes. Comptes Rendus Biologies, 333, 497-503.

International Union for Conservation of Nature. (2016). A Global Standard for the Identification of Key Biodiversity Areas, Version 1.0. International Union for Conservation of Nature and Natural Resources. https://portals.iucn.org/union/sites/union/files/doc/a_global_standard_for_the_identification_of_key_biodiversity_areas_final_web.pdf

Jouveau, S., Delaunay, M., Vignes-Lebbe, R., & Nattier, R. (2018). A multi-access identification key based on colour patterns in ladybirds (Coleoptera, Coccinellidae). ZooKeys, 758, 55-73.

Iuliano, B., & Gratton, C. (2020). Temporal resource (dis)continuity for conservation biological control: From field to landscape scales. Frontiers in Sustainable Food Systems, 4, 127.

Kindlmann, P., Ameixa, O. M. C. C., & Dixon, A. F. G. (2011). Ecological effects of invasive alien species on native communities, with particular emphasis on the interactions between aphids and ladybirds. BioControl, 56, 469-476.

Kovář, I. (2007). Coccinellidae. In I. Löbl & A. Smetana (Eds.), Catalogue of Palaearctic Coleoptera. Volume 4. Elateroidea, Derodontoidea, Bostrichoidea, Lymexyloidea, Cleroidea, and Cucujoidea (pp. 568-632). Apollo Books.

Landis, D. A., Wratten, S. D., & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175-201.

Li, H., Li, B., Lovei, G. L., Kring, T. J., & Obrycki, J. J. (2021). Interactions among native and non-native predatory Coccinellidae influence biological control and biodiversity. Annals of the Entomological Society of America, 114, 119-136.

Lichtenberg, E. M., Kennedy, C. M., Kremen, C., Batáry, P., Berendse, F., Bommarco, R., Bosque-Pérez, N. A., Carvalheiro, L. G., Snyder, W. E., Williams, N. M., Winfree, R., Klatt, B. K., Åström, S., Benjamin, F., Brittain, C., Chaplin-Kramer, R., Clough, Y., Danforth, B., Diekötter, T., … Crowder, D. M. (2017). A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 23, 4946-4957.

Losey, J. E., Allee, L., & Smyth, R. (2012). The Lost Ladybug Project: Citizen spotting surpasses scientist's surveys. American Entomologist, 58, 22-24.

Mammola, S., Riccardi, N., Prié, V., Correia, R., Cardoso, P., Lopes-Lima, M., & Sousa, R. (2020). Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proceedings of the Royal Society B: Biological Sciences, 287, 20202166.

Michaud, J. P. (2000). Development and reproduction of lady beetles (Coleoptera: Coccinellidae) on the citrus aphids Aphis spiraecola Patch and Toxoptera citricida (Kirkaldy) (Homoptera: Aphididae). Biological Control, 18, 287-297.

Michaud, J. P. (2002). Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environmental Entomology, 31, 827-835.

Michaud, J. P. (2018). Challenges to the conservation biological control of agricultural pests on the High Plains: One hundred years of evolutionary rescue. Biological Control, 125, 65-73.

Michie, L. J., Masson, A., Ware, R. L., & Jiggins, F. M. (2011). Seasonal phenotypic plasticity: Wild ladybirds are darker at cold temperatures. Evolutionary Ecology, 25, 1259-1268.

Montgomery, G. A., Belitz, M. W., Guralnick, R. P., & Tingley, M. W. (2021). Standards and best practices for monitoring and benchmarking insects. Frontiers in Ecology and Evolution, 8, 579193.

Moscardini, V. F., Gontijo, P. C., Michaud, J. P., & Carvalho, G. A. (2015). Sublethal effects of two sunflower seed treatments on two nearctic lady beetles. Ecotoxicology, 24, 1152-1161.

Muñoz, A. E., Amouroux, P., & Zaviezo, T. (2021). Native flowering shrubs promote beneficial insects in avocado orchards. Agricultural and Forest Entomology, 23, 463-472.

Ma, C. S., Ma, G., & Pincebourde, S. (2021). Survive a warming climate: Insect responses to extreme high temperatures. Annual Review of Entomology, 66, 163-184.

Palmer, J. R. B., Oltra, A., Collantes, F., Delgado, J. A., Lucientes, J., Delacour, S., Bengoa, M., Eritja, R., & Bartumeus, F. (2017). Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nature Communications, 8, 916.

Pfliegler, W. P., Báthori, F., Wang, T. W., Tartally, A., & Haelewaters, D. (2018). Herpomyces ectoparasitic fungi (Ascomycota, Laboulbeniales) are globally distributed by their invasive cockroach hosts and through the pet trade industry. Mycologia, 110, 39-46.

Porter, W. T., Motyka, P. J., Wachara, J., Barrand, Z. A., Hmood, Z., McLaughlin, M., Pemberton, K., & Nieto, N. C. (2019). Citizen science informs human-tick exposure in the Northeastern United States. International Journal of Health Geographics, 18, 9.

Potts, S., Dauber, J., Hochkirch, A., Oteman, B., Roy, D., Ahnre, K., Biesmeijer, K., Breeze, T., Carvell, C., Ferreira, C., Fitzpatrick, Ú., Isaac, N., Kuussaari, M., Ljubomirov, T., Maes, J., Ngo, H., Pardo, A., Polce, C., Quaranta, M., … Vujic, A. (2020). Proposal for an EU pollinator monitoring scheme (EUR 30416 EN). Publications Office of the European Union. https://doi.org/10.2760/881843

Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft, L. C., Genovesi, P., Jeschke, J. M., Kühn, I., Liebhold, A. M., Mandrak, N. E., Meyerson, L. A., Pauchard, A., Pergl, J., Roy, H. E., Seebens, H., … Richardson, D. M. (2020). Scientists’ warning on invasive alien species. Biological Review, 95, 1511-1534.

Radwan, Z., & Lövei, G. L. (1983). Structure and seasonal dynamics of larval, pupal, and adult coccinellid (Col., Coccinellidae) assemblages in two types of maize fields in Hungary. Zeitschrift für Angewandte Entomologie, 95, 396-408.

Roy, H. E., Brown, P. M. J., Adriaens, T., Berkvens, N., Borges, I., Clusella-Trullas, S., Comont, R. F., de Clercq, P., Eschen, P., Estoup, A., Evans, E. W., Facon, B., Gardiner, M. M., Gil, A., Grez, A. A., Guillemaud, T., Haelewaters, D., Herz, A., Honek, A., … Zhao, Z. (2016). The harlequin ladybird, Harmonia axyridis: Global perspectives on invasion history and ecology. Biological Invasions, 18, 997-1044.

Roy, H., & Migeon, A. (2010). Ladybeetles (Coccinellidae). BioRisk, 4, 293-313.

Roy, H. E., Rabitsch, W., Scalera, R., Stewart, A., Gallardo, B., Genovesi, P., Essl, F., Adriaens, T., Bacher, S., Booy, O., Branquart, E., Brunel, S., Copp, G. H., Dean, H., D'hondt, B., Josefsson, M., Kenis, M., Kettunen, M., & Zenetos, A. (2018). Developing a framework of minimum standards for the risk assessment of alien species. Journal of Applied Ecology, 55, 526-538.

Roy, H. E., Peyton, J. M., & Booy, O. (2020). Guiding principles for utilizing social influence within expert-elicitation to inform conservation decision-making. Global Change Biology, 26, 3181-3184.

Sakuratani, Y., Marsumoto, Y., Oka, M., Kubo, T., Fuji, A., Uotani, M., & Teraguchi, T. (2000). Life history of Adalia bipunctata (Coleoptera: Coccinellidae) in Japan. European Journal of Entomology, 97, 555-558.

Saunders, M. E., Janes, J. K., & O'Hanlon, J. C. (2020). Semantics of the insect decline narrative: Recommendations for communicating insect conservation to peer and public audiences. Insect Conservation and Diversity, 13, 211-213.

Samways, M. J., Barton, P. S., Birkhofer, K., Chichorro, F., Deacon, C., Fartmann, T., Fukushima, C. S., Gaigher, R., Habel, J. C., Hallmann, C. A., Hill, M. J., Hochkirch, A., Kaila, L., Kwak, M. L., Maes, D., Mammola, S., Noriega, J. A., Orfinger, A. B., Pedraza, F., … Cardoso, P. (2020). Solutions for humanity on how to conserve insects. Biological Conservation, 242, 108427.

Schmitz, O. J., & Barton, B. T. (2014). Climate change effects on behavioral and physiological ecology of predator-prey interactions: Implications for conservation biological control. Biological Control, 75, 87-96.

Seebens, H., Blackburn, T., Dyer, E., Genovesi, P., Hulme, P. E., Jeschke, J. M., Pagad, S., Pyšek, P., Winter, M., Arianoutsou, M., Bacher, S., Blasius, B., Brundu, G., Capinha, C., Celesti-Grapow, L., Dawson, W., Dullinger, S., Fuentes, N., Jäger, H., … Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435.

Sentis, A., Hemptinne, J. L., & Brodeur, J. (2012). Using functional response modelling to investigate the effect of temperature on predator feeding rate and energetic efficiency. Oecologia, 169, 1117-1125.

Sentis, A., Hemptinne, J. L., & Brodeur, J. (2013). Effects of simulated heat waves on an experimental plant-herbivore-predator food chain. Global Change Biology, 19, 833-842.

Sentis, A., Hemptinne, J. L., & Brodeur, J. (2014). Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure. Ecology Letters, 17, 785-793.

Sentis, A., Morisson, J., & Boukal, D. S. (2015). Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics. Global Change Biology, 21, 3290-3298.

Sentis, A., Ramon-Portugal, F., Brodeur, J., & Hemptinne, J. L. (2015). The smell of change: Warming affects species interactions mediated by chemical information. Global Change Biology, 21, 3586-3594.

Sequeira, A. M., Roetman, P. E., Daniels, C. B., Baker, A. K., & Bradshaw, C. J. (2014). Distribution models for koalas in South Australia using citizen science-collected data. Ecology and Evolution, 4, 2103-2114.

Skirvin, D. J., Perry, J. N., & Harrington, R. (1997). The effect of climate change on an aphid-coccinellid interaction. Global Change Biology, 3, 1-11.

Skuhrovec, J., Roy, H. E., Brown, P. M. J., Kazlauskis, K., Inghilesi, A. F., Soares, A. O., Adriaens, T., Roy, D. B., Nedvĕd, O., Zach, P., Viglášová, S., Kulfan, J. A., Honek, A., & Martinkova, Z. (2021). Development of the European ladybirds smartphone application: A tool for citizen science. Frontiers in Ecology and Evolution, 9, 741854.

Sloggett, J. J. (2005). Are we studying too few taxa? Insights from aphidophagous ladybird beetles (Coleoptera: Coccinellidae). European Journal of Entomology, 102, 391-398.

Sloggett, J. J. (2017). Harmonia axyridis (Coleoptera: Coccinellidae) smelling the rat in native ladybird declines. European Journal of Entomology, 114, 455-461.

Sloggett, J. J., & Majerus, M. E. N. (2000). Habitat preferences and diet in the predatory Coccinellidae (Coleoptera): An evolutionary perspective. Biological Journal of the Linnean Society, 70, 63-88.

Sloggett, J. J., & Zeilstra, I. (2020). Geographic variation in the habitat preference of a scarce predatory insect: Evolutionary and conservation perspectives. Ecological Entomology, 45, 386-395.

Soares, A. O., Coderre, D., & Schanderl, H. (2003). Effect of temperature and intraspecific allometry on predation by two phenotypes of Harmonia axyridis Pallas (Coleoptera: Coccinellidae). Environmental Entomology, 32, 939-944.

Soares, A. O., Honek, A., Martinkova, Z., Brown, P. M. J., & Borges, I. (2018). Can native geographical range, dispersal ability and development rates predict the successful establishment of alien ladybird (Coleoptera: Coccinellidae) species in Europe? Frontiers in Ecology and Evolution, 6, 57.

Stuart, S. N., Wilson, E. O., McNeely, J. A., Mittermeier, R. A., & Rodríguez, J. P. (2010). The barometer of life. Science, 328, 177.

Susset, E. C., Magro, A., & Hemptinne, J. L. (2017). Using species distribution models to locate animal aggregations: A case study with Hippodamia undecimnotata (Schneider) overwintering aggregation sites. Ecological Entomology, 42, 345-354.

Takahashi, K., & Naito, A. (1984). Seasonal occurrence of aphids and their predators (Col., Coccinellidae) in alfalfa fields. Bulletin of the National Grassland Research Institute, 29, 62-66.

Tomaszewska, W., Escalona, H. E., Hartley, D., Li, J. H., Wang, X. M., Li, H. S., Pang, H., Slipinski, A., & Zwick, A. (2021). Phylogeny of true ladybird beetles (Coccinellidae: Coccinellini) reveals pervasive convergent evolution and a rapid Cenozoic radiation. Systematic Entomology, 46, 611-631.

Trumble, J., & Butler, C. (2009). Climate change will exacerbate California's insect pest problems. California Agriculture, 63, 73-78.

van Klink, R., Bowler, D. E., Gongalsky, K. B., Swengel, A. B., Gentile, A., & Chase, J. M. (2020). Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science, 368, 417-420.

van Lenteren, J. C., Babendreier, D., Bigler, F., Burgio, G., Hokkanen, H. M. T., Kuske, S., Loomans, A. J. M., Menzler-Hokkanen, I., van Rijn, P. C. J., Thomas, M. B., Tommasini, M. G., & Zeng, Q.-Q. (2003). Environmental risk assessment of exotic natural enemies used in inundative biological control. BioControl, 48, 3-38.

Vanderhoeven, S., Branquart, E., Casaer, J., D'hondt, B., Hulme, P. E., Shwartz, A., Strubbe, D., Turbé, A., Verreycken, H., & Adriaens, T. (2017). Beyond protocols: Improving the reliability of expert-based risk analysis underpinning invasive species policies. Biological Invasions, 19, 2507-2517.

Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G., McCann, K. S., Savage, V., Tunney, T. D., & O'Connor, M. I. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 281, 20132612.

Venegas, P., Calderon, F., Riofrío, D., Benítez, D., Ramón, G., Cisneros-Heredia, D., Coimbra, M., Rojo-Álvarez, J. L., & Pérez, N. (2021). Automatic ladybird beetle detection using deep-learning models. PLoS ONE, 16, e0253027.

Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R., & Stopak, D. (2021). Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences of the United States of America, 118, e2023989118.

Woltz, J. M., & Landis, D. A. (2014). Coccinellid response to landscape composition and configuration. Agricultural and Forest Entomology, 16, 341-349.

Zaviezo, T., Grez, A. A., Miall, J. H., & Mason, P. G. (2021). Conservation biological control. In P. G. Mason (Ed.), Biological control: Global impacts, challenges and future directions of pest management (pp. 37-66). CSIRO Publishing.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Standard deviation: Standardized bat monitoring techniques work better in some ecosystems

. 2024 ; 19 (12) : e0311553. [epub] 20241212

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...