Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns

. 2020 Sep 26 ; 6 (4) : . [epub] 20200926

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32993121

Grantová podpora
18-25706S Czech Science Foundation
LTT17022 Ministry of Education, Youth and Sports of the Czech Republic

In temperate forests, climate seasonality restricts the photosynthetic activity of primary producers to the warm season from spring to autumn, while the cold season with temperatures below the freezing point represents a period of strongly reduced plant activity. Although soil microorganisms are active all-year-round, their expressions show seasonal patterns. This is especially visible on the ectomycorrhizal fungi, the most abundant guild of fungi in coniferous forests. We quantified the production of fungal mycelia using ingrowth sandbags in the organic layer of soil in temperate coniferous forest and analysed the composition of fungal communities in four consecutive seasons. We show that fungal biomass production is as low as 0.029 µg g-1 of sand in December-March, while it reaches 0.122 µg g-1 in June-September. The majority of fungi show distinct patterns of seasonal mycelial production, with most ectomycorrhizal fungi colonising ingrowth bags in the spring or summer, while the autumn and winter colonisation was mostly due to moulds. Our results indicate that fungal taxa differ in their seasonal patterns of mycelial production. Although fungal biomass turnover appears all-year-round, its rates are much faster in the period of plant activity than in the cold season.

Zobrazit více v PubMed

Baldrian P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017;41:109–130. doi: 10.1093/femsre/fuw040. PubMed DOI

Větrovský T., Morais D., Kohout P., Lepinay C., Algora C., Awokunle Hollá S., Bahnmann B.D., Bílohnědá K., Brabcová V., D’Alò F., et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data. 2020;7:228. doi: 10.1038/s41597-020-0567-7. PubMed DOI PMC

Crowther T.W., van den Hoogen J., Wan J., Mayes M.A., Keiser A.D., Mo L., Averill C., Maynard D.S. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550. doi: 10.1126/science.aav0550. PubMed DOI

Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017;15:579–590. doi: 10.1038/nrmicro.2017.87. PubMed DOI

Clemmensen K.E., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., Stenlid J., Finlay R.D., Wardle D.A., Lindahl B.D. Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest. Science. 2013;339:1615–1618. doi: 10.1126/science.1231923. PubMed DOI

López-Mondéjar R., Brabcová V., Štursová M., Davidová A., Jansa J., Cajthaml T., Baldrian P. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. 2018;12:1768–1778. doi: 10.1038/s41396-018-0084-2. PubMed DOI PMC

Brabcová V., Štursová M., Baldrian P. Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol. Biochem. 2018;118:187–198. doi: 10.1016/j.soilbio.2017.12.012. DOI

Lindahl B.D., Tunlid A. Ectomycorrhizal fungi-potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015;205:1443–1447. doi: 10.1111/nph.13201. PubMed DOI

Zak D.R., Pellitier P.T., Argiroff W.A., Castillo B., James T.Y., Nave L.E., Averill C., Beidler K.V., Bhatnagar J., Blesh J., et al. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol. 2019;223:33–39. doi: 10.1111/nph.15679. PubMed DOI

Frey S.D. Mycorrhizal fungi as mediators of soil organic matter dynamics. In: Futuyma D.J., editor. Annual Review of Ecology, Evolution, and Systematics. Volume 50. Annual Reviews; Palo Alto, CA, USA: 2019. pp. 237–259.

Wallander H., Goransson H., Rosengren U. Production, standing biomass and natural abundance of N-15 and C-13 in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia. 2004;139:89–97. doi: 10.1007/s00442-003-1477-z. PubMed DOI

Ouimette A.P., Ollinger S.V., Lepine L.C., Stephens R.B., Rowe R.J., Vadeboncoeur M.A., Tumber-Davila S.J., Hobbie E.A. Accounting for Carbon Flux to Mycorrhizal Fungi May Resolve Discrepancies in Forest Carbon Budgets. Ecosystems. 2020;23:715–729. doi: 10.1007/s10021-019-00440-3. DOI

Ostonen I., Lohmus K., Pajuste K. Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods. For. Ecol. Manag. 2005;212:264–277. doi: 10.1016/j.foreco.2005.03.064. DOI

Wallander H., Ekblad A., Godbold D.L., Johnson D., Bahr A., Baldrian P., Björk R.G., Kieliszewska-Rokicka B., Kjøller R., Kraigher H., et al. Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils—A review. Soil Biol. Biochem. 2013;57:1034–1047. doi: 10.1016/j.soilbio.2012.08.027. DOI

Ekblad A., Wallander H., Godbold D.L., Cruz C., Johnson D., Baldrian P., Bjork R.G., Epron D., Kieliszewska-Rokicka B., Kjoller R., et al. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: Role in carbon cycling. Plant Soil. 2013;366:1–27. doi: 10.1007/s11104-013-1630-3. DOI

Zhang Z.L., Phillips R.P., Zhao W.Q., Yuan Y.S., Liu Q., Yin H.J. Mycelia-derived C contributes more to nitrogen cycling than root-derived C in ectomycorrhizal alpine forests. Funct. Ecol. 2019;33:346–359. doi: 10.1111/1365-2435.13236. DOI

Merganicova K., Merganic J., Lehtonen A., Vacchiano G., Sever M.Z.O., Augustynczik A.L.D., Grote R., Kyselova I., Makela A., Yousefpour R., et al. Forest carbon allocation modelling under climate change. Tree Physiol. 2019;39:1937–1960. doi: 10.1093/treephys/tpz105. PubMed DOI PMC

Baldrian P. Microbial activity and the dynamics of ecosystem processes in forest soils. Curr. Opin. Microbiol. 2017;37:128–134. doi: 10.1016/j.mib.2017.06.008. PubMed DOI

Zifcakova L., Vetrovsky T., Howe A., Baldrian P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 2016;18:288–301. doi: 10.1111/1462-2920.13026. PubMed DOI

Wardle D.A. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol. Biochem. 1998;30:1627–1637. doi: 10.1016/S0038-0717(97)00201-0. DOI

Epron D., Bahn M., Derrien D., Lattanzi F.A., Pumpanen J., Gessler A., Hogberg P., Maillard P., Dannoura M., Gerant D., et al. Pulse-labelling trees to study carbon allocation dynamics: A review of methods, current knowledge and future prospects. Tree Physiol. 2012;32:776–798. doi: 10.1093/treephys/tps057. PubMed DOI

Kuptz D., Fleischmann F., Matyssek R., Grams T.E.E. Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytol. 2011;191:160–172. doi: 10.1111/j.1469-8137.2011.03676.x. PubMed DOI

Mildner M., Bader M.K.F., Leuzinger S., Siegwolf R.T.W., Korner C. Long-term C-13 labeling provides evidence for temporal and spatial carbon allocation patterns in mature Picea abies. Oecologia. 2014;175:747–762. doi: 10.1007/s00442-014-2935-5. PubMed DOI

Kaiser C., Koranda M., Kitzler B., Fuchslueger L., Schnecker J., Schweiger P., Rasche F., Zechmeister-Boltenstern S., Sessitsch A., Richter A. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 2010;187:843–858. doi: 10.1111/j.1469-8137.2010.03321.x. PubMed DOI PMC

Yarwood S.A., Myrold D.D., Hogberg M.N. Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest. FEMS Microbiol. Ecol. 2009;70:151–162. doi: 10.1111/j.1574-6941.2009.00733.x. PubMed DOI

Högberg M.N., Briones M.J.I., Keel S.G., Metcalfe D.B., Campbell C., Midwood A.J., Thornton B., Hurry V., Linder S., Näsholm T., et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol. 2010;187:485–493. doi: 10.1111/j.1469-8137.2010.03274.x. PubMed DOI

Bahr A., Ellstrom M., Bergh J., Wallander H. Nitrogen leaching and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest fertilized with nitrogen and phosphorus. Plant Soil. 2015;390:323–335. doi: 10.1007/s11104-015-2408-6. DOI

Bakker M.R., Delerue F., Andreasson F., Ngao J., Dannoura M., Zeller B., Epron D. Hyphal growth in ingrowth mesh bags in Fagus sylvatica, Quercus petraea and Pinus pinaster stands in France. Eur. J. Soil Biol. 2015;70:111–117. doi: 10.1016/j.ejsobi.2015.08.003. DOI

Vořiškova J., Brabcová V., Cajthaml T., Baldrian P. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol. 2014;201:269–278. doi: 10.1111/nph.12481. PubMed DOI

Wallander H., Nilsson L.O., Hagerberg D., Bååth E. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol. 2001;151:753–760. doi: 10.1046/j.0028-646x.2001.00199.x. PubMed DOI

Cruz-Paredes C., Froslev T.G., Michelsen A., Bang-Andreasen T., Hansen M., Ingerslev M., Skov S., Wallander H., Kjoller R. Wood ash application in a managed Norway spruce plantation did not affect ectomycorrhizal diversity or N retention capacity. Fungal Ecol. 2019;39:1–11. doi: 10.1016/j.funeco.2018.11.002. DOI

Shigyo N., Umeki K., Hirao T. Seasonal Dynamics of Soil Fungal and Bacterial Communities in Cool-Temperate Montane Forests. Front. Microbiol. 2019;10:1944. doi: 10.3389/fmicb.2019.01944. PubMed DOI PMC

Lladó S., Větrovský T., Baldrian P. Tracking of the activity of individual bacteria in temperate forest soils shows guild-specific responses to seasonality. Soil Biol. Biochem. 2019;135:275–282. doi: 10.1016/j.soilbio.2019.05.010. DOI

Žifčáková L., Větrovský T., Lombard V., Henrissat B., Howe A., Baldrian P. Feed in summer, rest in winter: Microbial carbon utilization in forest topsoil. Microbiome. 2017;5:122. doi: 10.1186/s40168-017-0340-0. PubMed DOI PMC

Větrovský T., Kohout P., Kopecký M., Machac A., Man M., Bahnmann B.D., Brabcová V., Choi J., Meszárošová L., Human Z.R., et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019;10:5142. doi: 10.1038/s41467-019-13164-8. PubMed DOI PMC

Van der Heijden M.G.A., Martin F.M., Selosse M.-A., Sanders I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015;205:1406–1423. doi: 10.1111/nph.13288. PubMed DOI

Baldrian P., Kolařík M., Štursová M., Kopecký J., Valášková V., Větrovský T., Žifčáková L., Šnajdr J., Rídl J., Vlček Č., et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012;6:248–258. doi: 10.1038/ismej.2011.95. PubMed DOI PMC

Wild J., Kopecký M., Macek M., Šanda M., Jankovec J., Haase T. Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agric. For. Meteorol. 2019;268:40–47. doi: 10.1016/j.agrformet.2018.12.018. DOI

Baldrian P., Větrovský T., Cajthaml T., Dobiášová P., Petránková M., Šnajdr J., Eichlerová I. Estimation of fungal biomass in forest litter and soil. Fungal Ecol. 2013;6:1–11. doi: 10.1016/j.funeco.2012.10.002. DOI

Šnajdr J., Valášková V., Merhautová V., Herinková J., Cajthaml T., Baldrian P. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 2008;40:2068–2075. doi: 10.1016/j.soilbio.2008.01.015. DOI

Bååth E. Estimation of fungal growth rates in soil using C-14-acetate incorporation into ergosterol. Soil Biol. Biochem. 2001;33:2011–2018. doi: 10.1016/S0038-0717(01)00137-7. DOI

Sagova-Mareckova M., Cermak L., Novotna J., Plhackova K., Forstova J., Kopecky J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 2008;74:2902–2907. doi: 10.1128/AEM.02161-07. PubMed DOI PMC

Ihrmark K., Bodeker I.T.M., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., Strid Y., Stenlid J., Brandstrom-Durling M., Clemmensen K.E., et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012;82:666–677. doi: 10.1111/j.1574-6941.2012.01437.x. PubMed DOI

Větrovský T., Baldrian P., Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Aronesty E. Comparison of sequencing utility programs. Open Bioinform. J. 2013;7:1–8. doi: 10.2174/1875036201307010001. DOI

Nilsson R.H., Veldre V., Hartmann M., Unterseher M., Amend A., Bergsten J., Kristiansson E., Ryberg M., Jumpponen A., Abarenkov K. An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol. 2010;3:284–287. doi: 10.1016/j.funeco.2010.05.002. DOI

Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI

Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI

Koljalg U., Nilsson R.H., Abarenkov K., Tedersoo L., Taylor A.F.S., Bahram M., Bates S.T., Bruns T.D., Bengtsson-Palme J., Callaghan T.M., et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013;22:5271–5277. doi: 10.1111/mec.12481. PubMed DOI

Tedersoo L., Bahram M., Polme S., Koljalg U., Yorou N.S., Wijesundera R., Ruiz L.V., Vasco-Palacios A.M., Thu P.Q., Suija A., et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688. doi: 10.1126/science.1256688. PubMed DOI

Sterkenburg E., Bahr A., Durling M.B., Clemmensen K.E., Lindahl B.D. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol. 2015;207:1145–1158. doi: 10.1111/nph.13426. PubMed DOI

R_Core_Team R: A Language and Environment for Statistical Computing. [(accessed on 28 February 2020)]; Available online: https://www.R-project.org/

Brabcová V., Nováková M., Davidová A., Baldrian P. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol. 2016;210:1369–1381. doi: 10.1111/nph.13849. PubMed DOI

Cotrufo M.F., Wallenstein M.D., Boot C.M., Denef K., Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013;19:988–995. doi: 10.1111/gcb.12113. PubMed DOI

Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kogel-Knabner I., Lehmann J., Manning D.A.C., et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56. doi: 10.1038/nature10386. PubMed DOI

Hagenbo A., Kyaschenko J., Clemmensen K.E., Lindahl B.D., Fransson P. Fungal community shifts underpin declining mycelial production and turnover across a Pinus sylvestris chronosequence. J. Ecol. 2018;106:490–501. doi: 10.1111/1365-2745.12917. DOI

Phillips L.A., Ward V., Jones M.D. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J. 2014;8:699–713. doi: 10.1038/ismej.2013.195. PubMed DOI PMC

Rosenstock N., Ellström M., Oddsdottir E., Sigurdsson B.D., Wallander H. Carbon sequestration and community composition of ectomycorrhizal fungi across a geothermal warming gradient in an Icelandic spruce forest. Fungal Ecol. 2019;40:32–42. doi: 10.1016/j.funeco.2018.05.010. DOI

Wallander H., Johansson U., Sterkenburg E., Durling M.B., Lindahl B.D. Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol. 2010;187:1124–1134. doi: 10.1111/j.1469-8137.2010.03324.x. PubMed DOI

Branco S., Bruns T.D., Singleton I. Fungi at a Small Scale: Spatial Zonation of Fungal Assemblages around Single Trees. PLoS ONE. 2013;8:e78295. doi: 10.1371/journal.pone.0078295. PubMed DOI PMC

Nicolas C., Almeida J.P., Ellstrom M., Bahr A., Bone S.E., Rosenstock N.P., Bargar J.R., Tunlid A., Persson P., Wallander H. Chemical changes in organic matter after fungal colonization in a nitrogen fertilized and unfertilized Norway spruce forest. Plant Soil. 2017;419:113–126. doi: 10.1007/s11104-017-3324-8. PubMed DOI PMC

Almeida J.P., Rosenstock N.P., Forsmark B., Bergh J., Wallander H. Ectomycorrhizal community composition and function in a spruce forest transitioning between nitrogen and phosphorus limitation. Fungal Ecol. 2019;40:20–31. doi: 10.1016/j.funeco.2018.05.008. DOI

Weigt R.B., Raidl S., Verma R., Agerer R. Exploration type-specific standard values of extramatrical mycelium—A step towards quantifying ectomycorrhizal space occupation and biomass in natural soil. Mycol. Prog. 2012;11:287–297. doi: 10.1007/s11557-011-0750-5. DOI

Kjøller R. Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiol. Ecol. 2006;58:214–224. doi: 10.1111/j.1574-6941.2006.00166.x. PubMed DOI

Kjøller R., Nilsson L.O., Hansen K., Schmidt I.K., Vesterdal L., Gundersen P. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol. 2012;194:278–286. doi: 10.1111/j.1469-8137.2011.04041.x. PubMed DOI

Zwetsloot M.J., Goebel M., Paya A., Grams T.E.E., Bauerle T.L. Specific spatio-temporal dynamics of absorptive fine roots in response to neighbor species identity in a mixed beech-spruce forest. Tree Physiol. 2019;39:1867–1879. doi: 10.1093/treephys/tpz086. PubMed DOI

Martino E., Morin E., Grelet G.-A., Kuo A., Kohler A., Daghino S., Barry K.W., Cichocki N., Clum A., Dockter R.B., et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–1229. doi: 10.1111/nph.14974. PubMed DOI

Santalahti M., Sun H., Jumpponen A., Pennanen T., Heinonsalo J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol. Ecol. 2016;92:fiw170. doi: 10.1093/femsec/fiw170. PubMed DOI

Mašínová T., Yurkov A., Baldrian P. Forest soil yeasts: Decomposition potential and the utilization of carbon sources. Fungal Ecol. 2018;34:10–19. doi: 10.1016/j.funeco.2018.03.005. DOI

De la Varga H., Agueda B., Agreda T., Martinez-Pena F., Parlade J., Pera J. Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain. Mycorrhiza. 2013;23:391–402. doi: 10.1007/s00572-013-0481-3. PubMed DOI

Castano C., Alday J.G., Parlade J., Pera J., de Aragon J.M., Bonet J.A. Seasonal dynamics of the ectomycorrhizal fungus Lactarius vinosus are altered by changes in soil moisture and temperature. Soil Biol. Biochem. 2017;115:253–260. doi: 10.1016/j.soilbio.2017.08.021. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...