Enhanced Antiproliferative Effect of Combined Treatment with Calcitriol and All-Trans Retinoic Acid in Relation to Vitamin D Receptor and Retinoic Acid Receptor α Expression in Osteosarcoma Cell Lines
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1413
Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1605
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32916897
PubMed Central
PMC7554701
DOI
10.3390/ijms21186591
PII: ijms21186591
Knihovny.cz E-zdroje
- Klíčová slova
- all-trans retinoic acid, calcidiol, calcitriol, osteosarcoma, retinoic acid receptor α, vitamin D receptor,
- MeSH
- alfa receptor kyseliny retinové metabolismus MeSH
- kalcifediol aplikace a dávkování MeSH
- kalcitriol aplikace a dávkování MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- osteosarkom farmakoterapie metabolismus MeSH
- protinádorové látky aplikace a dávkování MeSH
- protokoly protinádorové kombinované chemoterapie MeSH
- receptory kalcitriolu metabolismus MeSH
- screeningové testy protinádorových léčiv MeSH
- tretinoin aplikace a dávkování MeSH
- vitaminy aplikace a dávkování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alfa receptor kyseliny retinové MeSH
- kalcifediol MeSH
- kalcitriol MeSH
- protinádorové látky MeSH
- receptory kalcitriolu MeSH
- tretinoin MeSH
- vitaminy MeSH
The main objective of this study was to analyze changes in the antiproliferative effect of vitamin D3, in the form of calcitriol and calcidiol, via its combined application with all-trans retinoic acid (ATRA) in osteosarcoma cell lines. The response to treatment with calcitriol and calcidiol alone was specific for each cell line. Nevertheless, we observed an enhanced effect of combined treatment with ATRA and calcitriol in the majority of the cell lines. Although the levels of respective nuclear receptors did not correlate with the sensitivity of cells to these drugs, vitamin D receptor (VDR) upregulation induced by ATRA was found in cell lines that were the most sensitive to the combined treatment. In addition, all these cell lines showed high endogenous levels of retinoic acid receptor α (RARα). Our study confirmed that the combination of calcitriol and ATRA can achieve enhanced antiproliferative effects in human osteosarcoma cell lines in vitro. Moreover, we provide the first evidence that ATRA is able to upregulate VDR expression in human osteosarcoma cells. According to our results, the endogenous levels of RARα and VDR could be used as a predictor of possible synergy between ATRA and calcitriol in osteosarcoma cells.
Zobrazit více v PubMed
Durfee R.A., Mohammed M., Luu H.H. Review of Osteosarcoma and Current Management. Rheumatol. Ther. 2016;3:221–243. doi: 10.1007/s40744-016-0046-y. PubMed DOI PMC
Damron T.A., Ward W.G., Stewart A. Osteosarcoma, Chondrosarcoma, and Ewing’s Sarcoma: National Cancer Data Base Report. Clin. Orthop. Relat. Res. 2007;459:40–47. doi: 10.1097/BLO.0b013e318059b8c9. PubMed DOI
Weiss A., Gill J., Goldberg J., Lagmay J., Spraker-Perlman H., Venkatramani R., Reed D. Advances in Therapy for Pediatric Sarcomas. Curr. Oncol. Rep. 2014;16:395. doi: 10.1007/s11912-014-0395-z. PubMed DOI
Hayashi K., Tsuchiya H., Yamamoto N., Shirai T., Nishida H., Takeuchi A., Kimura H., Miwa S., Inatani H., Okamoto H., et al. Diagnosis and treatment of low-grade osteosarcoma: Experience with nine cases. Int. J. Clin. Oncol. 2014;19:731–738. doi: 10.1007/s10147-013-0592-z. PubMed DOI
Hundsdoerfer P., Albrecht M., Rühl U., Fengler R., Kulozik A.E., Henze G. Long-term outcome after polychemotherapy and intensive local radiation therapy of high-grade osteosarcoma. Eur. J. Cancer. 2009;45:2447–2451. doi: 10.1016/j.ejca.2009.06.006. PubMed DOI
Eilber F.R., Rosen G. Adjuvant chemotherapy for osteosarcoma. Semin. Oncol. 1989;16:312–322. PubMed
Ferrari S., Smeland S., Mercuri M., Bertoni F., Longhi A., Ruggieri P., Alvegard T.A., Picci P., Capanna R., Bernini G., et al. Neoadjuvant chemotherapy with high-dose Ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: A joint study by the Italian and Scandinavian Sarcoma Groups. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005;23:8845–8852. doi: 10.1200/JCO.2004.00.5785. PubMed DOI
Yu D., Zhang S., Feng A., Xu D., Zhu Q., Mao Y., Zhao Y., Lv Y., Han C., Liu R., et al. Methotrexate, doxorubicin, and cisplatinum regimen is still the preferred option for osteosarcoma chemotherapy: A meta-analysis and clinical observation. Medicine. 2019;98:e15582. doi: 10.1097/MD.0000000000015582. PubMed DOI PMC
Allison D.C., Carney S.C., Ahlmann E.R., Hendifar A., Chawla S., Fedenko A., Angeles C., Menendez L.R. A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma. 2012;2012:704872. doi: 10.1155/2012/704872. PubMed DOI PMC
Bielack S.S., Smeland S., Whelan J.S., Marina N., Jovic G., Hook J.M., Krailo M.D., Gebhardt M., Pápai Z., Meyer J., et al. Methotrexate, Doxorubicin, and Cisplatin (MAP) Plus Maintenance Pegylated Interferon Alfa-2b Versus MAP Alone in Patients With Resectable High-Grade Osteosarcoma and Good Histologic Response to Preoperative MAP: First Results of the EURAMOS-1 Good Response Randomized Controlled Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015;33:2279–2287. doi: 10.1200/JCO.2014.60.0734. PubMed DOI PMC
Lewis I.J., Nooij M.A., Whelan J., Sydes M.R., Grimer R., Hogendoorn P.C.W., Memon M.A., Weeden S., Uscinska B.M., van Glabbeke M., et al. Improvement in histologic response but not survival in osteosarcoma patients treated with intensified chemotherapy: A randomized phase III trial of the European Osteosarcoma Intergroup. J. Natl. Cancer Inst. 2007;99:112–128. doi: 10.1093/jnci/djk015. PubMed DOI
Marina N.M., Smeland S., Bielack S.S., Bernstein M., Jovic G., Krailo M.D., Hook J.M., Arndt C., van den Berg H., Brennan B., et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): An open-label, international, randomised controlled trial. Lancet Oncol. 2016;17:1396–1408. doi: 10.1016/S1470-2045(16)30214-5. PubMed DOI PMC
Nowak D., Stewart D., Koeffler H.P. Differentiation therapy of leukemia: 3 decades of development. Blood. 2009;113:3655–3665. doi: 10.1182/blood-2009-01-198911. PubMed DOI PMC
Enane F.O., Saunthararajah Y., Korc M. Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death Dis. 2018;9:912. doi: 10.1038/s41419-018-0919-9. PubMed DOI PMC
Sakashita A., Kizaki M., Pakkala S., Schiller G., Tsuruoka N., Tomosaki R., Cameron J.F., Dawson M.I., Koeffler H.P. 9-cis-retinoic acid: Effects on normal and leukemic hematopoiesis in vitro. Blood. 1993;81:1009–1016. doi: 10.1182/blood.V81.4.1009.1009. PubMed DOI
Khan A.A., Villablanca J.G., Reynolds C.P., Avramis V.I. Pharmacokinetic studies of 13-cis-retinoic acid in pediatric patients with neuroblastoma following bone marrow transplantation. Cancer Chemother. Pharmacol. 1996;39:34–41. doi: 10.1007/s002800050535. PubMed DOI
Van heusden J., Wouters W., Ramaekers F.C., Krekels M.D., Dillen L., Borgers M., Smets G. All-trans-retinoic acid metabolites significantly inhibit the proliferation of MCF-7 human breast cancer cells in vitro. Br. J. Cancer. 1998;77:26–32. doi: 10.1038/bjc.1998.5. PubMed DOI PMC
Reynolds C.P. Differentiating agents in pediatric malignancies: Retinoids in neuroblastoma. Curr. Oncol. Rep. 2000;2:511–518. doi: 10.1007/s11912-000-0104-y. PubMed DOI
Iskakova M., Karbyshev M., Piskunov A., Rochette-Egly C. Nuclear and extranuclear effects of vitamin A. Can. J. Physiol. Pharmacol. 2015;93:1065–1075. doi: 10.1139/cjpp-2014-0522. PubMed DOI
Patatanian E., Thompson D.F. Retinoic acid syndrome: A review. J. Clin. Pharm. Ther. 2008;33:331–338. doi: 10.1111/j.1365-2710.2008.00935.x. PubMed DOI
Schultze E., Collares T., Lucas C.G., Seixas F.K. Synergistic and additive effects of ATRA in combination with different anti-tumor compounds. Chem. Biol. Interact. 2018;285:69–75. doi: 10.1016/j.cbi.2018.02.021. PubMed DOI
Chlapek P., Redova M., Zitterbart K., Hermanova M., Sterba J., Veselska R. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: An expression profiling study. J. Exp. Clin. Cancer Res. 2010;29:45. doi: 10.1186/1756-9966-29-45. PubMed DOI PMC
Chlapek P., Neradil J., Redova M., Zitterbart K., Sterba J., Veselska R. The ATRA-induced differentiation of medulloblastoma cells is enhanced with LOX/COX inhibitors: An analysis of gene expression. Cancer Cell Int. 2014;14:51. doi: 10.1186/1475-2867-14-51. PubMed DOI PMC
Redova M., Chlapek P., Loja T., Zitterbart K., Hermanova M., Sterba J., Veselska R. Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines. Int. J. Mol. Med. 2010;25:271–280. doi: 10.3892/ijmm_00000341. PubMed DOI
Krzyzankova M., Chovanova S., Chlapek P., Radsetoulal M., Neradil J., Zitterbart K., Sterba J., Veselska R. LOX/COX inhibitors enhance the antineoplastic effects of all-trans retinoic acid in osteosarcoma cell lines. Tumor Biol. 2014;35:7617–7627. doi: 10.1007/s13277-014-2019-5. PubMed DOI
Satake K., Takagi E., Ishii A., Kato Y., Imagawa Y., Kimura Y., Tsukuda M. Anti-tumor effect of vitamin A and D on head and neck squamous cell carcinoma. Auris. Nasus. Larynx. 2003;30:403–412. doi: 10.1016/S0385-8146(03)00091-9. PubMed DOI
Elmaci I., Ozpinar A., Ozpinar A., Perez J.L., Altinoz M.A. From epidemiology and neurometabolism to treatment: Vitamin D in pathogenesis of glioblastoma Multiforme (GBM) and a proposal for Vitamin D + all-trans retinoic acid + Temozolomide combination in treatment of GBM. Metab. Brain Dis. 2019;34:687–704. doi: 10.1007/s11011-019-00412-5. PubMed DOI
Peehl D.M., Feldman D. Interaction of nuclear receptor ligands with the Vitamin D signaling pathway in prostate cancer. J. Steroid Biochem. Mol. Biol. 2004;92:307–315. doi: 10.1016/j.jsbmb.2004.10.006. PubMed DOI
Jeon S.-M., Shin E.-A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med. 2018;50:20. doi: 10.1038/s12276-018-0038-9. PubMed DOI PMC
Montenegro K.R., Cruzat V., Carlessi R., Newsholme P. Mechanisms of vitamin D action in skeletal muscle. Nutr. Res. Rev. 2019;32:192–204. doi: 10.1017/S0954422419000064. PubMed DOI
Norman A.W. Sunlight, season, skin pigmentation, vitamin D, and 25-hydroxyvitamin D: Integral components of the vitamin D endocrine system. Am. J. Clin. Nutr. 1998;67:1108–1110. doi: 10.1093/ajcn/67.6.1108. PubMed DOI
Carlberg C., Seuter S. A genomic perspective on vitamin D signaling. Anticancer Res. 2009;29:3485–3493. PubMed
Keum N., Lee D.H., Greenwood D.C., Manson J.E., Giovannucci E. Vitamin D supplementation and total cancer incidence and mortality: A meta-analysis of randomized controlled trials. Ann. Oncol. 2019;30:733–743. doi: 10.1093/annonc/mdz059. PubMed DOI PMC
Lee J.E., Li H., Chan A.T., Hollis B.W., Lee I.-M., Stampfer M.J., Wu K., Giovannucci E., Ma J. Circulating Levels of Vitamin D and Colon and Rectal Cancer: The Physicians’ Health Study and a Meta-analysis of Prospective Studies. Cancer Prev. Res. 2011;4:735–743. doi: 10.1158/1940-6207.CAPR-10-0289. PubMed DOI PMC
Deschasaux M., Souberbielle J.-C., Latino-Martel P., Sutton A., Charnaux N., Druesne-Pecollo N., Galan P., Hercberg S., Clerc S.L., Kesse-Guyot E., et al. A prospective study of plasma 25-hydroxyvitamin D concentration and prostate cancer risk. Br. J. Nutr. 2016;115:305–314. doi: 10.1017/S0007114515004353. PubMed DOI
Chlebowski R.T., Johnson K.C., Kooperberg C., Pettinger M., Wactawski-Wende J., Rohan T., Rossouw J., Lane D., O’Sullivan M.J., Yasmeen S., et al. Calcium Plus Vitamin D Supplementation and the Risk of Breast Cancer. JNCI J. Natl. Cancer Inst. 2008;100:1581–1591. doi: 10.1093/jnci/djn360. PubMed DOI PMC
De Smedt J., Van Kelst S., Boecxstaens V., Stas M., Bogaerts K., Vanderschueren D., Aura C., Vandenberghe K., Lambrechts D., Wolter P., et al. Vitamin D supplementation in cutaneous malignant melanoma outcome (ViDMe): A randomized controlled trial. BMC Cancer. 2017;17:562. doi: 10.1186/s12885-017-3538-4. PubMed DOI PMC
Tokuumi Y. Correlation between the concentration of 1, 25 alpha dihydroxyvitamin D3 receptors and growth inhibition, and differentiation of human osteosarcoma cells induced by vitamin D3. Nihon Seikeigeka Gakkai Zasshi. 1995;69:181–190. PubMed
Auken M.V., Buckley D., Ray R., Holick M.F., Baran D.T. Effects of the vitamin D3 analog 1α, 25-dihydroxyvitamin D3-3β-bromoacetate on rat osteosarcoma cells: Comparison with 1α, 25-dihydroxyvitamin D3. J. Cell. Biochem. 1996;63:302–310. doi: 10.1002/(SICI)1097-4644(19961201)63:3<302::AID-JCB5>3.0.CO;2-0. PubMed DOI
Thompson L., Wang S., Tawfik O., Templeton K., Tancabelic J., Pinson D., Anderson H.C., Keighley J., Garimella R. Effect of 25-hydroxyvitamin D3 and 1α, 25 dihydroxyvitamin D3 on differentiation and apoptosis of human osteosarcoma cell lines. J. Orthop. Res. 2012;30:831–844. doi: 10.1002/jor.21585. PubMed DOI
Shimizu T., Kamel W.A., Yamaguchi-Iwai S., Fukuchi Y., Muto A., Saya H. Calcitriol exerts an anti-tumor effect in osteosarcoma by inducing the endoplasmic reticulum stress response. Cancer Sci. 2017;108:1793–1802. doi: 10.1111/cas.13304. PubMed DOI PMC
Garimella R., Tadikonda P., Tawfik O., Gunewardena S., Rowe P., Van Veldhuizen P. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells. Int. J. Mol. Sci. 2017;18:642. doi: 10.3390/ijms18030642. PubMed DOI PMC
Engel N., Adamus A., Schauer N., Kühn J., Nebe B., Seitz G., Kraft K. Synergistic Action of Genistein and Calcitriol in Immature Osteosarcoma MG-63 Cells by SGPL1 Up-Regulation. PLoS ONE. 2017;12:e0169742. doi: 10.1371/journal.pone.0169742. PubMed DOI PMC
Wu X., Hu W., Lu L., Zhao Y., Zhou Y., Xiao Z., Zhang L., Zhang H., Li X., Li W., et al. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm. Sin. B. 2019;9:203–219. doi: 10.1016/j.apsb.2018.09.002. PubMed DOI PMC
Saggese G., Federico G., Cinquanta L. In vitro effects of growth hormone and other hormones on chondrocytes and osteoblast-like cells. Acta Paediatr. 1993;82:54–59. doi: 10.1111/j.1651-2227.1993.tb12930.x. PubMed DOI
Wu W., Zhang X., Zanello L.P. 1α, 25-Dihydroxyvitamin D3 antiproliferative actions involve vitamin D receptor-mediated activation of MAPK pathways and AP-1/p21waf1 upregulation in human osteosarcoma. Cancer Lett. 2007;254:75–86. doi: 10.1016/j.canlet.2007.02.013. PubMed DOI PMC
Skoda J., Nunukova A., Loja T., Zambo I., Neradil J., Mudry P., Zitterbart K., Hermanova M., Hampl A., Sterba J., et al. Cancer stem cell markers in pediatric sarcomas: Sox2 is associated with tumorigenicity in immunodeficient mice. Tumor Biol. 2016;37:9535–9548. doi: 10.1007/s13277-016-4837-0. PubMed DOI
Al Tanoury Z., Piskunov A., Rochette-Egly C. Vitamin A and retinoid signaling: Genomic and nongenomic effects. J. Lipid Res. 2013;54:1761–1775. doi: 10.1194/jlr.R030833. PubMed DOI PMC
Bover J., Egido J., Fernández-Giráldez E., Praga M., Solozábal-Campos C., Torregrosa J.V., Martínez-Castelao A. Vitamin D, vitamin D receptor and the importance of its activation in patients with chronic kidney disease. Nefrol. Pub. Off. Soc. Espanola Nefrol. 2015;35:28–41. doi: 10.3265/Nefrologia.pre2014.Sep.11796. PubMed DOI
Petkovich P.M., Heersche J.N., Tinker D.O., Jones G. Retinoic acid stimulates 1, 25-dihydroxyvitamin D3 binding in rat osteosarcoma cells. J. Biol. Chem. 1984;259:8274–8280. PubMed
Petkovich P.M., Heersche J.N., Aubin J.E., Grigoriadis A.E., Jones G. Retinoic acid-induced changes in 1 alpha, 25-dihydroxyvitamin D3 receptor levels in tumor and nontumor cells derived from rat bone. J. Natl. Cancer Inst. 1987;78:265–270. PubMed
Lee K.-L., Petkovich P.M., Heersche J.N.M. The Effects of Sodium Butyrate on the Retinoic Acid-Induced Changes in 1, 25-Dihydroxyvitamin D3 Receptors in Tumorigenic and Nontumorigenic Bone Derived Cell Lines. Endocrinology. 1988;122:2399–2406. doi: 10.1210/endo-122-6-2399. PubMed DOI
Suzuki S., Koga M., Takaoka K., Ono K., Sato B. Effects of retinoic acid on steroid and vitamin D3 receptors in cultured mouse osteosarcoma cells. Bone. 1993;14:7–12. doi: 10.1016/8756-3282(93)90249-A. PubMed DOI
Nakajima H., Kizaki M., Ueno H., Muto A., Takayama N., Matsushita H., Sonoda A., Ikeda Y. All-trans and 9-cis retinoic acid enhance 1, 25-dihydroxyvitamin D3-induced monocytic differentiation of U937 cells. Leuk. Res. 1996;20:665–676. doi: 10.1016/0145-2126(96)00020-3. PubMed DOI
Folgueira M.A.A.K., Federico M.H.H., Katayama M.L.H., Silva M.R.P., Brentani M.M. Expression of vitamin D receptor (VDR) in HL-60 cells is differentially regulated during the process of differentiation induced by phorbol ester, retinoic acid or interferon-γ. J. Steroid Biochem. Mol. Biol. 1998;66:193–201. doi: 10.1016/S0960-0760(98)00041-7. PubMed DOI
Gocek E., Marchwicka A., Baurska H., Chrobak A., Marcinkowska E. Opposite regulation of vitamin D receptor by ATRA in AML cells susceptible and resistant to vitamin D-induced differentiation. J. Steroid Biochem. Mol. Biol. 2012;132:220–226. doi: 10.1016/j.jsbmb.2012.07.001. PubMed DOI
Marchwicka A., Cebrat M., Łaszkiewicz A., Śnieżewski Ł., Brown G., Marcinkowska E. Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells. J. Steroid Biochem. Mol. Biol. 2016;159:121–130. doi: 10.1016/j.jsbmb.2016.03.013. PubMed DOI
Janik S., Nowak U., Łaszkiewicz A., Satyr A., Majkowski M., Marchwicka A., Śnieżewski Ł., Berkowska K., Gabryś M., Cebrat M., et al. Diverse Regulation of Vitamin D Receptor Gene Expression by 1, 25-Dihydroxyvitamin D and ATRA in Murine and Human Blood Cells at Early Stages of Their Differentiation. Int. J. Mol. Sci. 2017;18:1323. doi: 10.3390/ijms18061323. PubMed DOI PMC
Uchida H., Hasegawa Y., Takahashi H., Makishima M. 1α-Dihydroxyvitamin D3 and Retinoic Acid Increase Nuclear Vitamin D Receptor Expression in Monocytic THP-1 Cells. Anticancer Res. 2016;36:6297–6301. doi: 10.21873/anticanres.11225. PubMed DOI
Miyamoto K., Kesterson R.A., Yamamoto H., Taketani Y., Nishiwaki E., Tatsumi S., Inoue Y., Morita K., Takeda E., Pike J.W. Structural Organization of the Human Vitamin D Receptor Chromosomal Gene and Its Promoter. Mol. Endocrinol. 1997;11:1165–1179. doi: 10.1210/mend.11.8.9951. PubMed DOI
Chen H., Hu B., Allegretto E.A., Adams J.S. The Vitamin D Response Element-binding Protein a Novel Dominant-negative Regulator of Vitamin D-directed Transactivation. J. Biol. Chem. 2000;275:35557–35564. doi: 10.1074/jbc.M007117200. PubMed DOI
Veselska R., Kuglik P., Cejpek P., Svachova H., Neradil J., Loja T., Relichova J. Nestin expression in the cell lines derived from glioblastoma multiforme. BMC Cancer. 2006;6:32. doi: 10.1186/1471-2407-6-32. PubMed DOI PMC
Sramek M., Neradil J., Sterba J., Veselska R. Non-DHFR-mediated effects of methotrexate in osteosarcoma cell lines: Epigenetic alterations and enhanced cell differentiation. Cancer Cell Int. 2016;16:14. doi: 10.1186/s12935-016-0289-2. PubMed DOI PMC
Veselska R., Hermanova M., Loja T., Chlapek P., Zambo I., Vesely K., Zitterbart K., Sterba J. Nestin expression in osteosarcomas and derivation of nestin/CD133 positive osteosarcoma cell lines. BMC Cancer. 2008;8:300. doi: 10.1186/1471-2407-8-300. PubMed DOI PMC
Zhao W., Sachsenmeier K., Zhang L., Sult E., Hollingsworth R.E., Yang H. A New Bliss Independence Model to Analyze Drug Combination Data. J. Biomol. Screen. 2014;19:817–821. doi: 10.1177/1087057114521867. PubMed DOI