ALD Al2O3-Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries

. 2017 Jun 30 ; 2 (6) : 2749-2756. [epub] 20170616

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28691112

The utilization of the anodic TiO2 nanotube layers, with uniform Al2O3 coatings of different thicknesses (prepared by atomic layer deposition, ALD), as the new electrode material for lithium-ion batteries (LIBs), is reported herein. Electrodes with very thin Al2O3 coatings (∼1 nm) show a superior electrochemical performance for use in LIBs compared to that of the uncoated TiO2 nanotube layers. A more than 2 times higher areal capacity is received on these coated TiO2 nanotube layers (∼75 vs 200 μAh/cm2) as well as higher rate capability and coulombic efficiency of the charging and discharging reactions. Reasons for this can be attributed to an increased mechanical stability of the TiO2 nanotube layers upon Al2O3 coating, as well as to an enhanced diffusion of the Li+ ions within the coated nanotube layers. In contrast, thicker ALD Al2O3 coatings result in a blocking of the electrode surface and therefore an areal capacity decrease.

Zobrazit více v PubMed

Ortiz G. F.; Hanzu I.; Djenizian T.; Lavela P.; Tirado J. L.; Knauth P. Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes. Chem. Mater. 2009, 21, 63–67. 10.1021/cm801670u. DOI

Djenizian T.; Hanzu I.; Knauth P. Nanostructured Negative Electrodes Based on Titania for Li-Ion Microbatteries. J. Mater. Chem. 2011, 21, 9925–9937. 10.1039/c0jm04205f. DOI

González J. R.; Alcántara R.; Nacimiento F.; Ortiz G. F.; Tirado J. L.; Zhecheva E.; Stoyanova R. Long-Length Titania Nanotubes Obtained by High-Voltage Anodization and High-Intensity Ultrasonication for Superior Capacity Electrode. J. Phys. Chem. C 2012, 116, 20182–20190. 10.1021/jp3050115. DOI

Lee K.; Mazare A.; Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. 10.1021/cr500061m. PubMed DOI

Liu H.; Bi Z.; Sun X.-G.; Unocic R. R.; Paranthaman M. P.; Dai S.; Brown G. M. Mesoporous TiO2–B Microspheres with Superior Rate Performance for Lithium Ion Batteries. Adv. Mater. 2011, 23, 3450–3454. 10.1002/adma.201100599. PubMed DOI

Armstrong A. R.; Armstrong G.; Canales J.; Bruce P. G. TiO2-B Nanowires. Angew. Chem., Int. Ed. 2004, 43, 2286–2288. 10.1002/anie.200353571. PubMed DOI

Armstrong A. R.; Armstrong G.; Canales J.; García R.; Bruce P. G. Lithium-Ion Intercalation into TiO2-B Nanowires. Adv. Mater. 2005, 17, 862–865. 10.1002/adma.200400795. DOI

Ren Y.; Liu Z.; Pourpoint F.; Armstrong A. R.; Grey C. G.; Bruce P. G. Nanoparticulate TiO2(B): An Anode for Lithium-Ion Batteries. Angew. Chem., Int. Ed. 2012, 51, 2164–2167. 10.1002/anie.201108300. PubMed DOI

Yang M.-C.; Lee Y. Y.; Xu B.; Powers K.; Meng Y. S. TiO2 Flakes as Anode Materials for Li-Ion-Batteries. J. Power Sources 2012, 207, 166–172. 10.1016/j.jpowsour.2012.01.155. DOI

Panda S. K.; Lee S.; Yoon W.-S.; Shin H. Reversible Phase Transformation of Titania (Anatase) Nanotubes upon Electrochemical Lithium-Intercalation Observed by Ex Situ Transmission Electron Microscopy. J. Power Sources 2014, 249, 59–65. 10.1016/j.jpowsour.2013.10.048. DOI

Han H.; Song T.; Lee E.-K.; Devadoss A.; Jeon Y.; Ha J.; Chung Y.-C.; Choi Y.-M.; Jung Y.-G.; Paik U. Dominant Factors Governing the Rate Capability of a TiO2 Nanotube Anode for High Power Lithium Ion Batteries. ACS Nano 2012, 6, 8308–8315. 10.1021/nn303002u. PubMed DOI

Ellis B. L.; Knauth P.; Djenizian T. Three-Dimensional Self-Supported Metal Oxides for Advanced Energy Storage. Adv. Mater. 2014, 26, 3368–3397. 10.1002/adma.201306126. PubMed DOI

Salian G. D.; Lebouin C.; Demoulin A.; Lepikhin M. S.; Maria S.; Galyyeva A. K.; Kurbatov A. P.; Djenizian T. Electrodeposition of Polymer Electrolyte in Nanostructured Electrodes for Enhanced Electrochemical Performance of Thin-Film Li-Ion Microbatteries. J. Power Sources 2017, 340, 242–246. 10.1016/j.jpowsour.2016.11.078. DOI

Plylahan N.; Letiche M.; Barr M.; Ellis B.; Maria S.; Phan T. N. T.; Bloch E.; Knauth P.; Djenizian T. High Energy and Power Density TiO2 Nanotube Electrodes for Single and Complete Lithium-Ion Batteries. J. Power Sources 2015, 273, 1182–1188. 10.1016/j.jpowsour.2014.09.152. DOI

Plylahan N.; Letiche M.; Barr M.; Djenizian T. All-Solid-State Li-Ion Batteries Based on Self-Supported Titania Nanotubes. Electrochem. Commun. 2014, 43, 121–124. 10.1016/j.elecom.2014.03.029. DOI

Macak J. M.; Tsuchiya H.; Ghicov A.; Yasuda K.; Hahn R.; Bauer S.; Schmuki P. TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18. 10.1016/j.cossms.2007.08.004. DOI

Fang D.; Huang K.; Liu S.; Li Z. Electrochemical Properties of Ordered TiO2 Nanotube Loaded with Ag Nano-Particles for Lithium Anode Material. J. Alloys Compd. 2008, 464, L5–L9. 10.1016/j.jallcom.2007.09.141. DOI

Xue L.; Wei Z.; Li R.; Liu J.; Huang T.; Yu A. Design and Synthesis of Cu6Sn5-Coated TiO2 Nanotube Arrays as Anode Material for Lithium Ion Batteries. J. Mater. Chem. 2011, 21, 3216–3220. 10.1039/c0jm03819a. DOI

Ortiz G. F.; Hanzu I.; Lavela P.; Tirado J. L.; Knauth P.; Djenizian T. A Novel Architectured Negative Electrode Based on Titania Nanotube and Iron Oxide Nanowire Composites for Li-Ion Microbatteries. J. Mater. Chem. 2010, 20, 4041–4046. 10.1039/b927122h. DOI

Ortiz G. F.; Hanzu I.; Lavela P.; Knauth P.; Tirado J. L.; Djenizian T. Nanoarchitectured TiO2/SnO: A Future Negative Electrode for High Power Density Li-Ion Microbatteries?. Chem. Mater. 2010, 22, 1926–1932. 10.1021/cm9037044. DOI

Du G.; Guo Z.; Zhang P.; Li Y.; Chen M.; Wexler D.; Liu H. SnO2 Nanocrystals on Self-Organized TiO2 Nanotube Array as Three-Dimensional Electrode for Lithium Ion Microbatteries. J. Mater. Chem. 2010, 20, 5689–5694. 10.1039/c0jm00330a. DOI

Wu X.; Zhang S.; Wang L.; Du Z.; Fang H.; Ling Y.; Huang Z. Coaxial SnO2@TiO2 Nanotube Hybrids: From Robust Assembly Strategies to Potential Application in Li+ Storage. J. Mater. Chem. 2012, 22, 11151–11158. 10.1039/c2jm30885a. DOI

Li R.; Xie Z.; Lu H.; Zhang D. W.; Yu A. Fabrication of ZnO@TiO2 Core-Shell Nanotube Arrays as Three-Dimensional Anode Material for Lithium Ion Batteries. Int. J. Electrochem. Sci. 2013, 8, 11118–11124.

Tupala J.; Kemell M.; Härkönen E.; Ritala M.; Leskelä M. Preparation of Regularly Structured Nanotubular TiO2 Thin Films on ITO and Their Modification with Thin ALD-Grown Layers. Nanotechnology 2012, 23, 12570710.1088/0957-4484/23/12/125707. PubMed DOI

Macak J. M.; Prikryl J.; Sopha H.; Strizik L. Antireflection In2O3 Coatings of Self-Organized TiO2 Nanotube Layers Prepared by Atomic Layer Deposition. Phys. Status Solidi RRL 2015, 9, 516–520. 10.1002/pssr.201510245. DOI

Zazpe R.; Knaut M.; Sopha H.; Hromadko L.; Albert M.; Prikryl J.; Gärtnerová V.; Bartha J. W.; Macak J. M. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers. Langmuir 2016, 32, 10551–10558. 10.1021/acs.langmuir.6b03119. PubMed DOI PMC

Cheah S. K.; Perre E.; Rooth M.; Fondell M.; Hårsta A.; Nyholm L.; Boman M.; Gustafsson T.; Lu J.; Simon P.; Edström K. Self-Supported Three-Dimensional Nanoelectrodes for Microbattery Applications. Nano Lett. 2009, 9, 3230–3233. 10.1021/nl9014843. PubMed DOI

Scott I. D.; Jung Y. S.; Cavanagh A. S.; Yan Y.; Dillon A. C.; George S. M.; Lee S.-H. Ultrathin Coatings on Nano-LiCoO2 for Li-Ion Vehicular Applications. Nano Lett. 2011, 11, 414–418. 10.1021/nl1030198. PubMed DOI

Memarzadeh Lotfabad E.; Kalisvaart P.; Cui K.; Kohandehghan A.; Kupsta M.; Olsen B.; Mitlin D. ALD TiO2 Coated Silicon Nanowires for Lithium Ion Battery Anodes With Enhanced Cycling Stability and Coulombic Efficiency. Phys. Chem. Chem. Phys. 2013, 15, 13646–13657. 10.1039/c3cp52485j. PubMed DOI

Lotfabad E. M.; Kalisvaart P.; Kohandehghan A.; Cui K.; Kupsta M.; Olsen B.; Farbod B.; Mitlin D. Si Nanotubes ALD Coated With TiO2, TiN or Al2O3 As High Performance Lithium Ion Battery Anodes. J. Mater. Chem. A 2014, 2, 2504–2516. 10.1039/C3TA14302C. DOI

Zhang H.; Ren W.; Cheng C. Three-Dimensional SnO2@TiO2 Double-Shell Nanotubes on Carbon Cloth as a Flexible Anode for Lithium-Ion Batteries. Nanotechnology 2015, 26, 27400210.1088/0957-4484/26/27/274002. PubMed DOI

Lv X.; Deng J.; Sun X. Cumulative Effect of Fe2O3 on TiO2 Nanotubes via Atomic Layer Deposition with Enhanced Lithium Ion Storage Performance. Appl. Surf. Sci. 2016, 369, 314–319. 10.1016/j.apsusc.2016.02.075. DOI

Zhong Y.; Ma Y.; Guo Q.; Liu J.; Wang Y.; Yang M.; Xia H. Controllable Synthesis of TiO2@Fe2O3 Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes. Sci. Rep. 2017, 7, 4092710.1038/srep40927. PubMed DOI PMC

Vetter J.; Novak P.; Wagner M. R.; Veit C.; Moller K. C.; Besenhard J. O.; Winter M.; Wohlfahrt-Mehrens M.; Vogler C.; Hammouche A. Ageing Mechanisms in Lithium-Ion Batteries. J. Power Sources 2005, 147, 269–281. 10.1016/j.jpowsour.2005.01.006. DOI

Jung Y. S.; Cavanagh A. S.; Riley L. A.; Kang S.-H.; Dillon A. C.; Groner M. D.; George S. M.; Lee S.-H. Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries. Adv. Mater. 2010, 22, 2172–2176. 10.1002/adma.200903951. PubMed DOI

Liu Y.; Hudak N. S.; Huber D. L.; Limmer S. J.; Sullivan J. P.; Huang J. Y. In Situ Transmission Electron Microscopy Observation of Pulverization of Aluminum Nanowires and Evolution of the Thin Surface Al2O3 Layers during Lithiation-Delithiation Cycles. Nano Lett. 2011, 11, 4188–4194. 10.1021/nl202088h. PubMed DOI

Leung K.; Qi Y.; Zavadil K. R.; Jung Y. S.; Dillon A. C.; Cavanagh A. S.; Lee S.-H.; George S. M. Using Atomic Layer Deposition to Hinder Solvent Decomposition in Lithium Ion Batteries: First-Principles Modeling and Experimental Studies. J. Am. Chem. Soc. 2011, 133, 14741–14754. 10.1021/ja205119g. PubMed DOI

Lahiri I.; Oh S.-M.; Hwang J. Y.; Chiwon Kang C.; Choi M.; Jeon H.; Banerjee R.; Sun Y.-K.; Choi W. Ultrathin Alumina-Coated Carbon Nanotubes as an Anode for High Capacity Li-Ion Batteries. J. Mater. Chem. 2011, 21, 13621–13626. 10.1039/c1jm11474c. DOI

Ahn D.; Xiao X. Extended Lithium Titanate Cycling Potential Window with Near Zero Capacity Loss. Electrochem. Commun. 2011, 13, 796–799. 10.1016/j.elecom.2011.05.005. DOI

Nguyen H. T.; Zamfir M. R.; Duong L. D.; Lee Y. H.; Paolo Bondavallic P.; Pribat D. Alumina-Coated Silicon-Based Nanowire Arrays for High Quality Li-Ion Battery Anodes. J. Mater. Chem. 2012, 22, 24618–24626. 10.1039/c2jm35125k. DOI

Xiao X.; Peng Lu P.; Ahn D. Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries. Adv. Mater. 2011, 23, 3911–3915. 10.1002/adma.201101915. PubMed DOI

He Y.; Yu X.; Wang Y.; Li H.; Huang X. Alumina-Coated Patterned Amorphous Silicon as the Anode for a Lithium-Ion Battery with High Coulombic Efficiency. Adv. Mater. 2011, 23, 4938–4941. 10.1002/adma.201102568. PubMed DOI

Lipson A. L.; Puntambekar K.; Comstock D. J.; Meng X.; Geier M. L.; Elam J. W.; Hersam M. C. Nanoscale Investigation of Solid Electrolyte Interphase Inhibition on Li-Ion Battery MnO Electrodes via Atomic Layer Deposition of Al2O3. Chem. Mater. 2014, 26, 935–940. 10.1021/cm402451h. DOI

Das S.; Sopha H.; Krbal M.; Zazpe R.; Podzemna V.; Prikryl J.; Macak J. M. Electrochemical Infilling of CuInSe2 within TiO2 Layers and Their Photoelectrochemical Studies. ChemElectroChem 2017, 4, 495–499. 10.1002/celc.201600763. PubMed DOI PMC

Albu S. P.; Ghicov A.; Aldabergenova S.; Drechsel P.; LeClere D.; Thompson G. E.; Macak J. M.; Schmuki P. Formation of Double-Walled TiO2 Nanotubes and Robust Anatase Membranes. Adv. Mater. 2008, 20, 4135–4139. 10.1002/adma.200801189. DOI

Zazpe R.; Prikryl J.; Gärtnerova V.; Nechvilova K.; Benes L.; Strizik L.; Jäger A.; Bosund M.; Sopha H.; Macak J. M. ALD Al2O3 Coatings Significantly Improve Thermal, Chemical and Mechanical Stability of Anodic TiO2 Nanotube Layers. Langmuir 2017, 33, 3208–3216. 10.1021/acs.langmuir.7b00187. PubMed DOI PMC

Attia A.; Zukalova M.; Rathouský J.; Zukal A.; Kavan L. Mesoporous electrode material from alumina-stabilized anatase TiO2 for lithium ion batteries. J. Solid State Electrochem. 2005, 9, 138–145. 10.1007/s10008-004-0564-3. DOI

Deng D.; Kim M. G.; Lee J. Y.; Cho J. Green Energy Storage Materials: Nanostructured TiO2 and Sn-Based Anodes for Lithium-Ion Batteries. Energy Environ. Sci. 2009, 2, 818–837. 10.1039/b823474d. DOI

Jung S. C.; Han Y.-K. How Do Li Atoms Pass through the Al2O3 Coating Layer during Lithiation in Li-ion Batteries?. J. Phys. Chem. Lett. 2013, 4, 2681–2685. 10.1021/jz401231e. DOI

Lindstrom H.; Sodergren S.; Solbrand A.; Rensmo H.; Hjelm J.; Hagfeldt A.; Lindquist S. E. Li+ Ion Insertion in TiO2 (Anatase). 1. Chronoamperometry on CVD Films and Nanoporous Films. J. Phys. Chem. B 1997, 101, 7710–7716. 10.1021/jp970489r. DOI

Fang D.; Li L.; Xu W.; Zheng H.; Xu J.; Jiang M.; Liu R.; Jiang X.; Luo Z.; Xiong C.; Wang Q. High Capacity Lithium Ion Battery Anodes Using Sn Nanowires Encapsulated Al2O3 Tubes in Carbon Matrix. Adv. Mater. Interfaces 2016, 3, 150049110.1002/admi.201500491. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...