TiO2 Nanotube Layers Decorated with Al2O3/MoS2/Al2O3 as Anode for Li-ion Microbatteries with Enhanced Cycling Stability
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32429573
PubMed Central
PMC7279526
DOI
10.3390/nano10050953
PII: nano10050953
Knihovny.cz E-zdroje
- Klíčová slova
- Al2O3, Li-ion microbatteries, MoS2, TiO2 nanotube, atomic layer deposition,
- Publikační typ
- časopisecké články MeSH
TiO2 nanotube layers (TNTs) decorated with Al2O3/MoS2/Al2O3 are investigated as a negative electrode for 3D Li-ion microbatteries. Homogenous nanosheets decoration of MoS2, sandwiched between Al2O3 coatings within self-supporting TNTs was carried out using atomic layer deposition (ALD) process. The structure, morphology, and electrochemical performance of the Al2O3/MoS2/Al2O3-decorated TNTs were studied using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and chronopotentiometry. Al2O3/MoS2/Al2O3-decorated TNTs deliver an areal capacity almost three times higher than that obtained for MoS2-decorated TNTs and as-prepared TNTs after 100 cycles at 1C. Moreover, stable and high discharge capacity (414 µAh cm-2) has been obtained after 200 cycles even at very fast kinetics (3C).
Zobrazit více v PubMed
Ferrari S., Loveridge M., Beattie S.D., Jahn M., Dashwood R.J., Bhagat R. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources. 2015;286:25–46. doi: 10.1016/j.jpowsour.2015.03.133. DOI
Nasreldin M., Delattre R., Ramuz M., Lahuec C., Djenizian T., de Bougrenet de la Tocnaye J.-L. Flexible micro-battery for powering smart contact lens. Sensors. 2019;19:2062. doi: 10.3390/s19092062. PubMed DOI PMC
Wang Y., Liu B., Li Q., Cartmell S., Ferrara S., Deng Z.D., Xiao J. Lithium and lithium ion batteries for applications in microelectronic devices: A review. J. Power Sources. 2015;286:330–345. doi: 10.1016/j.jpowsour.2015.03.164. DOI
Oudenhoven J.F.M., Baggetto L., Notten P.H.L. All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts. Adv. Energy Mater. 2011;1:10–33. doi: 10.1002/aenm.201000002. DOI
Tesfaye A.T., Mashtalir O., Naguib M., Barsoum M.W., Gogotsi Y., Djenizian T. Anodized Ti3SiC2 as an anode material for Li-ion microbatteries. Acs Appl. Mater. Interfaces. 2016;8:16670–16676. doi: 10.1021/acsami.6b03528. PubMed DOI
Sopha H., Tesfaye A.T., Zazpe R., Michalicka J., Dvorak F., Hromadko L., Krbal M., Prikryl J., Djenizian T., Macak J.M. ALD growth of MoS2 nanosheets on TiO2 nanotube supports. FlatChem. 2019;17:100130. doi: 10.1016/j.flatc.2019.100130. DOI
Zhang H., Cao Y., Chee M.O.L., Dong P., Ye M., Shen J. Recent advances in micro-supercapacitors. Nanoscale. 2019;11:5807–5821. doi: 10.1039/C9NR01090D. PubMed DOI
Kundu A., Jang J.H., Gil J.H., Jung C.R., Lee H.R., Kim S.H., Ku B., Oh Y.S. Micro-fuel cells—Current development and applications. J. Power Sources. 2007;170:67–78. doi: 10.1016/j.jpowsour.2007.03.066. DOI
Yang Y., Pradel K.C., Jing Q., Wu J.M., Zhang F., Zhou Y., Zhang Y., Wang Z.L. Thermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/Nanobelts. Acs Nano. 2012;6:6984–6989. doi: 10.1021/nn302481p. PubMed DOI
Pikul J.H., Zhang H.G., Cho J., Braun P.V., King W.P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 2013;4:1732. doi: 10.1038/ncomms2747. PubMed DOI
Li W., Christiansen T.L., Li C., Zhou Y., Fei H., Mamakhel A., Iversen B.B., Watkins J.J. High-power lithium-ion microbatteries from imprinted 3D electrodes of sub-10 nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte. Nano Energy. 2018;52:431–440. doi: 10.1016/j.nanoen.2018.08.019. DOI
Yue C., Li J., Lin L. Fabrication of Si-based three-dimensional microbatteries: A review. Front. Mech. Eng. 2017;12:459–476. doi: 10.1007/s11465-017-0462-x. DOI
Long J.W., Dunn B., Rolison D.R., White H.S. Three-dimensional battery architectures. Chem. Rev. 2004;104:4463–4492. doi: 10.1021/cr020740l. PubMed DOI
Hur J.I., Smith L.C., Dunn B. High Areal Energy Density 3D Lithium-Ion Microbatteries. Joule. 2018;2:1187–1201. doi: 10.1016/j.joule.2018.04.002. DOI
Zeng W., Zheng F., Li R., Zhan Y., Li Y., Liu J. Template synthesis of SnO 2/α-Fe 2 O 3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale. 2012;4:2760–2765. doi: 10.1039/c2nr30089c. PubMed DOI
Shaijumon M.M., Perre E., Daffos B., Taberna P.L., Tarascon J.M., Simon P. Nanoarchitectured 3D cathodes for Li-Ion microbatteries. Adv. Mater. 2010;22:4978–4981. doi: 10.1002/adma.201001922. PubMed DOI
Wei W., Oltean G., Tai C.-W., Edstrom K., Bjorefors F., Nyholm L. High Energy and Power Density TiO2 Nanotube Electrodes for 3D Li-ion Microbatteries. J. Mater. Chem. A. 2013;1:8160–8169. doi: 10.1039/c3ta11273j. DOI
Ellis B.L., Knauth P., Djenizian T. Three-Dimensional Self-Supported Metal Oxides for Advanced Energy Storage. Adv. Mater. 2014;26:3368–3397. doi: 10.1002/adma.201306126. PubMed DOI
Su X., Wu Q., Zhan X., Wu J., Wei S., Guo Z. Advanced titania nanostructures and composites for lithium ion battery. J. Mater. Sci. 2012;47:2519–2534. doi: 10.1007/s10853-011-5974-x. DOI
Chen Z., Belharouak I., Sun Y.K., Amine K. Titanium-based anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 2013;23:959–969. doi: 10.1002/adfm.201200698. DOI
Ortiz G.F., Hanzu I., Djenizian T., Lavela P., Tirado J.L., Knauth P. Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 2009;21:63–67. doi: 10.1021/cm801670u. DOI
Vacandio F., Fraoucene H., Sugiawati V.A., Eyraud M., Hatem D., Belkaid M.S., Pasquinelli M., Djenizian T. Optical and Electrochemical Properties of Self-Organized TiO2 Nanotube Arrays from Anodized Ti–6Al–4V Alloy. Front. Chem. 2019;7:66. PubMed PMC
Myung S.T., Takahashi N., Komaba S., Yoon C.S., Sun Y.K., Amine K., Yashiro H. Nanostructured TiO2 and Its Application in Lithium-Ion Storage. Adv. Funct. Mater. 2011;21:3231–3241. doi: 10.1002/adfm.201002724. DOI
Borghols W., Lützenkirchen-Hecht D., Haake U., Van Eck E., Mulder F., Wagemaker M. The electronic structure and ionic diffusion of nanoscale LiTiO 2 anatase. Phys. Chem. Chem. Phys. 2009;11:5742–5748. doi: 10.1039/b823142g. PubMed DOI
Dvorak F., Zazpe R., Krbal M., Sopha H., Prikryl J., Ng S., Hromadko L., Bures F., Macak J.M. One-dimensional anodic TiO2 nanotubes coated by atomic layer deposition: Towards advanced applications. Appl. Mater. Today. 2019;14:1–20. doi: 10.1016/j.apmt.2018.11.005. DOI
Salian G.D., Krbal M., Sopha H., Lebouin C., Coulet M.-V., Michalicka J., Hromadko L., Tesfaye A.T., Macak J.M., Djenizian T. Self-supported sulphurized TiO2 nanotube layers as positive electrodes for lithium microbatteries. Appl. Mater. Today. 2019;16:257–264. doi: 10.1016/j.apmt.2019.05.015. DOI
Lu Z., Yip C.T., Wang L., Huang H., Zhou L. Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem. 2012;77:991–1000. doi: 10.1002/cplu.201200104. DOI
Salian G.D., Koo B.M., Lefevre C., Cottineau T., Lebouin C., Tesfaye A.T., Knauth P., Keller V., Djenizian T. Niobium Alloying of Self-Organized TiO2 Nanotubes as an Anode for Lithium-Ion Microbatteries. Adv. Mater. Technol. 2018;3:1700274. doi: 10.1002/admt.201700274. DOI
Sopha H., Salian G.D., Zazpe R., Prikryl J., Hromadko L., Djenizian T., Macak J.M. ALD Al2O3-Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries. Acs Omega. 2017;2:2749–2756. doi: 10.1021/acsomega.7b00463. PubMed DOI PMC
Kyeremateng N.A., Vacandio F., Sougrati M.-T., Martinez H., Jumas J.-C., Knauth P., Djenizian T. Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. J. Power Sources. 2013;224:269–277. doi: 10.1016/j.jpowsour.2012.09.104. DOI
Zhu Q., Hu H., Li G., Zhu C., Yu Y. TiO2 nanotube arrays grafted with MnO2 nanosheets as high-performance anode for lithium ion battery. Electrochim. Acta. 2015;156:252–260. doi: 10.1016/j.electacta.2015.01.023. DOI
Gao L., Hu H., Li G., Zhu Q., Yu Y. Hierarchical 3D TiO2@ Fe2O3 nanoframework arrays as high-performance anode materials. Nanoscale. 2014;6:6463–6467. doi: 10.1039/C4NR00387J. PubMed DOI
Brumbarov J., Kunze-Liebhäuser J. Silicon on conductive self-organized TiO2 nanotubes–A high capacity anode material for Li-ion batteries. J. Power Sources. 2014;258:129–133. doi: 10.1016/j.jpowsour.2014.02.049. DOI
Madian M., Giebeler L., Klose M., Jaumann T., Uhlemann M., Gebert A., Oswald S., Ismail N., Eychmüller A., Eckert J. Self-Organized TiO2/CoO Nanotubes as Potential Anode Materials for Lithium Ion Batteries. Acs Sustain. Chem. Eng. 2015;3:909–919. doi: 10.1021/acssuschemeng.5b00026. DOI
Yiping T., Xiaoxu T., Guangya H., Guoqu Z. Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries. Electrochim. Acta. 2014;117:172–178. doi: 10.1016/j.electacta.2013.11.095. DOI
Sugiawati V.A., Vacandio F., Galeyeva A., Kurbatov A.P., Djenizian T. Enhanced Electrochemical Performance of Electropolymerized Self-Organized TiO2 Nanotubes Fabricated by Anodization of Ti Grid. Front. Phys. 2019;7:179. doi: 10.3389/fphy.2019.00179. DOI
Plylahan N., Kyeremateng N.A., Eyraud M., Dumur F., Martinez H., Santinacci L., Knauth P., Djenizian T. Highly conformal electrodeposition of copolymer electrolytes into titania nanotubes for 3D Li-ion batteries. Nanoscale Res. Lett. 2012;7:349. doi: 10.1186/1556-276X-7-349. PubMed DOI PMC
Kyeremateng N.A., Dumur F., Knauth P., Pecquenard B., Djenizian T. Electrodeposited copolymer electrolyte into nanostructured titania electrodes for 3D Li-ion microbatteries. C. R. Chim. 2013;16:80–88. doi: 10.1016/j.crci.2012.05.002. DOI
Zazpe R., Knaut M., Sopha H., Hromadko L., Albert M., Prikryl J., Gartnerova V., Bartha J.W., Macak J.M. Atomic layer deposition for coating of high aspect ratio TiO2 nanotube layers. Langmuir. 2016;32:10551–10558. doi: 10.1021/acs.langmuir.6b03119. PubMed DOI PMC
Stevens G., Edmonds T. Catalytic activity of the basal and edge planes of molybdenum disulphide. J. Less Common Met. 1977;54:321–330. doi: 10.1016/0022-5088(77)90054-6. DOI
Ganta D., Sinha S., Haasch R.T. 2-D material molybdenum disulfide analyzed by XPS. Surf. Sci. Spectra. 2014;21:19–27. doi: 10.1116/11.20140401. DOI
Benoist L., Gonbeau D., Pfister-Guillouzo G., Schmidt E., Meunier G., Levasseur A. XPS analysis of lithium intercalation in thin films of molybdenum oxysulphides. Surf Interface Anal. 1994;22:206–210. doi: 10.1002/sia.740220146. DOI
Hopfengärtner G., Borgmann D., Rademacher I., Wedler G., Hums E., Spitznagel G. XPS studies of oxidic model catalysts: Internal standards and oxidation numbers. J Electron Spectros Relat Phenom. 1993;63:91–116. doi: 10.1016/0368-2048(93)80042-K. DOI
Patterson T.A., Carver J.C., Leyden D.E., Hercules D.M. A surface study of cobalt-molybdena-alumina catalysts using x-ray photoelectron spectroscopy. J. Phys. Chem. 1976;80:1700–1708. doi: 10.1021/j100556a011. DOI
Alstrup I., Chorkendorff I., Candia R., Clausen B.S., Topsøe H. A combined X-Ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co Mo catalysts. J. Catal. 1982;77:397–409. doi: 10.1016/0021-9517(82)90181-6. DOI
Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Perkin Elmer Corp., Physical Electronics Division; EdenPrairie, MN, USA: 1995.
Van de Krol R., Goossens A., Schoonman J. Spatial extent of lithium intercalation in anatase TiO2. J. Phys. Chem. B. 1999;103:7151–7159. doi: 10.1021/jp9909964. DOI
Tesfaye A.T., Gogotsi Y., Djenizian T. Tailoring the morphological properties of anodized Ti3 SiC2 for better power density of Li-ion microbatteries. Electrochem. Commun. 2017;81:29–33. doi: 10.1016/j.elecom.2017.05.010. DOI
Wu C.-Y., Chang W.-E., Sun Y.-G., Wu J.-M., Duh J.-G. Three-dimensional S-MoS2@α-Fe2O3 nanoparticles composites as lithium-ion battery anodes for enhanced electrochemical performance. Mater. Chem. Phys. 2018;219:311–317. doi: 10.1016/j.matchemphys.2018.08.059. DOI
Wang L., Zhang Q., Zhu J., Duan X., Xu Z., Liu Y., Yang H., Lu B. Nature of extra capacity in MoS2 electrodes: Molybdenum atoms accommodate with lithium. Energy Storage Mater. 2019;16:37–45. doi: 10.1016/j.ensm.2018.04.025. DOI
Balach J., Jaumann T., Giebeler L. Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li–S cells and Si–Li2S full cells in carbonate-based electrolyte. Energy Storage Mater. 2017;8:209–216. doi: 10.1016/j.ensm.2017.03.013. DOI
Lindström H., Södergren S., Solbrand A., Rensmo H., Hjelm J., Hagfeldt A., Lindquist S.-E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B. 1997;101:7717–7722. doi: 10.1021/jp970490q. DOI
Lipson A.L., Puntambekar K., Comstock D.J., Meng X., Geier M.L., Elam J.W., Hersam M.C. Nanoscale investigation of solid electrolyte interphase inhibition on Li-ion battery MnO electrodes via atomic layer deposition of Al2O3. Chem. Mater. 2014;26:935–940. doi: 10.1021/cm402451h. DOI
Plylahan N., Letiche M., Barr M.K.S., Ellis B., Maria S., Phan T.N., Bloch E., Knauth P., Djenizian T. High energy and power density TiO2 nanotube electrodes for single and complete lithium-ion batteries. J. Power Sources. 2015;273:1182–1188. doi: 10.1016/j.jpowsour.2014.09.152. DOI
Wu X., Zhang S., Wang L., Du Z., Fang H., Ling Y., Huang Z. Coaxial SnO 2@ TiO 2 nanotube hybrids: From robust assembly strategies to potential application in Li+ storage. J. Mater. Chem. 2012;22:11151–11158. doi: 10.1039/c2jm30885a. DOI
Kyeremateng N.A., Lebouin C., Knauth P., Djenizian T. The electrochemical behaviour of TiO2 nanotubes with Co3O4 or NiO submicron particles: Composite anode materials for Li-ion micro batteries. Electrochim. Acta. 2013;88:814–820. doi: 10.1016/j.electacta.2012.09.120. DOI
Yu L., Wang Z., Zhang L., Wu H.B., Lou X.W.D. TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries. J. Mater. Chem. A. 2013;1:122–127. doi: 10.1039/C2TA00223J. DOI