Dynamics of Soil Bacterial and Fungal Communities During the Secondary Succession Following Swidden Agriculture IN Lowland Forests
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34163452
PubMed Central
PMC8215787
DOI
10.3389/fmicb.2021.676251
Knihovny.cz E-zdroje
- Klíčová slova
- ecological succession, rare bacteria and fungi, slash-and-burn, soil microbiome, tropical forests,
- Publikační typ
- časopisecké články MeSH
Elucidating dynamics of soil microbial communities after disturbance is crucial for understanding ecosystem restoration and sustainability. However, despite the widespread practice of swidden agriculture in tropical forests, knowledge about microbial community succession in this system is limited. Here, amplicon sequencing was used to investigate effects of soil ages (spanning at least 60 years) after disturbance, geographic distance (from 0.1 to 10 km) and edaphic property gradients (soil pH, conductivity, C, N, P, Ca, Mg, and K), on soil bacterial and fungal communities along a chronosequence of sites representing the spontaneous succession following swidden agriculture in lowland forests in Papua New Guinea. During succession, bacterial communities (OTU level) as well as its abundant (OTU with relative abundance > 0.5%) and rare (<0.05%) subcommunities, showed less variation but more stage-dependent patterns than those of fungi. Fungal community dynamics were significantly associated only with geographic distance, whereas bacterial community dynamics were significantly associated with edaphic factors and geographic distance. During succession, more OTUs were consistently abundant (n = 12) or rare (n = 653) for bacteria than fungi (abundant = 6, rare = 5), indicating bacteria were more tolerant than fungi to environmental gradients. Rare taxa showed higher successional dynamics than abundant taxa, and rare bacteria (mainly from Actinobacteria, Proteobacteria, Acidobacteria, and Verrucomicrobia) largely accounted for bacterial community development and niche differentiation during succession.
Faculty of Science Institute for Environmental Studies Charles University Praha Czechia
Laboratory of Environmental Microbiology Institute of Microbiology of the CAS Praha Czechia
Zobrazit více v PubMed
Are K. S., Oluwatosin G. A., Adeyolanu O. D., Oke A. O. (2009). Slash and burn effect on soil quality of an Alfisol: soil physical properties. Soil Tillage Res. 103 4–10. 10.1016/j.still.2008.08.011 DOI
Banning N. C., Gleeson D. B., Grigg A. H., Grant C. D., Andersen G. L., Brodie E. L., et al. (2011). Soil microbial community successional patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 77 6158–6164. 10.1128/aem.00764-11 PubMed DOI PMC
Blanchet F. G., Legendre P., Borcard D. (2008). Forward selection of explanatory variables. Ecology 89 2623–2632. 10.1890/07-0986.1 PubMed DOI
Brown S. P., Jumpponen A. (2014). Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol. Ecol. 23 481–497. 10.1111/mec.12487 PubMed DOI
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Chai Y., Cao Y., Yue M., Tian T., Yin Q., Dang H., et al. (2019). Soil abiotic properties and plant functional traits mediate associations between soil microbial and plant communities during a secondary forest succession on the Loess Plateau. Front. Microbiol. 10:895. 10.3389/fmicb.2019.00895 PubMed DOI PMC
Chase J. M., Kraft N. J., Smith K. G., Vellend M., Inouye B. D. (2011). Using null models to disentangle variation in community dissimilarity from variation in α−diversity. Ecosphere 2 1–11.
Dawkins K., Esiobu N. (2018). The Invasive Brazilian Pepper Tree (Schinus terebinthifolius) is colonized by a root microbiome enriched with Alphaproteobacteria and unclassified Spartobacteria. Front. Microbiol. 9:14. 10.3389/fmicb.2018.00876 PubMed DOI PMC
de Boer W., Folman L. B., Summerbell R. C., Boddy L. (2005). Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29 795–811. 10.1016/j.femsre.2004.11.005 PubMed DOI
De Mandal S., Chatterjee R., Kumar N. S. (2017). Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiol. 17:90. 10.1186/s12866-017-1002-x PubMed DOI PMC
Dini-Andreote F., Stegen J. C., van Elsas J. D., Salles J. F. (2015). Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl. Acad. Sci. U.S.A. 112 E1326–E1332. 10.1073/pnas.1414261112 PubMed DOI PMC
Edgar R. C., Flyvbjerg H. (2015). Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31 3476–3482. 10.1093/bioinformatics/btv401 PubMed DOI
Edwards P., Grubb P. (1977). Studies of mineral cycling in a montane rain forest in New Guinea: I. The distribution of organic matter in the vegetation and soil. J. Ecol. 65 943–969. 10.2307/2259387 DOI
Franzetti A., Pittino F., Gandolfi I., Azzoni R., Diolaiuti G., Smiraglia C., et al. (2020). Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps. Fems Microbiol. Ecol. 96:fiaa165. PubMed
Garrido-Benavent I., Pérez-Ortega S., Durán J., Ascaso C., Pointing S. B., Rodríguez-Cielos R., et al. (2020). Differential colonization and succession of microbial communities in rock and soil substrates on a maritime antarctic glacier forefield. Front. Microbiol. 11:126. 10.3389/fmicb.2020.00126 PubMed DOI PMC
Gkarmiri K., Mahmood S., Ekblad A., Alstrom S., Hogberg N., Finlay R. (2017). Identifying the active microbiome associated with roots and rhizosphere soil of Oilseed Rape. Appl. Environ. Microbiol. 83:14. 10.1128/aem.01938-17 PubMed DOI PMC
Goslee S. C., Urban D. L. (2007). The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22 1–19.
Harantová L., Mudrák O., Kohout P., Elhottová D., Frouz J., Baldrian P. (2017). Development of microbial community during primary succession in areas degraded by mining activities. Land Degrad. Dev. 28 2574–2584. 10.1002/ldr.2817 DOI
Harris J. (2009). Soil microbial communities and restoration ecology: facilitators or followers? Science 325 573–574. 10.1126/science.1172975 PubMed DOI
Hartmann M., Niklaus P. A., Zimmermann S., Schmutz S., Kremer J., Abarenkov K., et al. (2014). Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8 226–244. 10.1038/ismej.2013.141 PubMed DOI PMC
Hol W. G., De Boer W., Termorshuizen A. J., Meyer K. M., Schneider J. H., Van Dam N. M., et al. (2010). Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol. Lett. 13 292–301. 10.1111/j.1461-0248.2009.01424.x PubMed DOI
Huon S., De Rouw A., Bonté P., Robain H., Valentin C., Lefèvre I., et al. (2013). Long-term soil carbon loss and accumulation in a catchment following the conversion of forest to arable land in northern Laos. Agric. Ecosyst. Environ. 169 43–57. 10.1016/j.agee.2013.02.007 DOI
Jia X., Dini-Andreote F., Falcao Salles J. (2018). Community assembly processes of the microbial rare biosphere. Trends Microbiol. 26 738–747. 10.1016/j.tim.2018.02.011 PubMed DOI
Jiang Y. L., Song H. F., Lei Y. B., Korpelainen H., Li C. Y. (2019). Distinct co-occurrence patterns and driving forces of rare and abundant bacterial subcommunities following a glacial retreat in the eastern Tibetan Plateau. Biol. Fertil. Soils 55 351–364. 10.1007/s00374-019-01355-w DOI
Jiao S., Chen W., Wei G. (2017). Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol. Ecol. 26 5305–5317. 10.1111/mec.14218 PubMed DOI
Jousset A., Bienhold C., Chatzinotas A., Gallien L., Gobet A., Kurm V., et al. (2017). Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11 853–862. 10.1038/ismej.2016.174 PubMed DOI PMC
Kukla J., Whitfeld T., Cajthaml T., Baldrian P., Veselá - Šimáčková H., Novotnı V., et al. (2018). The effect of traditional slash-and-burn agriculture on soil organic matter, nutrient content and microbiota in tropical ecosystems of New Guinea. Land Degrad. Dev. 30 166–177. 10.1002/ldr.3203 DOI
Legendre P., Borcard D., Peres-Neto P. R. (2008). Analyzing or explaining beta diversity? Comment Ecol. 89 3238–3244. 10.1890/07-0272.1 PubMed DOI
Li W., Godzik A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22 1658–1659. 10.1093/bioinformatics/btl158 PubMed DOI
Lynch M. D., Neufeld J. D. (2015). Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13:217. 10.1038/nrmicro3400 PubMed DOI
McAlpine J. R. (1983). Climate of Papua New Guinea. Canberra, NSW: Commonwealth Scientific and Industrial Research Organization in association with Australian National University Press.
Melbourne B. A., Hastings A. (2008). Extinction risk depends strongly on factors contributing to stochasticity. Nature 454 100–103. 10.1038/nature06922 PubMed DOI
Mo Y., Zhang W., Yang J., Lin Y., Yu Z., Lin S. (2018). Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J. 12 2198–2210. 10.1038/s41396-018-0153-6 PubMed DOI PMC
Murphy J., Riley J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27 31–36. 10.1016/s0003-2670(00)88444-5 DOI
Nguyen N. H., Song Z., Bates S. T., Branco S., Tedersoo L., Menke J., et al. (2016). FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20 241–248. 10.1016/j.funeco.2015.06.006 DOI
Ogle S. M., Breidt F. J., Paustian K. (2005). Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72 87–121. 10.1007/s10533-004-0360-2 DOI
Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’hara R., et al. (2013). Package ‘vegan’. Commun. Ecol. Package Version 2 1–295.
Pester M., Bittner N., Deevong P., Wagner M., Loy A. (2010). A ‘rare biosphere’microorganism contributes to sulfate reduction in a peatland. ISME J. 4:1591. 10.1038/ismej.2010.75 PubMed DOI PMC
Rivett D. W., Bell T. (2018). Abundance determines the functional role of bacterial phylotypes in complex communities. Nat. Microbiol. 3 767–772. 10.1038/s41564-018-0180-0 PubMed DOI PMC
Sagova-Mareckova M., Cermak L., Novotna J., Plhackova K., Forstova J., Kopecky J. (2008). Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 74 2902–2907. 10.1128/AEM.02161-07 PubMed DOI PMC
Shu D., Zhang B., He Y., Wei G. (2018). Abundant and rare microbial sub-communities in anammox granules present contrasting assemblage patterns and metabolic functions in response to inorganic carbon stresses. Bioresour. Technol. 265 299–309. 10.1016/j.biortech.2018.06.022 PubMed DOI
Sun S., Li S., Avera B. N., Strahm B. D., Badgley B. D. (2017). Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 83:14. 10.1128/aem.00966-17 PubMed DOI PMC
Urbanova M., Snajdr J., Baldrian P. (2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84 53–64. 10.1016/j.soilbio.2015.02.011 DOI
Wagg C., Bender S. F., Widmer F., van der Heijden M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 111 5266–5270. 10.1073/pnas.1320054111 PubMed DOI PMC
Wang J., Shen J., Wu Y., Tu C., Soininen J., Stegen J. C., et al. (2013). Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 7:1310. 10.1038/ismej.2013.30 PubMed DOI PMC
Wang N. F., Zhang T., Yang X., Wang S., Yu Y., Dong L. L., et al. (2016). Diversity and composition of bacterial community in soils and lake sediments from an Arctic Lake Area. Front. Microbiol. 7:9. 10.3389/fmicb.2016.01170 PubMed DOI PMC
Whitfeld T. J. S., Kress W. J., Erickson D. L., Weiblen G. D. (2012). Change in community phylogenetic structure during tropical forest succession: evidence from New Guinea. Ecography 35 821–830. 10.1111/j.1600-0587.2011.07181.x DOI
Whitfeld T. J. S., Lasky J. R., Damas K., Sosanika G., Molem K., Montgomery R. A. (2014). Species richness, forest structure, and functional diversity during succession in the New Guinea Lowlands. Biotropica 46 538–548. 10.1111/btp.12136 DOI
Wood A. W. (1982). “The soils of New Guinea,” in Biogeography and Ecology of New Guinea. Monographiae Biologicae, Vol. 42 ed. Gressitt J. L. (Dordrecht: Springer; ), 73–83. 10.1007/978-94-009-8632-9_5 DOI
Wu W., Logares R., Huang B., Hsieh C. H. (2017). Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environ. Microbiol. 19 287–300. 10.1111/1462-2920.13606 PubMed DOI
Xiao X., Liang Y., Zhou S., Zhuang S., Sun B. (2018). Fungal community reveals less dispersal limitation and potentially more connected network than that of bacteria in bamboo forest soils. Mol. Ecol. 27 550–563. 10.1111/mec.14428 PubMed DOI
Yachi S., Loreau M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl. Acad. Sci. U.S.A. 96 1463–1468. 10.1073/pnas.96.4.1463 PubMed DOI PMC
Yan W., Ma H., Shi G., Li Y., Sun B., Xiao X., et al. (2017). Independent shifts of abundant and rare bacterial populations across East Antarctica Glacial Foreland. Front. Microbiol. 8:1534. 10.3389/fmicb.2017.01534 PubMed DOI PMC
Zhang J., Zhang B., Liu Y., Guo Y., Shi P., Wei G. (2018). Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Sci. Total Environ. 644 791–800. 10.1016/j.scitotenv.2018.07.016 PubMed DOI
Zhou J., Deng Y., Zhang P., Xue K., Liang Y., Van Nostrand J. D., et al. (2014). Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl. Acad. Sci.U.S.A. 111 E836–E845. 10.1073/pnas.1324044111 PubMed DOI PMC
Zimmermann M., Leifeld J., Schmidt M., Smith P., Fuhrer J. (2007). Measured soil organic matter fractions can be related to pools in the RothC model. Eur. J. Soil Sci. 58 658–667. 10.1111/j.1365-2389.2006.00855.x DOI
Regional biogeography versus intra-annual dynamics of the root and soil microbiome