Management After Windstorm Affects the Composition of Ectomycorrhizal Symbionts of Regenerating Trees but Not Their Mycorrhizal Networks

. 2021 ; 12 () : 641232. [epub] 20210514

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34054889

Due to ongoing climate change, forests are expected to face significant disturbances more frequently than in the past. Appropriate management is intended to facilitate forest regeneration. Because European temperate forests mostly consist of trees associated with ectomycorrhizal (ECM) fungi, understanding their role in these disturbances is important to develop strategies to minimize their consequences and effectively restore forests. Our aim was to determine how traditional (EXT) and nonintervention (NEX) management in originally Norway spruce (Picea abies) forests with an admixture of European larch (Larix decidua) affect ECM fungal communities and the potential to interconnect different tree species via ECM networks 15 years after a windstorm. Ten plots in NEX and 10 plots in EXT with the co-occurrences of Norway spruce, European larch, and silver birch (Betula pendula) were selected, and a total of 57 ECM taxa were identified using ITS sequencing from ECM root tips. In both treatments, five ECM species associated with all the studied tree species dominated, with a total abundance of approximately 50% in the examined root samples. Because there were no significant differences between treatments in the number of ECM species associated with different tree species combinations in individual plots, we concluded that the management type did not have a significant effect on networking. However, management significantly affected the compositions of ECM symbionts of Norway spruce and European larch but not those of silver birch. Although this result is explained by the occurrence of seedlings and ECM propagules that were present in the original forest, the consequences are difficult to assess without knowledge of the ecology of different ECM symbionts.

Zobrazit více v PubMed

Abarenkov K., Nilsson H. R., Larsson K. H., Alexander I. J., Eberhardt U., Erland S., et al. (2010). The UNITE database for molecular identification of fungi – recent updates and future perspectives. PubMed DOI

Agerer R. (1991). “Characeterisation of ectomycorrhizae,” in

Agerer R. (2001). Exploration types of ectomycorrhizae.

Agerer R., Rambold G. (2004–2015).

Anderson I. C., Genney D. R., Alexander I. J. (2014). Fine-scale diversity and distribution of ectomycorrhizal fungal mycelium in a scots pine forest. PubMed DOI

Bahram M., Peay K. G., Tedersoo L. (2015). Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. PubMed DOI

Bahram M., Põlme S., Kõljalg U., Tedersoo L. (2011). A single European aspen (Populus tremula) tree individual may potentially harbour dozens of PubMed DOI

Bakker M. R., Augusto L., Achat D. L. (2006). Fine root distribution of trees and understory in mature stands of maritime pine ( DOI

Baldrian P. (2009). Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? PubMed DOI

Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., et al. (2007). GenBank. PubMed PMC

Bernicchia A., Gorjón S. P. (2010).

Coleman M. D., Bledsoe C. S., Lopushinsky W. (1989). Pure culture response of ectomycorrhizal fungi to imposed water stress. DOI

Defrenne C. E., Philpott T. J., Guichon S. H. A., Roach W. J., Pickles B. J., Simard S. W. (2019). Shifts in ectomycorrhizal fungal communities and exploration types relate to the environment and fine-root traits across interior Douglas-fir forests of western Canada. PubMed DOI PMC

Dietz L., Collet C., Dupouey J., Lacombe E., Laurent L., Gégout J. (2020). Windstorm-induced canopy oppenings accelerate temperate forest adaptation to global warming.

Don A., Bärwolff M., Kalbitz K., Andruschkewitsch R., Jungkunst H. F., Schulze E. (2012). No rapid soil carbon loss after a windthrow event in the High Tatra. DOI

Dubois H., Verkasalo E., Claessens H. (2020). Potential of birch ( DOI

Egli S., Peter M., Falcato S. (2002). Dynamics of ectomycorrhizal fungi after windthrow.

Fischer A., Marshall P., Camp A. (2013). Disturbances in deciduous forest ecosystems of the northern hemisphere: their effects on both recent and future forest development. DOI

Fleischer P. (2008). Windfall research and monitoring in the High Tatra Mts, objectives, principles, methods and current status.

Ford S. A., Kleinman J. S., Hart J. L. (2018). Effects of wind disturbance and salvage harvesting on macrofungal communities in a DOI

Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. PubMed DOI

Gömöryová E., Střelcová K., Škvarenina J., Bebej J., Gömöry D. (2008). The impact of windthrow and fire disturbances on selected soil properties in the Tatranational park. DOI

Gorzelak M. A., Asay A. K., Pickles B. J., Simard S. W. (2015). Inter-plant communication through mycorrhizal networks mediates complexadaptive behaviour in plant communities. PubMed DOI PMC

Gregow H., Laaksonen A., Alper M. E. (2017). Increasing large scale windstorm damage in Western, Central and Northern European forets, 1951-2010. PubMed PMC

Guignabert A., Delerue F., Gonzalez M., Augusto L., Bakker M. R. (2018). Effects of management practices and topography on ectomycorrhizal fungi of maritime pine during seedling recruitment. DOI

Haas J. C., Street N. R., Sjödin A., Lee N. M., Högberg M. N., Näsholm A., et al. (2018). Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. DOI

Halbwachs H., Simmel J., Bässler C. (2016). Tales and mysteries of fungal fruiting: How morphological and physiological traits affect a pileate lifestyle. DOI

Hobbie E. A., Colpeart J. V., White M. W., Ouimette A. P., Macko S. A. (2008). Nitrogen form, availability and mycorrhizal colonization affect biomass and nitrogen isotope patterns in DOI

Horton T. R., Bruns T. D. (1998). Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir ( DOI

Hulsen T., de Vlieg J., Alkema W. (2008). BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. PubMed DOI PMC

Jones M. D., Durall D. M., Cairney J. W. G. (2003). Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. PubMed DOI

Karst J., Randall M. J., Gehring C. A. (2014). Consequences for ectomycorrhizal fungi of the selective loss or gain of pine across landscape. DOI

Kim S., Axelsson E. P., Girona M. M., Senior J. K. (2021). Continuous-cover forestry maintains soil fungal communities in Norway spruce dominated boreal forests. DOI

Klein T., Siegwolf R. T. W., Körner C. (2016). Belowground carbon trade among tall trees in a temperate forest. PubMed DOI

Knudsen H., Vesterholt J. (2012).

Kranabetter J. M., Friesen J., Gamiet S., Kroeger P. (2004). Ectomycorrhizal mushroom distribution by stand age in western hemlock – lodgepole pine forests of northwestern British Columbia. DOI

Lang C., Seven J., Polle A. (2011). Host preferences and differential contributions of deciduous tree species shape Mycorrhizal species richness in a mixed Centra European forest. PubMed DOI PMC

Lilleskov E. A., Bruns T. D. (2005). Spore dispesal of a resupinate ectomycorrhizal fungus, PubMed DOI

Lilleskov E. A., Bruns T. D., Horton T. R., Taylor D. L., Grogan P. (2004). Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. PubMed DOI

Lofgren L., Nguyen N. H., Kennedy P. G. (2018). Ectomycorrhizal host specifity in a changing world: can legacy effects explain anomalous current associations? PubMed DOI

Martin F., Kohler A., Murat C., Veneault-Fourrey C., Hibbett D. S. (2016). Unearthing the roots of ectomycorrhizal symbioses. PubMed DOI

McGlinn D. J., Xiao X., May F., Gotelli N. J., Engel T., Blowes S. A., et al. (2018). Measurement of biodiversity (MoB): a method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. DOI

Metslaid M., Jõgiste K., Nikinmaa E., Moser W. K., Porcar-Castell A. (2007). Tree variables related to growth response and acclimation of advance regeneration of Norway spruce and other coniferous species after release. DOI

Molina R., Horton T. (2015). “Mycorrhiza specificity: its role in the development and function of common mycelial networks,” in DOI

Molina R., Massicotte H. B., Trappe J. M. (1992). “Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implication,” in

Nikolcheva L. G., Bärlocher F. (2004). Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. DOI

Nilsson R. H., Anslan S., Bahram M., Wurzbacher C., Baldrian P., Tedersoo L. (2019). Mycobiome diversity: high-throughput sequencing and identification of fungi. PubMed DOI

Pec G. J., Simard S. W., Cahill J. F., Karst J. (2020). The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. PubMed DOI

Pickles B. J., Genney D. R., Anderson I. C., Alexander I. J. (2012). Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structured by competitive interactions. PubMed DOI

R Development Core Team (2019).

Rog I., Rosenstock N. P., Körner C., Klein T. (2020). Share the wealth: trees with greater ectomycorrhizal species overlap share more carbon. PubMed DOI PMC

Rosinger C., Sandén H., Matthews D., Mayer M., Godbold D. L. (2018). Patterns in ectomycorrhizal diversity, community composition, and exploration types in European beech, pine, and spruce forests. DOI

Simard S. (2018). “Mycorrhizal networks facilitate tree communication, learning, and memory,” in DOI

Simard S. W. (2009). The foundaitional role of mycorrhizal networks in self-organization of interioir Douglaska-fir forests. DOI

Simard S. W., Beiler K. J., Bingham M. A., Deslippe J. R., Philip L. J., Teste F. J. (2012). Mycorrhizal networks: Mechanisms, ecology and modelling. DOI

Simard S. W., Jones M. D., Durall D. M. (2003). “Carbon and nutrient fluxes within and between mycorrhizal plants,” in DOI

Simard S. W., Perry D. A., Jones M. D., Myrold D. D., Durall D. M., Molina R. (1997). Net transfer of carbon between ectomyycorrhizal tree species in the field. DOI

Song Y. Y., Simard S. W., Carroll A., Mohn W. W., Zeng R. S. (2015). Defoliation of interior Douglaska-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. PubMed PMC

Taberlet P., Gielly L., Pautou G., Bouvet J. (1991). Universal primer for amplification of three non-coding regions chloroplast DNA. PubMed DOI

Taudiere A., Munoz F., Lesne A., Monnet A., Bellanger J., Selosse M., et al. (2015). Beyond ectomycorrhizal bipartite networks: projected networks demonstrate contrasted patterns between early- and late-successional plants in Corsica. PubMed DOI PMC

Tedersoo L., Kõljalg U., Hallenberg N., Larsson K. (2003). Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. PubMed DOI

ter Braak C. J. F., Šmilauer P. (2012).

Treu R., Karst J., Randall M., Pec G. J., Cigan P. W., Simard S. W., et al. (2014). Decline of ectomycorrhizal fungi following a mountain pine beetle epidemic. PubMed DOI

Twieg B. D., Durall D. M., Simard S. W. (2007). Ectomycorrhizal fungal succession in mixed temperate forests. PubMed DOI

van der Heiden M. G. A., Horton T. R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. DOI

van der Linde S., Suz L. M., Orme C. D. L., Cox F., Andreae H., Asi E., et al. (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. PubMed DOI

Vašutová M., Edwars-Jonášová M., Veselá P., Effenberková L., Fleischer P., Cudlín P. (2018). Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow. PubMed DOI

Velmala S. M., Rajala T., Heinonsalo J., Taylor A. F. S., Pennanen T. (2014). Profiling functions of ectomycorrhizal diversity and root structuring in seedling of Norway spruce ( PubMed DOI

Veselá P., Vašutová M., Hofmannová K., Edwards-jonášová M., Cudlín P. (2019b). Ectomycorrhizal community on Norway spruce seedlings following bark beetle infestation. DOI

Visser S. (1995). Ectomycorrhizal fungal succession in jack pine stands following wildfire. DOI

Vu D., Groenewald M., De Vries M., Gehrmann T., Stielow B., Eberhardt U., et al. (2019). Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. PubMed DOI PMC

Wasyliw J., Karst J. (2020). Shifts in ectomycorrhizal exploration types parallel leaf and fine root area with forest age. DOI

White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...