Management After Windstorm Affects the Composition of Ectomycorrhizal Symbionts of Regenerating Trees but Not Their Mycorrhizal Networks

. 2021 ; 12 () : 641232. [epub] 20210514

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34054889

Due to ongoing climate change, forests are expected to face significant disturbances more frequently than in the past. Appropriate management is intended to facilitate forest regeneration. Because European temperate forests mostly consist of trees associated with ectomycorrhizal (ECM) fungi, understanding their role in these disturbances is important to develop strategies to minimize their consequences and effectively restore forests. Our aim was to determine how traditional (EXT) and nonintervention (NEX) management in originally Norway spruce (Picea abies) forests with an admixture of European larch (Larix decidua) affect ECM fungal communities and the potential to interconnect different tree species via ECM networks 15 years after a windstorm. Ten plots in NEX and 10 plots in EXT with the co-occurrences of Norway spruce, European larch, and silver birch (Betula pendula) were selected, and a total of 57 ECM taxa were identified using ITS sequencing from ECM root tips. In both treatments, five ECM species associated with all the studied tree species dominated, with a total abundance of approximately 50% in the examined root samples. Because there were no significant differences between treatments in the number of ECM species associated with different tree species combinations in individual plots, we concluded that the management type did not have a significant effect on networking. However, management significantly affected the compositions of ECM symbionts of Norway spruce and European larch but not those of silver birch. Although this result is explained by the occurrence of seedlings and ECM propagules that were present in the original forest, the consequences are difficult to assess without knowledge of the ecology of different ECM symbionts.

Zobrazit více v PubMed

Abarenkov K., Nilsson H. R., Larsson K. H., Alexander I. J., Eberhardt U., Erland S., et al. (2010). The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol. 186 281–285. 10.1111/j.1469-8137.2009.03160.x PubMed DOI

Agerer R. (1991). “Characeterisation of ectomycorrhizae,” in Techniques for the study of mycorrhiza, eds Norris J. R., Read D. J., Varma A. K. (London: Academic Press; ), 25–73.

Agerer R. (2001). Exploration types of ectomycorrhizae. Mycorrhiza 11 107–114.

Agerer R., Rambold G. (2004–2015). DEEMY – an Information System for Characterization and Determination of Ectomycorrhizae. Available online at: http://www.deemy.de (accessed November 20, 2019).

Anderson I. C., Genney D. R., Alexander I. J. (2014). Fine-scale diversity and distribution of ectomycorrhizal fungal mycelium in a scots pine forest. New Phytol. 201 1423–1430. 10.1111/nph.12637 PubMed DOI

Bahram M., Peay K. G., Tedersoo L. (2015). Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 205 1454–1463. 10.1111/nph.13206 PubMed DOI

Bahram M., Põlme S., Kõljalg U., Tedersoo L. (2011). A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol. Ecol. 75 313–320. 10.1111/j.1574-6941.2010.01000.x PubMed DOI

Bakker M. R., Augusto L., Achat D. L. (2006). Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant Soil 286 37–51. 10.1007/s11104-006-9024-4 DOI

Baldrian P. (2009). Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161 657–660. 10.1007/s00442-009-1433-7 PubMed DOI

Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., et al. (2007). GenBank. Nucleic Acids Res. 41 36–41. PubMed PMC

Bernicchia A., Gorjón S. P. (2010). Fungi Europaei, 12: Corticiaceae s.l. Alassio: Alassio Candusso, 1008.

Coleman M. D., Bledsoe C. S., Lopushinsky W. (1989). Pure culture response of ectomycorrhizal fungi to imposed water stress. Can. J. Bot. 67 29–39. 10.1139/b89-005 DOI

Defrenne C. E., Philpott T. J., Guichon S. H. A., Roach W. J., Pickles B. J., Simard S. W. (2019). Shifts in ectomycorrhizal fungal communities and exploration types relate to the environment and fine-root traits across interior Douglas-fir forests of western Canada. Front. Plant Sci. 10:643. 10.3389/fpls.2019.00643 PubMed DOI PMC

Dietz L., Collet C., Dupouey J., Lacombe E., Laurent L., Gégout J. (2020). Windstorm-induced canopy oppenings accelerate temperate forest adaptation to global warming. Glob. Ecol. Biogeogr. 29 2067–2077.10.1111/geb.13177

Don A., Bärwolff M., Kalbitz K., Andruschkewitsch R., Jungkunst H. F., Schulze E. (2012). No rapid soil carbon loss after a windthrow event in the High Tatra. For. Ecol. Manag. 276 239–246. 10.1016/j.foreco.2012.04.010 DOI

Dubois H., Verkasalo E., Claessens H. (2020). Potential of birch (Betula pendula roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests 11:336. 10.3390/f11030336 DOI

Egli S., Peter M., Falcato S. (2002). Dynamics of ectomycorrhizal fungi after windthrow. For. Snow Landsc. Res. 77 81–88.

Fischer A., Marshall P., Camp A. (2013). Disturbances in deciduous forest ecosystems of the northern hemisphere: their effects on both recent and future forest development. Biodivers. Conserv. 22 1863–1893. 10.1007/s10531-013-0525-1 DOI

Fleischer P. (2008). Windfall research and monitoring in the High Tatra Mts, objectives, principles, methods and current status. Contribut. Geophys. Geod. 38 233–248.

Ford S. A., Kleinman J. S., Hart J. L. (2018). Effects of wind disturbance and salvage harvesting on macrofungal communities in a Pinus Woodland. Forest Ecol. Manag. 407 31–46. 10.1016/j.foreco.2017.10.010 DOI

Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol. Ecol. 2 113–118. 10.1111/j.1365-294x.1993.tb00005.x PubMed DOI

Gömöryová E., Střelcová K., Škvarenina J., Bebej J., Gömöry D. (2008). The impact of windthrow and fire disturbances on selected soil properties in the Tatranational park. Soil Water Res. 3 S74–S80. 10.17221/9/2008-SWR DOI

Gorzelak M. A., Asay A. K., Pickles B. J., Simard S. W. (2015). Inter-plant communication through mycorrhizal networks mediates complexadaptive behaviour in plant communities. AoB Plants 7:lv050. 10.1093/aobpla/plv050 PubMed DOI PMC

Gregow H., Laaksonen A., Alper M. E. (2017). Increasing large scale windstorm damage in Western, Central and Northern European forets, 1951-2010. Sci. Rep. 7:46397. PubMed PMC

Guignabert A., Delerue F., Gonzalez M., Augusto L., Bakker M. R. (2018). Effects of management practices and topography on ectomycorrhizal fungi of maritime pine during seedling recruitment. Forests 9:245. 10.3390/f9050245 DOI

Haas J. C., Street N. R., Sjödin A., Lee N. M., Högberg M. N., Näsholm A., et al. (2018). Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. Soil Biol. Biochem. 125 197–209. 10.1016/j.soilbio.2018.07.005 DOI

Halbwachs H., Simmel J., Bässler C. (2016). Tales and mysteries of fungal fruiting: How morphological and physiological traits affect a pileate lifestyle. Fungal Biol. Rev. 30 36–61. 10.1016/j.fbr.2016.04.002 DOI

Hobbie E. A., Colpeart J. V., White M. W., Ouimette A. P., Macko S. A. (2008). Nitrogen form, availability and mycorrhizal colonization affect biomass and nitrogen isotope patterns in Pinus sylvestris. Plant Soil 310 121–136. 10.1007/s11104-008-9637-x DOI

Horton T. R., Bruns T. D. (1998). Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol. 139 331–339. 10.1046/j.1469-8137.1998.00185.x DOI

Hulsen T., de Vlieg J., Alkema W. (2008). BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9:488. 10.1186/1471-2164-9-488 PubMed DOI PMC

Jones M. D., Durall D. M., Cairney J. W. G. (2003). Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 157 399–422. 10.1046/j.1469-8137.2003.00698.x PubMed DOI

Karst J., Randall M. J., Gehring C. A. (2014). Consequences for ectomycorrhizal fungi of the selective loss or gain of pine across landscape. Botany 92 855–865. 10.1139/cjb-2014-0063 DOI

Kim S., Axelsson E. P., Girona M. M., Senior J. K. (2021). Continuous-cover forestry maintains soil fungal communities in Norway spruce dominated boreal forests. For. Ecol. Manag. 480:118659. 10.1016/j.foreco.2020.118659 DOI

Klein T., Siegwolf R. T. W., Körner C. (2016). Belowground carbon trade among tall trees in a temperate forest. Forest Ecol. 352 342–344. 10.1126/science.aad6188 PubMed DOI

Knudsen H., Vesterholt J. (2012). Funga Nordica: Agaricoid, Boletoid, Clavarioid, Cyphelloid and Gastroid Genera. Copenhagen: Nordsvamp, 1083.

Kranabetter J. M., Friesen J., Gamiet S., Kroeger P. (2004). Ectomycorrhizal mushroom distribution by stand age in western hemlock – lodgepole pine forests of northwestern British Columbia. Can. J. For. Res. 35 1527–1539. 10.1139/x05-095 DOI

Lang C., Seven J., Polle A. (2011). Host preferences and differential contributions of deciduous tree species shape Mycorrhizal species richness in a mixed Centra European forest. Mycorrhiza 21 297–308. 10.1007/s00572-010-0338-y PubMed DOI PMC

Lilleskov E. A., Bruns T. D. (2005). Spore dispesal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97 762–769. 10.3852/mycologia.97.4.762 PubMed DOI

Lilleskov E. A., Bruns T. D., Horton T. R., Taylor D. L., Grogan P. (2004). Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol. Ecol. 49 319–332. 10.1016/j.femsec.2004.04.004 PubMed DOI

Lofgren L., Nguyen N. H., Kennedy P. G. (2018). Ectomycorrhizal host specifity in a changing world: can legacy effects explain anomalous current associations? New Phytol. 220 1273–1284. 10.1111/nph.15008 PubMed DOI

Martin F., Kohler A., Murat C., Veneault-Fourrey C., Hibbett D. S. (2016). Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 14 760–773. 10.1038/nrmicro.2016.149 PubMed DOI

McGlinn D. J., Xiao X., May F., Gotelli N. J., Engel T., Blowes S. A., et al. (2018). Measurement of biodiversity (MoB): a method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evol. 10 258–269. 10.1111/2041-210x.13102 DOI

Metslaid M., Jõgiste K., Nikinmaa E., Moser W. K., Porcar-Castell A. (2007). Tree variables related to growth response and acclimation of advance regeneration of Norway spruce and other coniferous species after release. Forest Ecol. Manag. 250 56–63. 10.1016/j.foreco.2007.03.009 DOI

Molina R., Horton T. (2015). “Mycorrhiza specificity: its role in the development and function of common mycelial networks,” in Mycorrhizal Networks. Ecological Studies (Analysis and Synthesis), ed. Horton T. (Dordrech: Springer; ), 1–39. 10.1007/978-94-017-7395-9_1 DOI

Molina R., Massicotte H. B., Trappe J. M. (1992). “Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implication,” in Mycorrhizal Functioning: An Integrated Plant Fungal Process, ed. Allen M. F. (London: Chapman and Hall; ), 357–423.

Nikolcheva L. G., Bärlocher F. (2004). Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol. Prog. 3 41–49. 10.1007/s11557-006-0075-y DOI

Nilsson R. H., Anslan S., Bahram M., Wurzbacher C., Baldrian P., Tedersoo L. (2019). Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 17 95–109. 10.1038/s41579-018-0116-y PubMed DOI

Pec G. J., Simard S. W., Cahill J. F., Karst J. (2020). The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 30 173–183. 10.1007/s00572-020-00940-4 PubMed DOI

Pickles B. J., Genney D. R., Anderson I. C., Alexander I. J. (2012). Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structured by competitive interactions. Mol. Ecol. 21 5110–5123. 10.1111/j.1365-294X.2012.05739.x PubMed DOI

R Development Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna: The R Foundation for Statistical Computing.

Rog I., Rosenstock N. P., Körner C., Klein T. (2020). Share the wealth: trees with greater ectomycorrhizal species overlap share more carbon. Mol. Ecol. 29 2321–2333. 10.1111/mec.15351 PubMed DOI PMC

Rosinger C., Sandén H., Matthews D., Mayer M., Godbold D. L. (2018). Patterns in ectomycorrhizal diversity, community composition, and exploration types in European beech, pine, and spruce forests. Forests 9:445. 10.3390/f9080445 DOI

Simard S. (2018). “Mycorrhizal networks facilitate tree communication, learning, and memory,” in Memory and Learning in Plant. Signaling and Communication in Plants, eds Baluska F., Gagliano M., Witzany G. (Cham: Springer; ) 191–213. 10.1007/978-3-319-75596-0_10 DOI

Simard S. W. (2009). The foundaitional role of mycorrhizal networks in self-organization of interioir Douglaska-fir forests. For. Ecol. Manag. 258 95–107. 10.1002/9780470724460.ch8 DOI

Simard S. W., Beiler K. J., Bingham M. A., Deslippe J. R., Philip L. J., Teste F. J. (2012). Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biol. Rev. 26 39–60. 10.1016/j.fbr.2012.01.001 DOI

Simard S. W., Jones M. D., Durall D. M. (2003). “Carbon and nutrient fluxes within and between mycorrhizal plants,” in Mycorrhizal Ecology. Ecological Stusies (Analysis and Synthesis), eds van der Heijden M. G. A., I, Sanders R. (Berlin: Springer; ), 33–74. 10.1007/978-3-540-38364-2_2 DOI

Simard S. W., Perry D. A., Jones M. D., Myrold D. D., Durall D. M., Molina R. (1997). Net transfer of carbon between ectomyycorrhizal tree species in the field. Nature 388 579–582. 10.1038/41557 DOI

Song Y. Y., Simard S. W., Carroll A., Mohn W. W., Zeng R. S. (2015). Defoliation of interior Douglaska-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci. Rep. 5:8495. PubMed PMC

Taberlet P., Gielly L., Pautou G., Bouvet J. (1991). Universal primer for amplification of three non-coding regions chloroplast DNA. Plant Mol. Biol. 17 1105–1109. 10.1007/bf00037152 PubMed DOI

Taudiere A., Munoz F., Lesne A., Monnet A., Bellanger J., Selosse M., et al. (2015). Beyond ectomycorrhizal bipartite networks: projected networks demonstrate contrasted patterns between early- and late-successional plants in Corsica. Front. Plant Sci. 6:881. 10.3389/fpls.2015.00881 PubMed DOI PMC

Tedersoo L., Kõljalg U., Hallenberg N., Larsson K. (2003). Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol. 159 153–165. 10.1046/j.0028-646x.2003.00792.x PubMed DOI

ter Braak C. J. F., Šmilauer P. (2012). Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.0). New York, NY: Microcomputer Power.

Treu R., Karst J., Randall M., Pec G. J., Cigan P. W., Simard S. W., et al. (2014). Decline of ectomycorrhizal fungi following a mountain pine beetle epidemic. Ecology 95 1096–1103. 10.1890/13-1233.1 PubMed DOI

Twieg B. D., Durall D. M., Simard S. W. (2007). Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol. 176 437–447. 10.1111/j.1469-8137.2007.02173.x PubMed DOI

van der Heiden M. G. A., Horton T. R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 97 1139–1150. 10.1111/j.1365-2745.2009.01570.x DOI

van der Linde S., Suz L. M., Orme C. D. L., Cox F., Andreae H., Asi E., et al. (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558 243–248. 10.1038/s41586-018-0189-9 PubMed DOI

Vašutová M., Edwars-Jonášová M., Veselá P., Effenberková L., Fleischer P., Cudlín P. (2018). Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow. Mycorrhiza 28 221–233. 10.1007/s00572-018-0820-5 PubMed DOI

Velmala S. M., Rajala T., Heinonsalo J., Taylor A. F. S., Pennanen T. (2014). Profiling functions of ectomycorrhizal diversity and root structuring in seedling of Norway spruce (Picea abies) with fast- and slow-growing phenotypes. New Phytol. 201 610–622. 10.1111/nph.12542 PubMed DOI

Veselá P., Vašutová M., Hofmannová K., Edwards-jonášová M., Cudlín P. (2019b). Ectomycorrhizal community on Norway spruce seedlings following bark beetle infestation. Forest 10:740. 10.3390/f10090740 DOI

Visser S. (1995). Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol. 129 389–401. 10.1111/j.1469-8137.1995.tb04309.x DOI

Vu D., Groenewald M., De Vries M., Gehrmann T., Stielow B., Eberhardt U., et al. (2019). Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 92 135–154. 10.1016/j.simyco.2018.05.001 PubMed DOI PMC

Wasyliw J., Karst J. (2020). Shifts in ectomycorrhizal exploration types parallel leaf and fine root area with forest age. J. Ecol 108 2270–2282. 10.1111/1365-2745.13484 DOI

White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods and Applications, eds Innis N., Gelfand D., Sninsky J., White T. (New York, NY: Academic Press, Inc; ), 315–322. 10.1016/b978-0-12-372180-8.50042-1 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...