Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-25706S
Czech Science Foundation
LTT17022
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32993121
PubMed Central
PMC7712845
DOI
10.3390/jof6040190
PII: jof6040190
Knihovny.cz E-zdroje
- Klíčová slova
- Picea abies, ectomycorrhiza, fungal ecology, metabarcoding, mycelial growth, soil fungi, temperate forest,
- Publikační typ
- časopisecké články MeSH
In temperate forests, climate seasonality restricts the photosynthetic activity of primary producers to the warm season from spring to autumn, while the cold season with temperatures below the freezing point represents a period of strongly reduced plant activity. Although soil microorganisms are active all-year-round, their expressions show seasonal patterns. This is especially visible on the ectomycorrhizal fungi, the most abundant guild of fungi in coniferous forests. We quantified the production of fungal mycelia using ingrowth sandbags in the organic layer of soil in temperate coniferous forest and analysed the composition of fungal communities in four consecutive seasons. We show that fungal biomass production is as low as 0.029 µg g-1 of sand in December-March, while it reaches 0.122 µg g-1 in June-September. The majority of fungi show distinct patterns of seasonal mycelial production, with most ectomycorrhizal fungi colonising ingrowth bags in the spring or summer, while the autumn and winter colonisation was mostly due to moulds. Our results indicate that fungal taxa differ in their seasonal patterns of mycelial production. Although fungal biomass turnover appears all-year-round, its rates are much faster in the period of plant activity than in the cold season.
Zobrazit více v PubMed
Baldrian P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017;41:109–130. doi: 10.1093/femsre/fuw040. PubMed DOI
Větrovský T., Morais D., Kohout P., Lepinay C., Algora C., Awokunle Hollá S., Bahnmann B.D., Bílohnědá K., Brabcová V., D’Alò F., et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data. 2020;7:228. doi: 10.1038/s41597-020-0567-7. PubMed DOI PMC
Crowther T.W., van den Hoogen J., Wan J., Mayes M.A., Keiser A.D., Mo L., Averill C., Maynard D.S. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550. doi: 10.1126/science.aav0550. PubMed DOI
Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017;15:579–590. doi: 10.1038/nrmicro.2017.87. PubMed DOI
Clemmensen K.E., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., Stenlid J., Finlay R.D., Wardle D.A., Lindahl B.D. Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest. Science. 2013;339:1615–1618. doi: 10.1126/science.1231923. PubMed DOI
López-Mondéjar R., Brabcová V., Štursová M., Davidová A., Jansa J., Cajthaml T., Baldrian P. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. 2018;12:1768–1778. doi: 10.1038/s41396-018-0084-2. PubMed DOI PMC
Brabcová V., Štursová M., Baldrian P. Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol. Biochem. 2018;118:187–198. doi: 10.1016/j.soilbio.2017.12.012. DOI
Lindahl B.D., Tunlid A. Ectomycorrhizal fungi-potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015;205:1443–1447. doi: 10.1111/nph.13201. PubMed DOI
Zak D.R., Pellitier P.T., Argiroff W.A., Castillo B., James T.Y., Nave L.E., Averill C., Beidler K.V., Bhatnagar J., Blesh J., et al. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol. 2019;223:33–39. doi: 10.1111/nph.15679. PubMed DOI
Frey S.D. Mycorrhizal fungi as mediators of soil organic matter dynamics. In: Futuyma D.J., editor. Annual Review of Ecology, Evolution, and Systematics. Volume 50. Annual Reviews; Palo Alto, CA, USA: 2019. pp. 237–259.
Wallander H., Goransson H., Rosengren U. Production, standing biomass and natural abundance of N-15 and C-13 in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia. 2004;139:89–97. doi: 10.1007/s00442-003-1477-z. PubMed DOI
Ouimette A.P., Ollinger S.V., Lepine L.C., Stephens R.B., Rowe R.J., Vadeboncoeur M.A., Tumber-Davila S.J., Hobbie E.A. Accounting for Carbon Flux to Mycorrhizal Fungi May Resolve Discrepancies in Forest Carbon Budgets. Ecosystems. 2020;23:715–729. doi: 10.1007/s10021-019-00440-3. DOI
Ostonen I., Lohmus K., Pajuste K. Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: Comparison of soil core and ingrowth core methods. For. Ecol. Manag. 2005;212:264–277. doi: 10.1016/j.foreco.2005.03.064. DOI
Wallander H., Ekblad A., Godbold D.L., Johnson D., Bahr A., Baldrian P., Björk R.G., Kieliszewska-Rokicka B., Kjøller R., Kraigher H., et al. Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils—A review. Soil Biol. Biochem. 2013;57:1034–1047. doi: 10.1016/j.soilbio.2012.08.027. DOI
Ekblad A., Wallander H., Godbold D.L., Cruz C., Johnson D., Baldrian P., Bjork R.G., Epron D., Kieliszewska-Rokicka B., Kjoller R., et al. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: Role in carbon cycling. Plant Soil. 2013;366:1–27. doi: 10.1007/s11104-013-1630-3. DOI
Zhang Z.L., Phillips R.P., Zhao W.Q., Yuan Y.S., Liu Q., Yin H.J. Mycelia-derived C contributes more to nitrogen cycling than root-derived C in ectomycorrhizal alpine forests. Funct. Ecol. 2019;33:346–359. doi: 10.1111/1365-2435.13236. DOI
Merganicova K., Merganic J., Lehtonen A., Vacchiano G., Sever M.Z.O., Augustynczik A.L.D., Grote R., Kyselova I., Makela A., Yousefpour R., et al. Forest carbon allocation modelling under climate change. Tree Physiol. 2019;39:1937–1960. doi: 10.1093/treephys/tpz105. PubMed DOI PMC
Baldrian P. Microbial activity and the dynamics of ecosystem processes in forest soils. Curr. Opin. Microbiol. 2017;37:128–134. doi: 10.1016/j.mib.2017.06.008. PubMed DOI
Zifcakova L., Vetrovsky T., Howe A., Baldrian P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 2016;18:288–301. doi: 10.1111/1462-2920.13026. PubMed DOI
Wardle D.A. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol. Biochem. 1998;30:1627–1637. doi: 10.1016/S0038-0717(97)00201-0. DOI
Epron D., Bahn M., Derrien D., Lattanzi F.A., Pumpanen J., Gessler A., Hogberg P., Maillard P., Dannoura M., Gerant D., et al. Pulse-labelling trees to study carbon allocation dynamics: A review of methods, current knowledge and future prospects. Tree Physiol. 2012;32:776–798. doi: 10.1093/treephys/tps057. PubMed DOI
Kuptz D., Fleischmann F., Matyssek R., Grams T.E.E. Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytol. 2011;191:160–172. doi: 10.1111/j.1469-8137.2011.03676.x. PubMed DOI
Mildner M., Bader M.K.F., Leuzinger S., Siegwolf R.T.W., Korner C. Long-term C-13 labeling provides evidence for temporal and spatial carbon allocation patterns in mature Picea abies. Oecologia. 2014;175:747–762. doi: 10.1007/s00442-014-2935-5. PubMed DOI
Kaiser C., Koranda M., Kitzler B., Fuchslueger L., Schnecker J., Schweiger P., Rasche F., Zechmeister-Boltenstern S., Sessitsch A., Richter A. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 2010;187:843–858. doi: 10.1111/j.1469-8137.2010.03321.x. PubMed DOI PMC
Yarwood S.A., Myrold D.D., Hogberg M.N. Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest. FEMS Microbiol. Ecol. 2009;70:151–162. doi: 10.1111/j.1574-6941.2009.00733.x. PubMed DOI
Högberg M.N., Briones M.J.I., Keel S.G., Metcalfe D.B., Campbell C., Midwood A.J., Thornton B., Hurry V., Linder S., Näsholm T., et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol. 2010;187:485–493. doi: 10.1111/j.1469-8137.2010.03274.x. PubMed DOI
Bahr A., Ellstrom M., Bergh J., Wallander H. Nitrogen leaching and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest fertilized with nitrogen and phosphorus. Plant Soil. 2015;390:323–335. doi: 10.1007/s11104-015-2408-6. DOI
Bakker M.R., Delerue F., Andreasson F., Ngao J., Dannoura M., Zeller B., Epron D. Hyphal growth in ingrowth mesh bags in Fagus sylvatica, Quercus petraea and Pinus pinaster stands in France. Eur. J. Soil Biol. 2015;70:111–117. doi: 10.1016/j.ejsobi.2015.08.003. DOI
Vořiškova J., Brabcová V., Cajthaml T., Baldrian P. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol. 2014;201:269–278. doi: 10.1111/nph.12481. PubMed DOI
Wallander H., Nilsson L.O., Hagerberg D., Bååth E. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol. 2001;151:753–760. doi: 10.1046/j.0028-646x.2001.00199.x. PubMed DOI
Cruz-Paredes C., Froslev T.G., Michelsen A., Bang-Andreasen T., Hansen M., Ingerslev M., Skov S., Wallander H., Kjoller R. Wood ash application in a managed Norway spruce plantation did not affect ectomycorrhizal diversity or N retention capacity. Fungal Ecol. 2019;39:1–11. doi: 10.1016/j.funeco.2018.11.002. DOI
Shigyo N., Umeki K., Hirao T. Seasonal Dynamics of Soil Fungal and Bacterial Communities in Cool-Temperate Montane Forests. Front. Microbiol. 2019;10:1944. doi: 10.3389/fmicb.2019.01944. PubMed DOI PMC
Lladó S., Větrovský T., Baldrian P. Tracking of the activity of individual bacteria in temperate forest soils shows guild-specific responses to seasonality. Soil Biol. Biochem. 2019;135:275–282. doi: 10.1016/j.soilbio.2019.05.010. DOI
Žifčáková L., Větrovský T., Lombard V., Henrissat B., Howe A., Baldrian P. Feed in summer, rest in winter: Microbial carbon utilization in forest topsoil. Microbiome. 2017;5:122. doi: 10.1186/s40168-017-0340-0. PubMed DOI PMC
Větrovský T., Kohout P., Kopecký M., Machac A., Man M., Bahnmann B.D., Brabcová V., Choi J., Meszárošová L., Human Z.R., et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019;10:5142. doi: 10.1038/s41467-019-13164-8. PubMed DOI PMC
Van der Heijden M.G.A., Martin F.M., Selosse M.-A., Sanders I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015;205:1406–1423. doi: 10.1111/nph.13288. PubMed DOI
Baldrian P., Kolařík M., Štursová M., Kopecký J., Valášková V., Větrovský T., Žifčáková L., Šnajdr J., Rídl J., Vlček Č., et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012;6:248–258. doi: 10.1038/ismej.2011.95. PubMed DOI PMC
Wild J., Kopecký M., Macek M., Šanda M., Jankovec J., Haase T. Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agric. For. Meteorol. 2019;268:40–47. doi: 10.1016/j.agrformet.2018.12.018. DOI
Baldrian P., Větrovský T., Cajthaml T., Dobiášová P., Petránková M., Šnajdr J., Eichlerová I. Estimation of fungal biomass in forest litter and soil. Fungal Ecol. 2013;6:1–11. doi: 10.1016/j.funeco.2012.10.002. DOI
Šnajdr J., Valášková V., Merhautová V., Herinková J., Cajthaml T., Baldrian P. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 2008;40:2068–2075. doi: 10.1016/j.soilbio.2008.01.015. DOI
Bååth E. Estimation of fungal growth rates in soil using C-14-acetate incorporation into ergosterol. Soil Biol. Biochem. 2001;33:2011–2018. doi: 10.1016/S0038-0717(01)00137-7. DOI
Sagova-Mareckova M., Cermak L., Novotna J., Plhackova K., Forstova J., Kopecky J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 2008;74:2902–2907. doi: 10.1128/AEM.02161-07. PubMed DOI PMC
Ihrmark K., Bodeker I.T.M., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., Strid Y., Stenlid J., Brandstrom-Durling M., Clemmensen K.E., et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012;82:666–677. doi: 10.1111/j.1574-6941.2012.01437.x. PubMed DOI
Větrovský T., Baldrian P., Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC
Aronesty E. Comparison of sequencing utility programs. Open Bioinform. J. 2013;7:1–8. doi: 10.2174/1875036201307010001. DOI
Nilsson R.H., Veldre V., Hartmann M., Unterseher M., Amend A., Bergsten J., Kristiansson E., Ryberg M., Jumpponen A., Abarenkov K. An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol. 2010;3:284–287. doi: 10.1016/j.funeco.2010.05.002. DOI
Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI
Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI
Koljalg U., Nilsson R.H., Abarenkov K., Tedersoo L., Taylor A.F.S., Bahram M., Bates S.T., Bruns T.D., Bengtsson-Palme J., Callaghan T.M., et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013;22:5271–5277. doi: 10.1111/mec.12481. PubMed DOI
Tedersoo L., Bahram M., Polme S., Koljalg U., Yorou N.S., Wijesundera R., Ruiz L.V., Vasco-Palacios A.M., Thu P.Q., Suija A., et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688. doi: 10.1126/science.1256688. PubMed DOI
Sterkenburg E., Bahr A., Durling M.B., Clemmensen K.E., Lindahl B.D. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol. 2015;207:1145–1158. doi: 10.1111/nph.13426. PubMed DOI
R_Core_Team R: A Language and Environment for Statistical Computing. [(accessed on 28 February 2020)]; Available online: https://www.R-project.org/
Brabcová V., Nováková M., Davidová A., Baldrian P. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol. 2016;210:1369–1381. doi: 10.1111/nph.13849. PubMed DOI
Cotrufo M.F., Wallenstein M.D., Boot C.M., Denef K., Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013;19:988–995. doi: 10.1111/gcb.12113. PubMed DOI
Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kogel-Knabner I., Lehmann J., Manning D.A.C., et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56. doi: 10.1038/nature10386. PubMed DOI
Hagenbo A., Kyaschenko J., Clemmensen K.E., Lindahl B.D., Fransson P. Fungal community shifts underpin declining mycelial production and turnover across a Pinus sylvestris chronosequence. J. Ecol. 2018;106:490–501. doi: 10.1111/1365-2745.12917. DOI
Phillips L.A., Ward V., Jones M.D. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J. 2014;8:699–713. doi: 10.1038/ismej.2013.195. PubMed DOI PMC
Rosenstock N., Ellström M., Oddsdottir E., Sigurdsson B.D., Wallander H. Carbon sequestration and community composition of ectomycorrhizal fungi across a geothermal warming gradient in an Icelandic spruce forest. Fungal Ecol. 2019;40:32–42. doi: 10.1016/j.funeco.2018.05.010. DOI
Wallander H., Johansson U., Sterkenburg E., Durling M.B., Lindahl B.D. Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol. 2010;187:1124–1134. doi: 10.1111/j.1469-8137.2010.03324.x. PubMed DOI
Branco S., Bruns T.D., Singleton I. Fungi at a Small Scale: Spatial Zonation of Fungal Assemblages around Single Trees. PLoS ONE. 2013;8:e78295. doi: 10.1371/journal.pone.0078295. PubMed DOI PMC
Nicolas C., Almeida J.P., Ellstrom M., Bahr A., Bone S.E., Rosenstock N.P., Bargar J.R., Tunlid A., Persson P., Wallander H. Chemical changes in organic matter after fungal colonization in a nitrogen fertilized and unfertilized Norway spruce forest. Plant Soil. 2017;419:113–126. doi: 10.1007/s11104-017-3324-8. PubMed DOI PMC
Almeida J.P., Rosenstock N.P., Forsmark B., Bergh J., Wallander H. Ectomycorrhizal community composition and function in a spruce forest transitioning between nitrogen and phosphorus limitation. Fungal Ecol. 2019;40:20–31. doi: 10.1016/j.funeco.2018.05.008. DOI
Weigt R.B., Raidl S., Verma R., Agerer R. Exploration type-specific standard values of extramatrical mycelium—A step towards quantifying ectomycorrhizal space occupation and biomass in natural soil. Mycol. Prog. 2012;11:287–297. doi: 10.1007/s11557-011-0750-5. DOI
Kjøller R. Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiol. Ecol. 2006;58:214–224. doi: 10.1111/j.1574-6941.2006.00166.x. PubMed DOI
Kjøller R., Nilsson L.O., Hansen K., Schmidt I.K., Vesterdal L., Gundersen P. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol. 2012;194:278–286. doi: 10.1111/j.1469-8137.2011.04041.x. PubMed DOI
Zwetsloot M.J., Goebel M., Paya A., Grams T.E.E., Bauerle T.L. Specific spatio-temporal dynamics of absorptive fine roots in response to neighbor species identity in a mixed beech-spruce forest. Tree Physiol. 2019;39:1867–1879. doi: 10.1093/treephys/tpz086. PubMed DOI
Martino E., Morin E., Grelet G.-A., Kuo A., Kohler A., Daghino S., Barry K.W., Cichocki N., Clum A., Dockter R.B., et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–1229. doi: 10.1111/nph.14974. PubMed DOI
Santalahti M., Sun H., Jumpponen A., Pennanen T., Heinonsalo J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol. Ecol. 2016;92:fiw170. doi: 10.1093/femsec/fiw170. PubMed DOI
Mašínová T., Yurkov A., Baldrian P. Forest soil yeasts: Decomposition potential and the utilization of carbon sources. Fungal Ecol. 2018;34:10–19. doi: 10.1016/j.funeco.2018.03.005. DOI
De la Varga H., Agueda B., Agreda T., Martinez-Pena F., Parlade J., Pera J. Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain. Mycorrhiza. 2013;23:391–402. doi: 10.1007/s00572-013-0481-3. PubMed DOI
Castano C., Alday J.G., Parlade J., Pera J., de Aragon J.M., Bonet J.A. Seasonal dynamics of the ectomycorrhizal fungus Lactarius vinosus are altered by changes in soil moisture and temperature. Soil Biol. Biochem. 2017;115:253–260. doi: 10.1016/j.soilbio.2017.08.021. DOI