Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25887892
PubMed Central
PMC4391685
DOI
10.1186/s12866-015-0416-6
PII: 10.1186/s12866-015-0416-6
Knihovny.cz E-resources
- MeSH
- ATP-Binding Cassette Transporters genetics MeSH
- Actinobacteria classification drug effects genetics isolation & purification MeSH
- Anti-Bacterial Agents biosynthesis MeSH
- Drug Resistance, Bacterial * MeSH
- Phylogeny * MeSH
- Genes, rRNA MeSH
- Methyltransferases genetics MeSH
- Molecular Sequence Data MeSH
- Soil Microbiology MeSH
- DNA, Ribosomal chemistry genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ATP-Binding Cassette Transporters MeSH
- Anti-Bacterial Agents MeSH
- Methyltransferases MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 16S MeSH
- rRNA (adenosine-O-2'-)methyltransferase MeSH Browser
BACKGROUND: Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. RESULTS: Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. CONCLUSIONS: The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite scaffolds occurring more likely in taxonomically distant producers but suggest that the antibiotic selection of gene pools is also influenced by site conditions.
Epidemiology and Ecology of Microorganisms Crop Research Institute Prague Czech Republic
Faculty of Pharmacy Charles University Hradec Kralove Czech Republic
Oceanography Section Science Research Center Kochi University IMT MEXT Kochi Japan
See more in PubMed
Jousset A, Eisenhauer N, Materne E, Scheu S. Evolutionary history predicts the stability of cooperation in microbial communities. Nature Comm. 2013;4:2573. doi: 10.1038/ncomms3573. PubMed DOI
Ziemert N, Lechner A, Wietz M, Millán-Aguiñaga N, Chavarria KL, Jensen PR. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci U S A. 2014;111:E1130–E1139. doi: 10.1073/pnas.1324161111. PubMed DOI PMC
Reddy BV, Kallifidas D, Kim JH, Charlop Powers Z, Feng Z, Brady SF. Natural product biosynthetic gene diversity in geographically distinct soil microbiomes. Appl Environ Microbiol. 2012;78:3744–3752. doi: 10.1128/AEM.00102-12. PubMed DOI PMC
Laskaris P, Tolba S, Calvo-Bado L, Wellington L. Coevolution of antibiotic production and counter-resistance in soil bacteria. Environ Microbiol. 2010;12:783–796. doi: 10.1111/j.1462-2920.2009.02125.x. PubMed DOI
Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT, et al. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot. 2009;62:99–104. doi: 10.1038/ja.2008.24. PubMed DOI
Genilloud O, Gonzalez I, Salazar O, Martin J, Tormo JR, Vicente F. Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol. 2011;38:375–389. doi: 10.1007/s10295-010-0882-7. PubMed DOI
Polz MF, Alm EJ, Hanage WP. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 2013;29:170–175. doi: 10.1016/j.tig.2012.12.006. PubMed DOI PMC
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–433. doi: 10.1128/MMBR.00016-10. PubMed DOI PMC
Thaker MN, Wang W, Spanogiannopoulos P, Waglechner N, King AM, Medina R, et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat Biotechnol. 2013;31:922–927. doi: 10.1038/nbt.2685. PubMed DOI
Chopra I, Hesse L, O'Neill AJ. Exploiting current understanding of antibiotic action for discovery of new drugs. J Appl Microbiol. 2002;92:4S–15S. doi: 10.1046/j.1365-2672.92.5s1.13.x. PubMed DOI
Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett. 2007;271:147–161. doi: 10.1111/j.1574-6968.2007.00757.x. PubMed DOI
Peschke U, Schmidt H, Zhang H-Z, Piepersberg W. Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78–11. Mol Microbiol. 1995;16:1137–1156. doi: 10.1111/j.1365-2958.1995.tb02338.x. PubMed DOI
Koberska M, Kopecky J, Olsovska J, Jelinkova M, Ulanova D, Man P, et al. Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466. Folia Microbiol. 2008;53:395–401. doi: 10.1007/s12223-008-0060-8. PubMed DOI
Kamimiya S, Weisblum B. Translational attenuation control of ermSF, an inducible resistance determinant encoding rRNA N-methyltransferase from Streptomyces fradiae. J Bacteriol. 1988;170:1800–1811. PubMed PMC
Gandecha AR, Cundliffe E. Molecular analysis of tlrD, an MLS resistance determinant from the tylosin producer, Streptomyces fradiae. Gene. 1996;180:173–176. doi: 10.1016/S0378-1119(96)00448-9. PubMed DOI
Pernodet JL, Gourmelen A, Blondelet-Rouault MH, Cundliffe E. Dispensable ribosomal resistance to spiramycin conferred by srmA in the spiramycin producer Streptomyces ambofaciens. Microbiology (Reading, Engl) 1999;145:2355–2364. PubMed
Sagova-Mareckova M, Omelka M, Cermak L, Kamenik Z, Olsovska J, Hackl E, et al. Microbial communities show parallels at sites with distinct litter and soil characteristics. Appl Environ Microbiol. 2011;77:7560–7567. doi: 10.1128/AEM.00527-11. PubMed DOI PMC
Schlatter D, Fubuh A, Xiao K, Hernandez D, Kinkel L. Resource amendments influence density and competitive phenotypes of streptomyces in soil. Microb Ecol. 2009;57:413–420. doi: 10.1007/s00248-008-9433-4. PubMed DOI
Bredholdt H, Galatenko OA, Engelhardt K, Fjaervik E, Terekhova LP, Zotchev SB. Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity. Environ Microbiol. 2007;9:2756–2764. doi: 10.1111/j.1462-2920.2007.01387.x. PubMed DOI
Cermak L, Kopecky J, Novotna J, Omelka M, Parkhomenko N, Plhackova K, et al. Bacterial communities of two contrasting soils reacted differently to lincomycin treatment. Appl Soil Ecol. 2008;40:348–358. doi: 10.1016/j.apsoil.2008.06.001. DOI
Ashelford KE, Weightman AJ, Fry JC. PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 2002;30:3481–3489. doi: 10.1093/nar/gkf450. PubMed DOI PMC
Sakai M, Matsuka A, Komura T, Kanazawa S. Application of a new PCR primer for terminal restriction fragment length polymorphism analysis of the bacterial communities in plant roots. J Microbiol Methods. 2004;59:81–89. doi: 10.1016/j.mimet.2004.06.005. PubMed DOI
Gathogo EWN, Waugh ACW, Peric N, Redpath MB, Long PF. Colony PCR amplification of actinomycete DNA. J Antibiot. 2003;56:423–424. doi: 10.7164/antibiotics.56.423. PubMed DOI
Farnet CM, Staffa A, Yang X. Genes and proteins for the biosynthesis of rosaramicin. Patent 2003; WO 03010193-A2.
Pan Y, Yang X, Li J, Zhang R, Hu Y, Zhou Y, et al. Genome sequence of the spinosyns-producing bacterium Saccharopolyspora spinosa NRRL 18395. J Bacteriol. 2011;193:3150–3151. doi: 10.1128/JB.00344-11. PubMed DOI PMC
Nash KA, Zhang Y, Brown-Elliott BA, Wallace RJ., Jr Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum. J Antimicrob Chemother. 2005;55:170–177. doi: 10.1093/jac/dkh523. PubMed DOI PMC
Zoropogui A, Pujic P, Normand P, Barbe V, Beaman B, Beaman L, et al. Genome sequence of the human- and animal-pathogenic strain Nocardia cyriacigeorgica GUH-2. J Bacteriol. 2012;194:2098–2099. doi: 10.1128/JB.00161-12. PubMed DOI PMC
Roberts AN, Hudson GS, Brenner S. An erythromycin-resistance gene from an erythromycin-producing strain of Arthrobacter sp. Gene. 1985;35:259–270. doi: 10.1016/0378-1119(85)90004-6. PubMed DOI
Doroghazi JR, Ju KS, Brown DW, Labeda DP, Deng Z, Metcalf WW, et al. Genome sequences of three tunicamycin-producing Streptomyces strains, S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus ATCC 31396. J Bacteriol. 2011;193:7021–7022. doi: 10.1128/JB.06262-11. PubMed DOI PMC
Epp JK, Burgett SG, Schoner BE. Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans. Gene. 1987;53:73–83. doi: 10.1016/0378-1119(87)90094-1. PubMed DOI
Mido N, Hoshigo S, Murakami T. Midecamycin biosynthetic gene cluster. Patent 2004; JP 2004049100-A1.
Xue Y, Zhao L, Liu HW, Sherman DH. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci U S A. 1998;95:12111–12116. doi: 10.1073/pnas.95.21.12111. PubMed DOI PMC
Mendez C, Salas JA. The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol. 2001;152:341–350. doi: 10.1016/S0923-2508(01)01205-0. PubMed DOI
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Felsenstein J. PHYLIP-Phylogeny inference package (version 3.2) Cladistics. 1989;5:164–166.
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–1165. doi: 10.1093/bioinformatics/btr088. PubMed DOI PMC
Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18:691–699. doi: 10.1093/oxfordjournals.molbev.a003851. PubMed DOI
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI
Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–2288. doi: 10.1093/bioinformatics/btp368. PubMed DOI
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Omelka M, Hudecova S. A comparison of the Mantel test with a generalised distance covariance test. Environmetrics. 2013;24:449–460. doi: 10.1002/env.2238. DOI
Szekely GJ, Rizzo ML, Bakirov NK. Measuring and testing independence by correlation of distances. Ann Stat. 2007;35:2769–2794. doi: 10.1214/009053607000000505. DOI
Baltz RH, Miao V, Wrigley SK. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep. 2005;22:717–741. doi: 10.1039/b416648p. PubMed DOI
Egan S, Wiener P, Kallifidas D, Wellington EMH. Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters. Antonie Van Leeuwenhoek. 2001;79:127–133. doi: 10.1023/A:1010296220929. PubMed DOI
Doroghazi JR, Buckley DH. Widespread homologous recombination within and between Streptomyces species. ISME J. 2010;4:1136–1143. doi: 10.1038/ismej.2010.45. PubMed DOI
Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007;315:476–480. doi: 10.1126/science.1127573. PubMed DOI PMC
Davelos AL, Kinkel LL, Samac DA. Spatial variation in frequency and intensity of antibiotic interactions among streptomycetes from prairie soil. Appl Environ Microbiol. 2004;70:1051–1058. doi: 10.1128/AEM.70.2.1051-1058.2004. PubMed DOI PMC
Fischbach MA, Walsh CT, Clardy J. The evolution of gene collectives: How natural selection drives chemical innovation. Proc Natl Acad Sci U S A. 2008;105:4601–4608. doi: 10.1073/pnas.0709132105. PubMed DOI PMC
Gonzalez I, Niebla A, Lemus M, Gonzalez L, Iznaga IO, Perez ME, et al. Ecological approach of macrolide-lincosamides-streptogramin producing Actinomyces from Cuban soils. Lett Appl Microbiol. 1999;29:147–150. doi: 10.1046/j.1365-2672.1999.00580.x. PubMed DOI
Kopecky J, Kyselkova M, Omelka M, Cermak L, Novotna J, Grundmann GL, et al. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. FEMS Microbiol Ecol. 2011;78:386–394. doi: 10.1111/j.1574-6941.2011.01173.x. PubMed DOI
Jensen PR. Linking species concepts to natural product discovery in the post-genomic era. J Ind Microbiol Biotechnol. 2010;37:219–224. doi: 10.1007/s10295-009-0683-z. PubMed DOI PMC
Zakalyukina YV, Zenova GM. Antagonistic activity of soil acidophilic actinomycetes. Biol Bull. 2007;34:329–332. doi: 10.1134/S1062359007040036. PubMed DOI
Comparison of Actinobacteria communities from human-impacted and pristine karst caves
GENBANK
KF960851, KF960852, KF960853, KF960854, KF960855, KF960856, KF960857, KF960858, KF960859, KF960860, KF960861, KF960862, KF960863, KF960864, KF960865, KF960866, KF960867, KF960868, KF960869, KF960870, KF960871, KF960872, KF960873, KF960874, KF960875, KF960876, KF960877, KF960878, KF960879, KF960880, KF960881, KF960882, KF960883, KF960884, KF960885, KF960886, KF960887, KF960888, KF960889, KF960890, KF960891, KF960892, KF960893, KF960894, KF960895, KF960896, KF960897, KF960898, KF960899, KF960900, KF960901, KF960902, KF960903, KF960904, KF960905, KF960906, KF960907, KF960908, KF960909, KF960910, KF960911, KF960912, KF960913, KF960914, KF960915, KF960916, KF960917, KF960918, KF960919, KF960920, KF960921, KF960922, KF960923, KF960924, KF960925, KF960926, KF960927, KF960928, KF960929, KF960930, KF960931, KF960932, KF960933, KF960934, KF960935, KF960936, KF960937, KF960938, KF960939, KF960940, KF960941, KF960942, KF960943, KF960944, KF960945, KF960946, KF960947, KF960948, KF960949, KF960950, KF960951, KF960952, KF960953, KF960954, KF960955, KF960956, KF960957, KF960958, KF960959, KF960960, KF960961, KF960962, KF960963, KF960964