TiO2 Nanotube Layers Decorated with Al2O3/MoS2/Al2O3 as Anode for Li-ion Microbatteries with Enhanced Cycling Stability

. 2020 May 17 ; 10 (5) : . [epub] 20200517

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32429573

TiO2 nanotube layers (TNTs) decorated with Al2O3/MoS2/Al2O3 are investigated as a negative electrode for 3D Li-ion microbatteries. Homogenous nanosheets decoration of MoS2, sandwiched between Al2O3 coatings within self-supporting TNTs was carried out using atomic layer deposition (ALD) process. The structure, morphology, and electrochemical performance of the Al2O3/MoS2/Al2O3-decorated TNTs were studied using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and chronopotentiometry. Al2O3/MoS2/Al2O3-decorated TNTs deliver an areal capacity almost three times higher than that obtained for MoS2-decorated TNTs and as-prepared TNTs after 100 cycles at 1C. Moreover, stable and high discharge capacity (414 µAh cm-2) has been obtained after 200 cycles even at very fast kinetics (3C).

Zobrazit více v PubMed

Ferrari S., Loveridge M., Beattie S.D., Jahn M., Dashwood R.J., Bhagat R. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources. 2015;286:25–46. doi: 10.1016/j.jpowsour.2015.03.133. DOI

Nasreldin M., Delattre R., Ramuz M., Lahuec C., Djenizian T., de Bougrenet de la Tocnaye J.-L. Flexible micro-battery for powering smart contact lens. Sensors. 2019;19:2062. doi: 10.3390/s19092062. PubMed DOI PMC

Wang Y., Liu B., Li Q., Cartmell S., Ferrara S., Deng Z.D., Xiao J. Lithium and lithium ion batteries for applications in microelectronic devices: A review. J. Power Sources. 2015;286:330–345. doi: 10.1016/j.jpowsour.2015.03.164. DOI

Oudenhoven J.F.M., Baggetto L., Notten P.H.L. All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts. Adv. Energy Mater. 2011;1:10–33. doi: 10.1002/aenm.201000002. DOI

Tesfaye A.T., Mashtalir O., Naguib M., Barsoum M.W., Gogotsi Y., Djenizian T. Anodized Ti3SiC2 as an anode material for Li-ion microbatteries. Acs Appl. Mater. Interfaces. 2016;8:16670–16676. doi: 10.1021/acsami.6b03528. PubMed DOI

Sopha H., Tesfaye A.T., Zazpe R., Michalicka J., Dvorak F., Hromadko L., Krbal M., Prikryl J., Djenizian T., Macak J.M. ALD growth of MoS2 nanosheets on TiO2 nanotube supports. FlatChem. 2019;17:100130. doi: 10.1016/j.flatc.2019.100130. DOI

Zhang H., Cao Y., Chee M.O.L., Dong P., Ye M., Shen J. Recent advances in micro-supercapacitors. Nanoscale. 2019;11:5807–5821. doi: 10.1039/C9NR01090D. PubMed DOI

Kundu A., Jang J.H., Gil J.H., Jung C.R., Lee H.R., Kim S.H., Ku B., Oh Y.S. Micro-fuel cells—Current development and applications. J. Power Sources. 2007;170:67–78. doi: 10.1016/j.jpowsour.2007.03.066. DOI

Yang Y., Pradel K.C., Jing Q., Wu J.M., Zhang F., Zhou Y., Zhang Y., Wang Z.L. Thermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/Nanobelts. Acs Nano. 2012;6:6984–6989. doi: 10.1021/nn302481p. PubMed DOI

Pikul J.H., Zhang H.G., Cho J., Braun P.V., King W.P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 2013;4:1732. doi: 10.1038/ncomms2747. PubMed DOI

Li W., Christiansen T.L., Li C., Zhou Y., Fei H., Mamakhel A., Iversen B.B., Watkins J.J. High-power lithium-ion microbatteries from imprinted 3D electrodes of sub-10 nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte. Nano Energy. 2018;52:431–440. doi: 10.1016/j.nanoen.2018.08.019. DOI

Yue C., Li J., Lin L. Fabrication of Si-based three-dimensional microbatteries: A review. Front. Mech. Eng. 2017;12:459–476. doi: 10.1007/s11465-017-0462-x. DOI

Long J.W., Dunn B., Rolison D.R., White H.S. Three-dimensional battery architectures. Chem. Rev. 2004;104:4463–4492. doi: 10.1021/cr020740l. PubMed DOI

Hur J.I., Smith L.C., Dunn B. High Areal Energy Density 3D Lithium-Ion Microbatteries. Joule. 2018;2:1187–1201. doi: 10.1016/j.joule.2018.04.002. DOI

Zeng W., Zheng F., Li R., Zhan Y., Li Y., Liu J. Template synthesis of SnO 2/α-Fe 2 O 3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale. 2012;4:2760–2765. doi: 10.1039/c2nr30089c. PubMed DOI

Shaijumon M.M., Perre E., Daffos B., Taberna P.L., Tarascon J.M., Simon P. Nanoarchitectured 3D cathodes for Li-Ion microbatteries. Adv. Mater. 2010;22:4978–4981. doi: 10.1002/adma.201001922. PubMed DOI

Wei W., Oltean G., Tai C.-W., Edstrom K., Bjorefors F., Nyholm L. High Energy and Power Density TiO2 Nanotube Electrodes for 3D Li-ion Microbatteries. J. Mater. Chem. A. 2013;1:8160–8169. doi: 10.1039/c3ta11273j. DOI

Ellis B.L., Knauth P., Djenizian T. Three-Dimensional Self-Supported Metal Oxides for Advanced Energy Storage. Adv. Mater. 2014;26:3368–3397. doi: 10.1002/adma.201306126. PubMed DOI

Su X., Wu Q., Zhan X., Wu J., Wei S., Guo Z. Advanced titania nanostructures and composites for lithium ion battery. J. Mater. Sci. 2012;47:2519–2534. doi: 10.1007/s10853-011-5974-x. DOI

Chen Z., Belharouak I., Sun Y.K., Amine K. Titanium-based anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 2013;23:959–969. doi: 10.1002/adfm.201200698. DOI

Ortiz G.F., Hanzu I., Djenizian T., Lavela P., Tirado J.L., Knauth P. Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 2009;21:63–67. doi: 10.1021/cm801670u. DOI

Vacandio F., Fraoucene H., Sugiawati V.A., Eyraud M., Hatem D., Belkaid M.S., Pasquinelli M., Djenizian T. Optical and Electrochemical Properties of Self-Organized TiO2 Nanotube Arrays from Anodized Ti–6Al–4V Alloy. Front. Chem. 2019;7:66. PubMed PMC

Myung S.T., Takahashi N., Komaba S., Yoon C.S., Sun Y.K., Amine K., Yashiro H. Nanostructured TiO2 and Its Application in Lithium-Ion Storage. Adv. Funct. Mater. 2011;21:3231–3241. doi: 10.1002/adfm.201002724. DOI

Borghols W., Lützenkirchen-Hecht D., Haake U., Van Eck E., Mulder F., Wagemaker M. The electronic structure and ionic diffusion of nanoscale LiTiO 2 anatase. Phys. Chem. Chem. Phys. 2009;11:5742–5748. doi: 10.1039/b823142g. PubMed DOI

Dvorak F., Zazpe R., Krbal M., Sopha H., Prikryl J., Ng S., Hromadko L., Bures F., Macak J.M. One-dimensional anodic TiO2 nanotubes coated by atomic layer deposition: Towards advanced applications. Appl. Mater. Today. 2019;14:1–20. doi: 10.1016/j.apmt.2018.11.005. DOI

Salian G.D., Krbal M., Sopha H., Lebouin C., Coulet M.-V., Michalicka J., Hromadko L., Tesfaye A.T., Macak J.M., Djenizian T. Self-supported sulphurized TiO2 nanotube layers as positive electrodes for lithium microbatteries. Appl. Mater. Today. 2019;16:257–264. doi: 10.1016/j.apmt.2019.05.015. DOI

Lu Z., Yip C.T., Wang L., Huang H., Zhou L. Hydrogenated TiO2 nanotube arrays as high-rate anodes for lithium-ion microbatteries. ChemPlusChem. 2012;77:991–1000. doi: 10.1002/cplu.201200104. DOI

Salian G.D., Koo B.M., Lefevre C., Cottineau T., Lebouin C., Tesfaye A.T., Knauth P., Keller V., Djenizian T. Niobium Alloying of Self-Organized TiO2 Nanotubes as an Anode for Lithium-Ion Microbatteries. Adv. Mater. Technol. 2018;3:1700274. doi: 10.1002/admt.201700274. DOI

Sopha H., Salian G.D., Zazpe R., Prikryl J., Hromadko L., Djenizian T., Macak J.M. ALD Al2O3-Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries. Acs Omega. 2017;2:2749–2756. doi: 10.1021/acsomega.7b00463. PubMed DOI PMC

Kyeremateng N.A., Vacandio F., Sougrati M.-T., Martinez H., Jumas J.-C., Knauth P., Djenizian T. Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. J. Power Sources. 2013;224:269–277. doi: 10.1016/j.jpowsour.2012.09.104. DOI

Zhu Q., Hu H., Li G., Zhu C., Yu Y. TiO2 nanotube arrays grafted with MnO2 nanosheets as high-performance anode for lithium ion battery. Electrochim. Acta. 2015;156:252–260. doi: 10.1016/j.electacta.2015.01.023. DOI

Gao L., Hu H., Li G., Zhu Q., Yu Y. Hierarchical 3D TiO2@ Fe2O3 nanoframework arrays as high-performance anode materials. Nanoscale. 2014;6:6463–6467. doi: 10.1039/C4NR00387J. PubMed DOI

Brumbarov J., Kunze-Liebhäuser J. Silicon on conductive self-organized TiO2 nanotubes–A high capacity anode material for Li-ion batteries. J. Power Sources. 2014;258:129–133. doi: 10.1016/j.jpowsour.2014.02.049. DOI

Madian M., Giebeler L., Klose M., Jaumann T., Uhlemann M., Gebert A., Oswald S., Ismail N., Eychmüller A., Eckert J. Self-Organized TiO2/CoO Nanotubes as Potential Anode Materials for Lithium Ion Batteries. Acs Sustain. Chem. Eng. 2015;3:909–919. doi: 10.1021/acssuschemeng.5b00026. DOI

Yiping T., Xiaoxu T., Guangya H., Guoqu Z. Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries. Electrochim. Acta. 2014;117:172–178. doi: 10.1016/j.electacta.2013.11.095. DOI

Sugiawati V.A., Vacandio F., Galeyeva A., Kurbatov A.P., Djenizian T. Enhanced Electrochemical Performance of Electropolymerized Self-Organized TiO2 Nanotubes Fabricated by Anodization of Ti Grid. Front. Phys. 2019;7:179. doi: 10.3389/fphy.2019.00179. DOI

Plylahan N., Kyeremateng N.A., Eyraud M., Dumur F., Martinez H., Santinacci L., Knauth P., Djenizian T. Highly conformal electrodeposition of copolymer electrolytes into titania nanotubes for 3D Li-ion batteries. Nanoscale Res. Lett. 2012;7:349. doi: 10.1186/1556-276X-7-349. PubMed DOI PMC

Kyeremateng N.A., Dumur F., Knauth P., Pecquenard B., Djenizian T. Electrodeposited copolymer electrolyte into nanostructured titania electrodes for 3D Li-ion microbatteries. C. R. Chim. 2013;16:80–88. doi: 10.1016/j.crci.2012.05.002. DOI

Zazpe R., Knaut M., Sopha H., Hromadko L., Albert M., Prikryl J., Gartnerova V., Bartha J.W., Macak J.M. Atomic layer deposition for coating of high aspect ratio TiO2 nanotube layers. Langmuir. 2016;32:10551–10558. doi: 10.1021/acs.langmuir.6b03119. PubMed DOI PMC

Stevens G., Edmonds T. Catalytic activity of the basal and edge planes of molybdenum disulphide. J. Less Common Met. 1977;54:321–330. doi: 10.1016/0022-5088(77)90054-6. DOI

Ganta D., Sinha S., Haasch R.T. 2-D material molybdenum disulfide analyzed by XPS. Surf. Sci. Spectra. 2014;21:19–27. doi: 10.1116/11.20140401. DOI

Benoist L., Gonbeau D., Pfister-Guillouzo G., Schmidt E., Meunier G., Levasseur A. XPS analysis of lithium intercalation in thin films of molybdenum oxysulphides. Surf Interface Anal. 1994;22:206–210. doi: 10.1002/sia.740220146. DOI

Hopfengärtner G., Borgmann D., Rademacher I., Wedler G., Hums E., Spitznagel G. XPS studies of oxidic model catalysts: Internal standards and oxidation numbers. J Electron Spectros Relat Phenom. 1993;63:91–116. doi: 10.1016/0368-2048(93)80042-K. DOI

Patterson T.A., Carver J.C., Leyden D.E., Hercules D.M. A surface study of cobalt-molybdena-alumina catalysts using x-ray photoelectron spectroscopy. J. Phys. Chem. 1976;80:1700–1708. doi: 10.1021/j100556a011. DOI

Alstrup I., Chorkendorff I., Candia R., Clausen B.S., Topsøe H. A combined X-Ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co Mo catalysts. J. Catal. 1982;77:397–409. doi: 10.1016/0021-9517(82)90181-6. DOI

Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Perkin Elmer Corp., Physical Electronics Division; EdenPrairie, MN, USA: 1995.

Van de Krol R., Goossens A., Schoonman J. Spatial extent of lithium intercalation in anatase TiO2. J. Phys. Chem. B. 1999;103:7151–7159. doi: 10.1021/jp9909964. DOI

Tesfaye A.T., Gogotsi Y., Djenizian T. Tailoring the morphological properties of anodized Ti3 SiC2 for better power density of Li-ion microbatteries. Electrochem. Commun. 2017;81:29–33. doi: 10.1016/j.elecom.2017.05.010. DOI

Wu C.-Y., Chang W.-E., Sun Y.-G., Wu J.-M., Duh J.-G. Three-dimensional S-MoS2@α-Fe2O3 nanoparticles composites as lithium-ion battery anodes for enhanced electrochemical performance. Mater. Chem. Phys. 2018;219:311–317. doi: 10.1016/j.matchemphys.2018.08.059. DOI

Wang L., Zhang Q., Zhu J., Duan X., Xu Z., Liu Y., Yang H., Lu B. Nature of extra capacity in MoS2 electrodes: Molybdenum atoms accommodate with lithium. Energy Storage Mater. 2019;16:37–45. doi: 10.1016/j.ensm.2018.04.025. DOI

Balach J., Jaumann T., Giebeler L. Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li–S cells and Si–Li2S full cells in carbonate-based electrolyte. Energy Storage Mater. 2017;8:209–216. doi: 10.1016/j.ensm.2017.03.013. DOI

Lindström H., Södergren S., Solbrand A., Rensmo H., Hjelm J., Hagfeldt A., Lindquist S.-E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B. 1997;101:7717–7722. doi: 10.1021/jp970490q. DOI

Lipson A.L., Puntambekar K., Comstock D.J., Meng X., Geier M.L., Elam J.W., Hersam M.C. Nanoscale investigation of solid electrolyte interphase inhibition on Li-ion battery MnO electrodes via atomic layer deposition of Al2O3. Chem. Mater. 2014;26:935–940. doi: 10.1021/cm402451h. DOI

Plylahan N., Letiche M., Barr M.K.S., Ellis B., Maria S., Phan T.N., Bloch E., Knauth P., Djenizian T. High energy and power density TiO2 nanotube electrodes for single and complete lithium-ion batteries. J. Power Sources. 2015;273:1182–1188. doi: 10.1016/j.jpowsour.2014.09.152. DOI

Wu X., Zhang S., Wang L., Du Z., Fang H., Ling Y., Huang Z. Coaxial SnO 2@ TiO 2 nanotube hybrids: From robust assembly strategies to potential application in Li+ storage. J. Mater. Chem. 2012;22:11151–11158. doi: 10.1039/c2jm30885a. DOI

Kyeremateng N.A., Lebouin C., Knauth P., Djenizian T. The electrochemical behaviour of TiO2 nanotubes with Co3O4 or NiO submicron particles: Composite anode materials for Li-ion micro batteries. Electrochim. Acta. 2013;88:814–820. doi: 10.1016/j.electacta.2012.09.120. DOI

Yu L., Wang Z., Zhang L., Wu H.B., Lou X.W.D. TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries. J. Mater. Chem. A. 2013;1:122–127. doi: 10.1039/C2TA00223J. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...