Management After Windstorm Affects the Composition of Ectomycorrhizal Symbionts of Regenerating Trees but Not Their Mycorrhizal Networks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34054889
PubMed Central
PMC8160286
DOI
10.3389/fpls.2021.641232
Knihovny.cz E-zdroje
- Klíčová slova
- disturbances, diversity, ectomycorrhizal fungi, exploration types, mycorrhizal networks,
- Publikační typ
- časopisecké články MeSH
Due to ongoing climate change, forests are expected to face significant disturbances more frequently than in the past. Appropriate management is intended to facilitate forest regeneration. Because European temperate forests mostly consist of trees associated with ectomycorrhizal (ECM) fungi, understanding their role in these disturbances is important to develop strategies to minimize their consequences and effectively restore forests. Our aim was to determine how traditional (EXT) and nonintervention (NEX) management in originally Norway spruce (Picea abies) forests with an admixture of European larch (Larix decidua) affect ECM fungal communities and the potential to interconnect different tree species via ECM networks 15 years after a windstorm. Ten plots in NEX and 10 plots in EXT with the co-occurrences of Norway spruce, European larch, and silver birch (Betula pendula) were selected, and a total of 57 ECM taxa were identified using ITS sequencing from ECM root tips. In both treatments, five ECM species associated with all the studied tree species dominated, with a total abundance of approximately 50% in the examined root samples. Because there were no significant differences between treatments in the number of ECM species associated with different tree species combinations in individual plots, we concluded that the management type did not have a significant effect on networking. However, management significantly affected the compositions of ECM symbionts of Norway spruce and European larch but not those of silver birch. Although this result is explained by the occurrence of seedlings and ECM propagules that were present in the original forest, the consequences are difficult to assess without knowledge of the ecology of different ECM symbionts.
Zobrazit více v PubMed
Abarenkov K., Nilsson H. R., Larsson K. H., Alexander I. J., Eberhardt U., Erland S., et al. (2010). The UNITE database for molecular identification of fungi – recent updates and future perspectives. PubMed DOI
Agerer R. (1991). “Characeterisation of ectomycorrhizae,” in
Agerer R. (2001). Exploration types of ectomycorrhizae.
Agerer R., Rambold G. (2004–2015).
Anderson I. C., Genney D. R., Alexander I. J. (2014). Fine-scale diversity and distribution of ectomycorrhizal fungal mycelium in a scots pine forest. PubMed DOI
Bahram M., Peay K. G., Tedersoo L. (2015). Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. PubMed DOI
Bahram M., Põlme S., Kõljalg U., Tedersoo L. (2011). A single European aspen (Populus tremula) tree individual may potentially harbour dozens of PubMed DOI
Bakker M. R., Augusto L., Achat D. L. (2006). Fine root distribution of trees and understory in mature stands of maritime pine ( DOI
Baldrian P. (2009). Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? PubMed DOI
Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., et al. (2007). GenBank. PubMed PMC
Bernicchia A., Gorjón S. P. (2010).
Coleman M. D., Bledsoe C. S., Lopushinsky W. (1989). Pure culture response of ectomycorrhizal fungi to imposed water stress. DOI
Defrenne C. E., Philpott T. J., Guichon S. H. A., Roach W. J., Pickles B. J., Simard S. W. (2019). Shifts in ectomycorrhizal fungal communities and exploration types relate to the environment and fine-root traits across interior Douglas-fir forests of western Canada. PubMed DOI PMC
Dietz L., Collet C., Dupouey J., Lacombe E., Laurent L., Gégout J. (2020). Windstorm-induced canopy oppenings accelerate temperate forest adaptation to global warming.
Don A., Bärwolff M., Kalbitz K., Andruschkewitsch R., Jungkunst H. F., Schulze E. (2012). No rapid soil carbon loss after a windthrow event in the High Tatra. DOI
Dubois H., Verkasalo E., Claessens H. (2020). Potential of birch ( DOI
Egli S., Peter M., Falcato S. (2002). Dynamics of ectomycorrhizal fungi after windthrow.
Fischer A., Marshall P., Camp A. (2013). Disturbances in deciduous forest ecosystems of the northern hemisphere: their effects on both recent and future forest development. DOI
Fleischer P. (2008). Windfall research and monitoring in the High Tatra Mts, objectives, principles, methods and current status.
Ford S. A., Kleinman J. S., Hart J. L. (2018). Effects of wind disturbance and salvage harvesting on macrofungal communities in a DOI
Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. PubMed DOI
Gömöryová E., Střelcová K., Škvarenina J., Bebej J., Gömöry D. (2008). The impact of windthrow and fire disturbances on selected soil properties in the Tatranational park. DOI
Gorzelak M. A., Asay A. K., Pickles B. J., Simard S. W. (2015). Inter-plant communication through mycorrhizal networks mediates complexadaptive behaviour in plant communities. PubMed DOI PMC
Gregow H., Laaksonen A., Alper M. E. (2017). Increasing large scale windstorm damage in Western, Central and Northern European forets, 1951-2010. PubMed PMC
Guignabert A., Delerue F., Gonzalez M., Augusto L., Bakker M. R. (2018). Effects of management practices and topography on ectomycorrhizal fungi of maritime pine during seedling recruitment. DOI
Haas J. C., Street N. R., Sjödin A., Lee N. M., Högberg M. N., Näsholm A., et al. (2018). Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. DOI
Halbwachs H., Simmel J., Bässler C. (2016). Tales and mysteries of fungal fruiting: How morphological and physiological traits affect a pileate lifestyle. DOI
Hobbie E. A., Colpeart J. V., White M. W., Ouimette A. P., Macko S. A. (2008). Nitrogen form, availability and mycorrhizal colonization affect biomass and nitrogen isotope patterns in DOI
Horton T. R., Bruns T. D. (1998). Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir ( DOI
Hulsen T., de Vlieg J., Alkema W. (2008). BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. PubMed DOI PMC
Jones M. D., Durall D. M., Cairney J. W. G. (2003). Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. PubMed DOI
Karst J., Randall M. J., Gehring C. A. (2014). Consequences for ectomycorrhizal fungi of the selective loss or gain of pine across landscape. DOI
Kim S., Axelsson E. P., Girona M. M., Senior J. K. (2021). Continuous-cover forestry maintains soil fungal communities in Norway spruce dominated boreal forests. DOI
Klein T., Siegwolf R. T. W., Körner C. (2016). Belowground carbon trade among tall trees in a temperate forest. PubMed DOI
Knudsen H., Vesterholt J. (2012).
Kranabetter J. M., Friesen J., Gamiet S., Kroeger P. (2004). Ectomycorrhizal mushroom distribution by stand age in western hemlock – lodgepole pine forests of northwestern British Columbia. DOI
Lang C., Seven J., Polle A. (2011). Host preferences and differential contributions of deciduous tree species shape Mycorrhizal species richness in a mixed Centra European forest. PubMed DOI PMC
Lilleskov E. A., Bruns T. D. (2005). Spore dispesal of a resupinate ectomycorrhizal fungus, PubMed DOI
Lilleskov E. A., Bruns T. D., Horton T. R., Taylor D. L., Grogan P. (2004). Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. PubMed DOI
Lofgren L., Nguyen N. H., Kennedy P. G. (2018). Ectomycorrhizal host specifity in a changing world: can legacy effects explain anomalous current associations? PubMed DOI
Martin F., Kohler A., Murat C., Veneault-Fourrey C., Hibbett D. S. (2016). Unearthing the roots of ectomycorrhizal symbioses. PubMed DOI
McGlinn D. J., Xiao X., May F., Gotelli N. J., Engel T., Blowes S. A., et al. (2018). Measurement of biodiversity (MoB): a method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. DOI
Metslaid M., Jõgiste K., Nikinmaa E., Moser W. K., Porcar-Castell A. (2007). Tree variables related to growth response and acclimation of advance regeneration of Norway spruce and other coniferous species after release. DOI
Molina R., Horton T. (2015). “Mycorrhiza specificity: its role in the development and function of common mycelial networks,” in DOI
Molina R., Massicotte H. B., Trappe J. M. (1992). “Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implication,” in
Nikolcheva L. G., Bärlocher F. (2004). Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. DOI
Nilsson R. H., Anslan S., Bahram M., Wurzbacher C., Baldrian P., Tedersoo L. (2019). Mycobiome diversity: high-throughput sequencing and identification of fungi. PubMed DOI
Pec G. J., Simard S. W., Cahill J. F., Karst J. (2020). The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. PubMed DOI
Pickles B. J., Genney D. R., Anderson I. C., Alexander I. J. (2012). Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structured by competitive interactions. PubMed DOI
R Development Core Team (2019).
Rog I., Rosenstock N. P., Körner C., Klein T. (2020). Share the wealth: trees with greater ectomycorrhizal species overlap share more carbon. PubMed DOI PMC
Rosinger C., Sandén H., Matthews D., Mayer M., Godbold D. L. (2018). Patterns in ectomycorrhizal diversity, community composition, and exploration types in European beech, pine, and spruce forests. DOI
Simard S. (2018). “Mycorrhizal networks facilitate tree communication, learning, and memory,” in DOI
Simard S. W. (2009). The foundaitional role of mycorrhizal networks in self-organization of interioir Douglaska-fir forests. DOI
Simard S. W., Beiler K. J., Bingham M. A., Deslippe J. R., Philip L. J., Teste F. J. (2012). Mycorrhizal networks: Mechanisms, ecology and modelling. DOI
Simard S. W., Jones M. D., Durall D. M. (2003). “Carbon and nutrient fluxes within and between mycorrhizal plants,” in DOI
Simard S. W., Perry D. A., Jones M. D., Myrold D. D., Durall D. M., Molina R. (1997). Net transfer of carbon between ectomyycorrhizal tree species in the field. DOI
Song Y. Y., Simard S. W., Carroll A., Mohn W. W., Zeng R. S. (2015). Defoliation of interior Douglaska-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. PubMed PMC
Taberlet P., Gielly L., Pautou G., Bouvet J. (1991). Universal primer for amplification of three non-coding regions chloroplast DNA. PubMed DOI
Taudiere A., Munoz F., Lesne A., Monnet A., Bellanger J., Selosse M., et al. (2015). Beyond ectomycorrhizal bipartite networks: projected networks demonstrate contrasted patterns between early- and late-successional plants in Corsica. PubMed DOI PMC
Tedersoo L., Kõljalg U., Hallenberg N., Larsson K. (2003). Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. PubMed DOI
ter Braak C. J. F., Šmilauer P. (2012).
Treu R., Karst J., Randall M., Pec G. J., Cigan P. W., Simard S. W., et al. (2014). Decline of ectomycorrhizal fungi following a mountain pine beetle epidemic. PubMed DOI
Twieg B. D., Durall D. M., Simard S. W. (2007). Ectomycorrhizal fungal succession in mixed temperate forests. PubMed DOI
van der Heiden M. G. A., Horton T. R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. DOI
van der Linde S., Suz L. M., Orme C. D. L., Cox F., Andreae H., Asi E., et al. (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. PubMed DOI
Vašutová M., Edwars-Jonášová M., Veselá P., Effenberková L., Fleischer P., Cudlín P. (2018). Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow. PubMed DOI
Velmala S. M., Rajala T., Heinonsalo J., Taylor A. F. S., Pennanen T. (2014). Profiling functions of ectomycorrhizal diversity and root structuring in seedling of Norway spruce ( PubMed DOI
Veselá P., Vašutová M., Hofmannová K., Edwards-jonášová M., Cudlín P. (2019b). Ectomycorrhizal community on Norway spruce seedlings following bark beetle infestation. DOI
Visser S. (1995). Ectomycorrhizal fungal succession in jack pine stands following wildfire. DOI
Vu D., Groenewald M., De Vries M., Gehrmann T., Stielow B., Eberhardt U., et al. (2019). Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. PubMed DOI PMC
Wasyliw J., Karst J. (2020). Shifts in ectomycorrhizal exploration types parallel leaf and fine root area with forest age. DOI
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in DOI