Convergent evolution and horizontal gene transfer in Arctic Ocean microalgae
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
36522135
PubMed Central
PMC9756366
DOI
10.26508/lsa.202201833
PII: 6/3/e202201833
Knihovny.cz E-zdroje
- MeSH
- Bacteria MeSH
- ledový příkrov MeSH
- mikrořasy * genetika MeSH
- oceány a moře MeSH
- přenos genů horizontální * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Arktida MeSH
- oceány a moře MeSH
Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.
Département de Biologie Institut de Biologie Intégrative des Systèmes Université Laval Quebec Canada
Department of Biological Sciences King Abdulaziz University Jeddah Saudi Arabia
Department of Parasitology BIOCEV Faculty of Science Charles University Prague Czech Republic
Department of Plant and Microbial Biology University of California Berkeley Berkeley CA USA
HudsonAlpha Institute for Biotechnology Huntsville AL USA
Sorbonne Université CNRS Station Biologique de Roscoff AD2M UMR 7144 Roscoff France
US Department of Energy Joint Genome Institute Lawrence Berkeley National Laboratory Berkeley CA USA
Zobrazit více v PubMed
Longhurst A (2006). Ecological Geography of the Sea, pp 560. Cambridge: Academic Press.
Carmack EC (2007) The alpha/beta ocean distinction: A perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep Sea Res Part II: Topical Stud Oceanogr 54: 2578–2598. 10.1016/j.dsr2.2007.08.018 DOI
Sommeria-Klein G, Watteaux R, Ibarbalz FM, Pierella Karlusich JJ, Iudicone D, Bowler C, Morlon H (2021) Global drivers of eukaryotic plankton biogeography in the sunlit ocean. Science 374: 594–599. 10.1126/science.abb3717 PubMed DOI
Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, Ardyna M, Zayed AA, Junger PC, Galand PE, et al. (2021) Environmental vulnerability of the global ocean epipelagic plankton community interactome. Sci Adv 7: eabg1921. 10.1126/sciadv.abg1921 PubMed DOI PMC
Beszczynska-Moller A, Woodgate RA, Lee C, Melling H, Karcher M (2011) A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean. Oceanography 24: 82–99. 10.5670/oceanog.2011.59 DOI
Timmermans ML, Marshall J (2020) Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate. J Geophys Res-Oceans 125: e2018JC014378. 10.1029/2018jc014378 DOI
Nikishin AM, Petrov EI, Cloetingh S, Freiman SI, Malyshev NA, Morozov AF, Posamentier HW, Verzhbitsky VE, Zhukov NN, Startseva K (2021) Arctic Ocean mega project: Paper 3-mesozoic to cenozoic geological evolution. Earth-Sci Rev 217: 103034. 10.1016/j.earscirev.2019.103034 DOI
Niezgodzki I, Tyszka J, Knorr G, Lohmann G (2019) Was the Arctic Ocean ice free during the latest cretaceous? The role of CO2 and gateway configurations. Glob Planet Change 177: 201–212. 10.1016/j.gloplacha.2019.03.011 DOI
Harington CR (2008) The evolution of Arctic marine mammals. Ecol Appl 18: S23–S40. 10.1890/06-0624.1 PubMed DOI
Hop H, Vihtakari M, Bluhm BA, Daase M, Gradinger R, Melnikov IA (2021) Ice-associated amphipods in a pan-arctic scenario of declining sea ice. Front Mar Sci 8: 743152. 10.3389/fmars.2021.743152 DOI
O’Regan M, Williams CJ, Frey KE, Jakobsson M (2011) A synthesis of the long-term paleoclimatic evolution of the Arctic. Oceanography 24: 66–80. 10.5670/oceanog.2011.57 DOI
Carr CM, Hardy SM, Brown TM, Macdonald TA, Hebert PDN (2011) A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. PLoS One 6: e22232. 10.1371/journal.pone.0022232 PubMed DOI PMC
Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, Fierer N, Townsend AR, Cleveland CC, Stanish L, et al. (2011) Global patterns in the biogeography of bacterial taxa. Environ Microbiol 13: 135–144. 10.1111/j.1462-2920.2010.02315.x PubMed DOI PMC
Logares R, Rengefors K, Kremp A, Shalchian-Tabrizi K, Boltovskoy A, Tengs T, Shurtleff A, Klaveness D (2007) Phenotypically different microalgal morphospecies with identical ribosomal DNA: A case of rapid adaptive evolution?. Microb Ecol 53: 549–561. 10.1007/s00248-006-9088-y PubMed DOI
Brown TA, Galicia MP, Thiemann GW, Belt ST, Yurkowski DJ, Dyck MG (2018) High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue. PLoS One 13: e0191631. 10.1371/journal.pone.0191631 PubMed DOI PMC
Leu E, Mundy CJ, Assmy P, Campbell K, Gabrielsen TM, Gosselin M, Juul-Pedersen T, Gradinger R (2015) Arctic spring awakening - steering principles behind the phenology of vernal ice algal blooms. Prog Oceanography 139: 151–170. 10.1016/j.pocean.2015.07.012 DOI
Gérikas Ribeiro C, dos Santos AL, Gourvil P, Le Gall F, Marie D, Tragin M, Probert I, Vaulot D (2020) Culturable diversity of Arctic phytoplankton during pack ice melting. Elementa-Science Anthropocene 8: 401. 10.1525/elementa.401 DOI
Joli N, Monier A, Logares R, Lovejoy C (2017) Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J 11: 1372–1385. 10.1038/ismej.2017.7 PubMed DOI PMC
Feller G, Gerday C (2003) Psychrophilic enzymes: Hot topics in cold adaptation. Nat Rev Microbiol 1: 200–208. 10.1038/nrmicro773 PubMed DOI
Cvetkovska M, Huner NPA, Smith DR (2017) Chilling out: The evolution and diversification of psychrophilic algae with a focus on chlamydomonadales. Polar Biol 40: 1169–1184. 10.1007/s00300-016-2045-4 DOI
Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J, Salamov A, Sanges R, Toseland A, Ward BJ, et al. (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541: 536–540. 10.1038/nature20803 PubMed DOI
Stahl-Rommel S, Kalra I, D’Silva S, Hahn MM, Popson D, Cvetkovska M, Morgan-Kiss RM (2022) Cyclic electron flow (CEF) and ascorbate pathway activity provide constitutive photoprotection for the photopsychrophile, Chlamydomonas sp. UWO 241 (renamed Chlamydomonas priscuii). Photosynthesis Res 151: 235–250. 10.1007/s11120-021-00877-5 PubMed DOI
Zhang X, Cvetkovska M, Morgan-Kiss R, Hüner NPA, Smith DR (2021) Draft genome sequence of the Antarctic green alga Chlamydomonas sp. UWO241. iScience 24: 102084. 10.1016/j.isci.2021.102084 PubMed DOI PMC
Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, Ragan MA, Chan CX (2020) Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol 18: 56. 10.1186/s12915-020-00782-8 PubMed DOI PMC
Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42: 410–416. 10.1111/j.1529-8817.2006.00208.x DOI
Strassert JFH, Irisarri I, Williams TA, Burki F (2021) A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun 12: 1879. 10.1038/s41467-021-22044-z PubMed DOI PMC
Mei ZP, Legendre L, Gratton Y, Tremblay JE, LeBlanc B, Mundy CJ, Klein B, Gosselin M, Larouche P, Papakyriakou TN, et al. (2002) Physical control of spring–summer phytoplankton dynamics in the North Water, April–July 1998. Deep-Sea Res Part II-Topical Stud Oceanogr 49: 4959–4982. 10.1016/s0967-0645(02)00173-x DOI
Tremblay JE, Gratton Y, Carmack EC, Payne CD, Price NM (2002) Impact of the large-scale arctic circulation and the North Water Polynya on nutrient inventories in Baffin Bay. J Geophys Res 107: 3112–12614. 10.1029/2000jc000595 DOI
Eegeesiak O, Aariak E, Kleist K (2017) People of the Ice Bridge: The Future of the Pikialasorsuaq. Ottawa: Report of the Pikialasorsuaq Commission, Inuit Circumpolar Council Canada.
Hamilton AK, Lovejoy C, Galand PE, Ingram RG (2008) Water masses and biogeography of picoeukaryote assemblages in a cold hydrographically complex system. Limnology Oceanogr 53: 922–935. 10.4319/lo.2008.53.3.0922 DOI
Freyria NJ, Kuo A, Chovatia M, Johnson J, Lipzen A, Barry KW, Grigoriev IV, Lovejoy C (2022) Salinity tolerance mechanisms of an Arctic Pelagophyte using comparative transcriptomic and gene expression analysis. Commun Biol 5: 500. 10.1038/s42003-022-03461-2 PubMed DOI PMC
Grigoriev IV, Hayes RD, Calhoun S, Kamel B, Wang A, Ahrendt S, Dusheyko S, Nikitin R, Mondo SJ, Salamov A, et al. (2021) PhycoCosm, a comparative algal genomics resource. Nucleic Acids Res 49: D1004–D1011. 10.1093/nar/gkaa898 PubMed DOI PMC
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, et al. (2014) The marine microbial eukaryote transcriptome sequencing project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12: e1001889. 10.1371/journal.pbio.1001889 PubMed DOI PMC
Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ (2016) Untangling the early diversification of eukaryotes: A phylogenomic study of the evolutionary origins of centrohelida, Haptophyta and cryptista. Proc Biol Sci 283: 20152802. 10.1098/rspb.2015.2802 PubMed DOI PMC
Daugbjerg N, Norlin A, Lovejoy C (2018) Baffinella frigidus gen. et sp. nov. (Baffinellaceae fam. Nov., Cryptophyceae) from Baffin Bay: Morphology, pigment profile, phylogeny, and growth rate response to three abiotic factors. J Phycol 54: 665–680. 10.1111/jpy.12766 PubMed DOI
Han KY, Graf L, Reyes CP, Melkonian B, Andersen RA, Yoon HS, Melkonian M (2018) A re-investigation of Sarcinochrysis marina (Sarcinochrysidales, Pelagophyceae) from its type locality and the descriptions of Arachnochrysis, Pelagospilus, Sargassococcus and Sungminbooa genera nov. Protist 169: 79–106. 10.1016/j.protis.2017.12.004 PubMed DOI
Lie AAY, Liu Z, Terrado R, Tatters AO, Heidelberg KB, Caron DA (2018) A tale of two mixotrophic chrysophytes: Insights into the metabolisms of two Ochromonas species (Chrysophyceae) through a comparison of gene expression. PLoS One 13: e0192439. 10.1371/journal.pone.0192439 PubMed DOI PMC
Andersen RA, Graf L, Malakhov Y, Yoon HS (2017) Rediscovery of the Ochromonas type species Ochromonas triangulata (Chrysophyceae) from its type locality (Lake Veysove, Donetsk region, Ukraine). Phycologia 56: 591–604. 10.2216/17-15.1 DOI
Sunagawa S, Acinas SG, Bork P, Bowler C, Acinas SG, Babin M, Bork P, Boss E, Bowler C, Cochrane G, et al. (2020) Tara Oceans: Towards global ocean ecosystems biology. Nat Rev Microbiol 18: 428–445. 10.1038/s41579-020-0364-5 PubMed DOI
Dong SF, Sprintall J, Gille ST (2006) Location of the Antarctic polar front from AMSR-E satellite sea surface temperature measurements. J Phys Oceanogr 36: 2075–2089. 10.1175/jpo2973.1 DOI
Freeman NM, Lovenduski NS, Gent PR (2016) Temporal variability in the Antarctic polar front (2002-2014). JGR Oceans 121: 7263–7276. 10.1002/2016jc012145 DOI
Royo-Llonch M, Sánchez P, Ruiz-González C, Salazar G, Pedrós-Alió C, Sebastián M, Labadie K, Paoli L, M Ibarbalz F, Zinger L, et al. (2021) Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat Microbiol 6: 1561–1574. 10.1038/s41564-021-00979-9 PubMed DOI
Zhang Z, Qu C, Zhang K, He Y, Zhao X, Yang L, Zheng Z, Ma X, Wang X, Wang W, et al. (2020) Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr Biol 30: 3330–3341.e7. 10.1016/j.cub.2020.06.029 PubMed DOI
Revell LJ, Graham Reynolds R (2012) A new Bayesian method for fitting evolutionary models to comparative data with intraspecific variation. Evolution 66: 2697–2707. 10.1111/j.1558-5646.2012.01645.x PubMed DOI
Vance TDR, Bayer-Giraldi M, Davies PL, Mangiagalli M (2019) Ice-binding proteins and the ‘domain of unknown function’ 3494 family. FEBS J 286: 855–873. 10.1111/febs.14764 PubMed DOI
Kulakova AN, Kulakov LA, Akulenko NV, Ksenzenko VN, Hamilton JTG, Quinn JP (2001) Structural and functional analysis of the phosphonoacetate hydrolase (phnA) gene region in Pseudomonas fluorescens 23F. J Bacteriol 183: 3268–3275. 10.1128/jb.183.11.3268-3275.2001 PubMed DOI PMC
Chetouani F, Glaser P, Kunst F (2001) FindTarget: Software for subtractive genome analysis. Microbiology (Reading) 147: 2643–2649. 10.1099/00221287-147-10-2643 PubMed DOI
Stephens TG, Ragan MA, Bhattacharya D, Chan CX (2018) Core genes in diverse dinoflagellate lineages include a wealth of conserved dark genes with unknown functions. Sci Rep 8: 17175. 10.1038/s41598-018-35620-z PubMed DOI PMC
Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Blanc-Mathieu R, Lima-Mendez G, Rocha F, Tirichine L, Labadie K, et al. (2018) A global ocean atlas of eukaryotic genes. Nat Commun 9: 373. 10.1038/s41467-017-02342-1 PubMed DOI PMC
Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, UniProt Consortium (2014) UniRef clusters: A comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31: 926–932. 10.1093/bioinformatics/btu739 PubMed DOI PMC
Craveiro SC, Daugbjerg N, Moestrup O, Calado AJ (2017) Studies on Peridinium aciculiferum and Peridinium malmogiense (=Scrippsiella hangoei): Comparison with Chimonodinium lomnickii and description of Apocalathium gen. nov. (Dinophyceae). Phycologia 56: 21–35. 10.2216/16-20.1 DOI
Janouškovec J, Gavelis GS, Burki F, Dinh D, Bachvaroff TR, Gornik SG, Bright KJ, Imanian B, Strom SL, Delwiche CF, et al. (2017) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci U S A 114: E171–E180. 10.1073/pnas.1614842114 PubMed DOI PMC
McFadden GI, Moestrup O, Wetherbee R (1982) Pyramimonas gelidicola sp. nov. (Prasinophyceae), a new species isolated from Antarctic sea ice. Phycologia 21: 103–111. 10.2216/i0031-8884-21-2-103.1 DOI
Laglera LM, Tovar-Sánchez A, Iversen MH, González HE, Naik H, Mangesh G, Assmy P, Klaas C, Mazzocchi MG, Montresor M, et al. (2017) Iron partitioning during LOHAFEX: Copepod grazing as a major driver for iron recycling in the Southern Ocean. Mar Chem 196: 148–161. 10.1016/j.marchem.2017.08.011 DOI
Grossmann L, Bock C, Schweikert M, Boenigk J (2016) Small but manifold – hidden diversity in “Spumella-like flagellates”. J Eukaryot Microbiol 63: 419–439. 10.1111/jeu.12287 PubMed DOI PMC
Simon N, Foulon E, Grulois D, Six C, Desdevises Y, Latimier M, Le Gall F, Tragin M, Houdan A, Derelle E, et al. (2017) Revision of the Genus Micromonas Manton et Parke (Chlorophyta, Mamiellophyceae), of the Type Species M-pusilla (Butcher) Manton & Parke and of the species M-commoda van Baren, Bachy and Worden and description of two new species based on the genetic and phenotypic characterization of cultured isolates. Protist 168: 612–635. 10.1016/j.protis.2017.09.002 PubMed DOI
Freyria NJ, Joli N, Lovejoy C (2021) A decadal perspective on North Water microbial eukaryotes as Arctic Ocean sentinels. Sci Rep 11: 8413. 10.1038/s41598-021-87906-4 PubMed DOI PMC
Raymond JA, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS One 7: e35968. 10.1371/journal.pone.0035968 PubMed DOI PMC
Sorhannus U (2011) Evolution of antifreeze protein genes in the diatom genus Fragilariopsis: Evidence for horizontal gene transfer, gene duplication and episodic diversifying selection. Evol Bioinfor Online 7: 279–289. 10.4137/ebo.s8321 PubMed DOI PMC
Vancaester E, Depuydt T, Osuna-Cruz CM, Vandepoele K (2020) Comprehensive and functional analysis of horizontal gene transfer events in diatoms. Mol Biol Evol 37: 3243–3257. 10.1093/molbev/msaa182 PubMed DOI
Kazamia E, Sutak R, Paz-Yepes J, Dorrell RG, Vieira FRJ, Mach J, Morrissey J, Leon S, Lam F, Pelletier E, et al. (2018) Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci Adv 4: eaar4536. 10.1126/sciadv.aar4536 PubMed DOI PMC
Turchetti B, Thomas Hall SR, Connell LB, Branda E, Buzzini P, Theelen B, Müller WH, Boekhout T (2011) Psychrophilic yeasts from Antarctica and European glaciers: Description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15: 573–586. 10.1007/s00792-011-0388-x PubMed DOI
Yusof NA, Hashim NHF, Bharudin I (2021) Cold adaptation strategies and the potential of psychrophilic enzymes from the Antarctic yeast, Glaciozyma antarctica PI12. J Fungi 7: 528. 10.3390/jof7070528 PubMed DOI PMC
Park KS, Do H, Lee JH, Park SI, Kim EJ, Kim S-J, Kang S-H, Kim HJ (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiology 64: 286–296. 10.1016/j.cryobiol.2012.02.014 PubMed DOI
Khan NMMU, Arai T, Tsuda S, Kondo H (2021) Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity. Sci Rep 11: 5971. 10.1038/s41598-021-85559-x PubMed DOI PMC
Pucciarelli S, Chiappori F, Devaraj RR, Yang G, Yu T, Ballarini P, Miceli C (2014) Identification and analysis of two sequences encoding ice-binding proteins obtained from a putative bacterial symbiont of the psychrophilic Antarctic ciliate Euplotes focardii. Antarctic Sci 26: 491–501. 10.1017/s0954102014000017 DOI
Lovejoy C, Legendre L, Martineau MJ, Bacle J, von Quillfeldt CH (2002) Distribution of phytoplankton and other protists in the North Water. Deep-Sea Res Part II-Topical Stud Oceanogr 49: 5027–5047. 10.1016/s0967-0645(02)00176-5 DOI
Luddington IA, Lovejoy C, Kaczmarska I (2016) Species-rich meta-communities of the diatom order Thalassiosirales in the Arctic and northern Atlantic Ocean. J Plankton Res 38: 781–797. 10.1093/plankt/fbw030 DOI
Box JE, Colgan WT, Christensen TR, Schmidt NM, Lund M, Parmentier FJW, Brown R, Bhatt US, Euskirchen ES, Romanovsky VE, et al. (2019) Key indicators of Arctic climate change: 1971-2017. Environ Res Lett 14: 045010. 10.1088/1748-9326/aafc1b DOI
Previdi M, Smith KL, Polvani LM (2021) Arctic amplification of climate change: A review of underlying mechanisms. Environ Res Lett 16: 093003. 10.1088/1748-9326/ac1c29 DOI
von Quillfeldt CH (2000) Common diatom species in Arctic spring blooms: Their distribution and abundance. Botanica Marina 43: 499–516. 10.1515/bot.2000.050 DOI
Lockwood S, Greening C, Baltar F, Morales SE (2022) Global and seasonal variation of marine phosphonate metabolism. ISME J 16: 2198–2212. 10.1038/s41396-022-01266-z PubMed DOI PMC
Galand PE, Lovejoy C, Hamilton AK, Ingram RG, Pedneault E, Carmack EC (2009) Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation. Environ Microbiol 11: 971–980. 10.1111/j.1462-2920.2008.01822.x PubMed DOI
Davis AK, Hildebrand M, Palenik B (2006) Gene expression induced by copper stress in the diatom Thalassiosira pseudonana. Eukaryot Cell 5: 1157–1168. 10.1128/ec.00042-06 PubMed DOI PMC
Furnholm TR, Tisa LS (2014) The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia. BMC Genomics 15: 1092. 10.1186/1471-2164-15-1092 PubMed DOI PMC
Stern GA, Macdonald RW, Outridge PM, Wilson S, Chetelat J, Cole A, Hintelmann H, Loseto LL, Steffen A, Wang FY, et al. (2012) How does climate change influence arctic mercury? Sci Total Environ 414: 22–42. 10.1016/j.scitotenv.2011.10.039 PubMed DOI
MacSween K, Stupple G, Aas W, Kyllönen K, Pfaffhuber KA, Skov H, Steffen A, Berg T, Mastromonaco MN (2022) Updated trends for atmospheric mercury in the Arctic: 1995-2018. Sci Total Environ 837: 155802. 10.1016/j.scitotenv.2022.155802 PubMed DOI
Rehan M, Alsohim AS, El-Fadly G, Tisa LS (2019) Detoxification and reduction of selenite to elemental red selenium by Frankia. Antonie van Leeuwenhoek 112: 127–139. 10.1007/s10482-018-1196-4 PubMed DOI
Ostertag SK, Loseto LL, Snow K, Lam J, Hynes K, Gillman DV (2018) That’s how we know they’re healthy: The inclusion of traditional ecological knowledge in Beluga health monitoring in the Inuvialuit Settlement Region. Arctic Sci 4: 1–29. 10.1139/as-2017-0050 DOI
Guiry MD, Guiry GM, Morrison L, Rindi F, Miranda SV, Mathieson AC, Parker BC, Langangen A, John DM, Bárbara I, et al. (2014) AlgaeBase: An on-line resource for algae Cryptogamie. Cryptogamie, Algologie 35: 105–115. 10.7872/crya.v35.iss2.2014.105 DOI
Vaulot D, Gall F, Le Marie D, Guillou L, Partensky F (2004) The Roscoff Culture Collection (RCC): A collection dedicated to marine picoplankton. Nova Hedwigia 79: 49–70. 10.1127/0029-5035/2004/0079-0049 DOI
Raymond JA (2011) Algal ice-binding proteins change the structure of sea ice. Proc Natl Acad Sci U S A 108: E198. 10.1073/pnas.1106288108 PubMed DOI PMC
Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high Arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77: 3234–3243. 10.1128/aem.02611-10 PubMed DOI PMC
Kohlbach D, Lange BA, Schaafsma FL, David C, Vortkamp M, Graeve M, van Franeker JA, Krumpen T, Flores H (2017) Ice algae-produced carbon is critical for overwintering of Antarctic krill Euphausia superba. Front Mar Sci 4: 310. 10.3389/fmars.2017.00310 DOI
Raymond JA, Remias D (2019) Ice-binding proteins in a chrysophycean snow alga: Acquisition of an essential gene by horizontal gene transfer. Front Microbiol 10: 2697. 10.3389/fmicb.2019.02697 PubMed DOI PMC
Krell A, Beszteri B, Dieckmann G, Glöckner G, Valentin K, Mock T (2008) A new class of ice-binding proteins discovered in a salt-stress-induced cDNA library of the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). Eur J Phycol 43: 423–433. 10.1080/09670260802348615 DOI
Comeau AM, Philippe B, Thaler M, Gosselin M, Poulin M, Lovejoy C (2013) Protists in Arctic drift and land-fast sea ice. J Phycol 49: 229–240. 10.1111/jpy.12026 PubMed DOI
Mangiagalli M, Bar‐Dolev M, Tedesco P, Natalello A, Kaleda A, Brocca S, Pascale D, Pucciarelli S, Miceli C, Braslavsky I, et al. (2017) Cryo‐protective effect of an ice‐binding protein derived from Antarctic bacteria. FEBS J 284: 163–177. 10.1111/febs.13965 PubMed DOI
Lundholm N, Hasle GR (2008) Are Fragilariopsis cylindrus and Fragilariopsis nana bipolar diatoms?-Morphological and molecular analyses of two sympatric species. Nova Hedwigia S133: 231–250.
Riesselman CR, Dunbar RB (2013) Diatom evidence for the onset of Pliocene cooling from AND-1B, McMurdo Sound, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 369: 136–153. 10.1016/j.palaeo.2012.10.014 DOI
Muñoz-Villagrán CM, Mendez KN, Cornejo F, Figueroa M, Undabarrena A, Morales EH, Arenas-Salinas M, Arenas FA, Castro-Nallar E, Vásquez CC (2018) Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. PeerJ 6: e4402. 10.7717/peerj.4402 PubMed DOI PMC
Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69: 6610–6619. 10.1128/aem.69.11.6610-6619.2003 PubMed DOI PMC
Harðardóttir S, Lundholm N, Moestrup O, Nielsen TG (2014) Description of Pyramimonas diskoicola sp. nov. and the importance of the flagellate Pyramimonas (Prasinophyceae) in Greenland sea ice during the winter-spring transition. Polar Biol 37: 1479–1494. 10.1007/s00300-014-1538-2 DOI
Alerstam T, Bäckman J, Grönroos J, Olofsson P, Strandberg R (2019) Hypotheses and tracking results about the longest migration: The case of the Arctic Tern. Ecol Evol 9: 9511–9531. 10.1002/ece3.5459 PubMed DOI PMC
Van Etten J, Bhattacharya D (2020) Horizontal gene transfer in eukaryotes: Not if, but how much? Trends Genet 36: 915–925. 10.1016/j.tig.2020.08.006 PubMed DOI
Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, Not F, Hansen PJ, Hallegraeff G, Sanders R, et al. (2016) Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: Incorporation of diverse mixotrophic strategies. Protist 167: 106–120. 10.1016/j.protis.2016.01.003 PubMed DOI
Jimenez V, Burns JA, Le Gall F, Not F, Vaulot D (2021) No evidence of Phago-mixotropy in Micromonas polaris (Mamiellophyceae), the dominant picophytoplankton species in the Arctic. J Phycol 57: 435–446. 10.1111/jpy.13125 PubMed DOI
Bock NA, Charvet S, Burns J, Gyaltshen Y, Rozenberg A, Duhamel S, Kim E (2021) Experimental identification and in silico prediction of bacterivory in green algae. ISME J 15: 1987–2000. 10.1038/s41396-021-00899-w PubMed DOI PMC
Irwin NAT, Pittis AA, Richards TA, Keeling PJ (2022) Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nat Microbiol 7: 327–336. 10.1038/s41564-021-01026-3 PubMed DOI
Nelson DR, Hazzouri KM, Lauersen KJ, Jaiswal A, Chaiboonchoe A, Mystikou A, Fu W, Daakour S, Dohai B, Alzahmi A, et al. (2021) Large-scale genome sequencing reveals the driving forces of viruses in microalgal evolution. Cell Host Microbe 29: 250–266.e8. 10.1016/j.chom.2020.12.005 PubMed DOI
Zhang X, Liu XD, Liang YL, Guo X, Xiao YH, Ma LY, Miao B, Liu HW, Peng DL, Huang WK, et al. (2017) Adaptive evolution of extreme acidophile Sulfobacillus thermosulfidooxidans potentially driven by horizontal gene transfer and gene loss. Appl Environ Microbiol 83: e03098-16. 10.1128/aem.03098-16 PubMed DOI PMC
Arnold BJ, Huang IT, Hanage WP (2022) Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol 20: 206–218. 10.1038/s41579-021-00650-4 PubMed DOI
Perez LF, Hernandez-Molina FJ, Lodolo E, Bohoyo F, Galindo-Zaldivar J, Maldonado A (2019) Oceanographic and climatic consequences of the tectonic evolution of the southern Scotia Sea basins, Antarctica. Earth-Science Rev 198: 102922. 10.1016/j.earscirev.2019.102922 DOI
Reboleira AS, Bodawatta KH, Ravn NMR, Lauritzen SE, Skoglund RO, Poulsen M, Michelsen A, Jonsson KA (2022) Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil. Environ Microbiome 17: 41. 10.1186/s40793-022-00435-z PubMed DOI PMC
Cook G, Teufel A, Kalra I, Li W, Wang X, Priscu J, Morgan-Kiss R (2019) The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron. Photosynthesis Res 141: 209–228. 10.1007/s11120-019-00621-0 PubMed DOI
Liang Y, Koester JA, Liefer JD, Irwin AJ, Finkel ZV (2019) Molecular mechanisms of temperature acclimation and adaptation in marine diatoms. ISME J 13: 2415–2425. 10.1038/s41396-019-0441-9 PubMed DOI PMC
Wang L, Yang JY, Xu YP, Piao X, Lv JC (2019) Domain-based comparative analysis of bacterial proteomes: Uniqueness, interactions, and the dark matter. Curr Genomics 20: 115–123. 10.2174/1389202920666190320134438 PubMed DOI PMC
Zamkovaya T, Foster JS, de Crecy-Lagard V, Conesa A (2021) A network approach to elucidate and prioritize microbial dark matter in microbial communities. ISME J 15: 228–244. 10.1038/s41396-020-00777-x PubMed DOI PMC
Notz D, Stroeve J (2016) Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354: 747–750. 10.1126/science.aag2345 PubMed DOI
Steiner NS, Bowman J, Campbell K, Chierici M, Eronen-Rasimus E, Falardeau M, Flores H, Fransson A, Herr H, Insley SJ, et al. (2021) Climate change impacts on sea-ice ecosystems and associated ecosystem services. Elementa-Sci Anthropocene 9: 1. 10.1525/elementa.2021.00007 DOI
Rio Tgd, Harmon-Smith M, Lucas SM, Copeland A, Barry K, Richardson P, Dalin E, Tice H, Shaprio H, Pangilinan J (2006) JGI Sequencing Projects-The Process of Ensuring Efficiency and Quality from Initiation to Completion. Available at: https://escholarship.org/uc/item/9s64600r
Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, et al. (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108: 1513–1518. 10.1073/pnas.1017351108 PubMed DOI PMC
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, et al. (2006) Database resources of the national center for biotechnology information. Nucleic Acids Res 34: D173–D180. 10.1093/nar/gkj158 PubMed DOI PMC
Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12: 671–682. 10.1038/nrg3068 PubMed DOI
Kuo A, Bushnell B, Grigoriev IV (2014) Chapter one - fungal genomics: Sequencing and annotation. In Advances in Botanical Research. Martin FM (ed.). pp 1–52. Cambridge: Academic Press.
Marron AO, Ratcliffe S, Wheeler GL, Goldstein RE, King N, Not F, de Vargas C, Richter DJ (2016) The evolution of silicon transport in eukaryotes. Mol Biol Evol 33: 3226–3248. 10.1093/molbev/msw209 PubMed DOI PMC
Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12: 59–60. 10.1038/nmeth.3176 PubMed DOI
Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20: 1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. 10.1093/bioinformatics/btp348 PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268–274. 10.1093/molbev/msu300 PubMed DOI PMC
Cummins CA, McInerney JO (2011) A method for inferring the rate of evolution of homologous characters that can potentially improve phylogenetic inference, resolve deep divergence and correct systematic biases. Syst Biol 60: 833–844. 10.1093/sysbio/syr064 PubMed DOI
Wang HC, Susko E, Roger AJ (2019) The relative importance of modeling site pattern heterogeneity versus partition-wise heterotachy in phylogenomic inference. Syst Biol 68: 1003–1019. 10.1093/sysbio/syz021 PubMed DOI
Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6: 283–290. 10.1093/dnares/6.5.283 PubMed DOI
Miller MA, Schwartz T, Pickett BE, He S, Klem EB, Scheuermann RH, Passarotti M, Kaufman S, O’Leary MA (2015) A RESTful API for access to phylogenetic tools via the CIPRES Science Gateway. Evol Bioinfor Online 11: 43–48. 10.4137/ebo.s21501 PubMed DOI PMC
Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, Coelho LP, Endo H, Gasol JM, Gregory AC, et al. (2019) Global trends in marine plankton diversity across Kingdoms of Life. Cell 179: 1084–1097.e21. 10.1016/j.cell.2019.10.008 PubMed DOI PMC
Pierella Karlusich JJ, Pelletier E, Zinger L, Lombard F, Zingone A, Colin S, Gasol JM, Dorrell RG, Henry N, Scalco E, et al. (2023) A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Mol Ecol Resour 23: 16–40. 10.1111/1755-0998.13592 PubMed DOI PMC
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. (2014) InterProScan 5: Genome-scale protein function classification. Bioinformatics 30: 1236–1240. 10.1093/bioinformatics/btu031 PubMed DOI PMC
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, et al. (2020) Pfam: The protein families database in 2021. Nucleic Acids Res 49: D412–D419. 10.1093/nar/gkaa913 PubMed DOI PMC
Dorrell RG, Azuma T, Nomura M, Audren de Kerdrel G, Paoli L, Yang S, Bowler C, Ishii KI, Miyashita H, Gile GH, et al. (2019) Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 116: 6914–6923. 10.1073/pnas.1819976116 PubMed DOI PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Anderson EL, Li W, Klitgord N, Highlander SK, Dayrit M, Seguritan V, Yooseph S, Biggs W, Venter JC, Nelson KE, et al. (2016) A robust ambient temperature collection and stabilization strategy: Enabling worldwide functional studies of the human microbiome. Sci Rep 6: 31731. 10.1038/srep31731 PubMed DOI PMC
Horn H, Slaby BM, Jahn MT, Bayer K, Moitinho-Silva L, Förster F, Abdelmohsen UR, Hentschel U (2016) An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes. Front Microbiol 7: 1751. 10.3389/fmicb.2016.01751 PubMed DOI PMC
Choi IG, Kim SH (2007) Global extent of horizontal gene transfer. Proc Natl Acad Sci U S A 104: 4489–4494. 10.1073/pnas.0611557104 PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210–3212. 10.1093/bioinformatics/btv351 PubMed DOI
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46: W200–W204. 10.1093/nar/gky448 PubMed DOI PMC
Emms DM, Kelly S (2019) OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol 20: 238. 10.1186/s13059-019-1832-y PubMed DOI PMC
Suzek BE, Huang HZ, McGarvey P, Mazumder R, Wu CH (2007) UniRef: Comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23: 1282–1288. 10.1093/bioinformatics/btm098 PubMed DOI