ALD coating of centrifugally spun polymeric fibers and postannealing: case study for nanotubular TiO2 photocatalyst
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36133479
PubMed Central
PMC9419182
DOI
10.1039/d1na00288k
PII: d1na00288k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This work describes the synthesis of highly photocatalytically active TiO2 tubes (TiTBs) by combining centrifugal spinning and atomic layer deposition (ALD). Poly(vinyl pyrrolidone) (PVP) fibers were first produced by centrifugal spinning and subsequently coated with TiO2 with various film thicknesses in a fluidized bed ALD reactor. After annealing of the TiO2 ALD coated PVP fibers, TiO2 tubes (TiTBs) with excellent textural properties and diameters in the range from approx. 170 to 430 nm were obtained. The morphology and structure of all TiTBs were investigated by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller analysis (BET). Liquid phase photocatalysis was conducted to determine the photocatalytic activity of the TiTBs. The photocatalytic activity of the TiTBs obtained after 50 TiO2 ALD cycles (degradation rate 0.123 min-1) was twice that of the reference TiO2 P25. The underlying reasons for the remarkable photocatalytic performance were textural properties of the resulting tubes along with suitable crystallinity, embedded within the 1D tubular morphology. The herein presented proof-of-concept approach paves a way for the processing of various polymeric fibers into various tubular nanostructures.
CIC nanoGUNE BRTA Tolosa Hiribidea 76 E 20018 Donostia San Sebastian Spain
IKERBASQUE Basque Foundation for Science Plaza Euskadi 5 E 48009 Bilbao Spain
Zobrazit více v PubMed
Wang X. Li Z. Shi J. Yu Y. Chem. Rev. 2014;114:9346–9384. doi: 10.1021/cr400633s. PubMed DOI
Lee K. Mazare A. Schmuki P. Chem. Rev. 2014;114:9385–9454. doi: 10.1021/cr500061m. PubMed DOI
Kasuga T. Hiramatsu M. Hoson A. Sekino T. Niihara K. Langmuir. 1998;14:3160–3163. doi: 10.1021/la9713816. DOI
Linsebigler A. L. Lu G. Yates J. T. Chem. Rev. 1995;95:735–758. doi: 10.1021/cr00035a013. DOI
Macak J. M. Tsuchiya H. Taverira L. Aldabergerova S. Schmuki P. Angew. Chem. 2005;44:7463–7465. doi: 10.1002/anie.200502781. PubMed DOI
Albu S. P. Ghicov A. Macak J. M. Schmuki P. Phys. Status Solidi RRL. 2007;1:R65–R67. doi: 10.1002/pssr.200600069. DOI
Macak J. M. Hildebrand H. Marten-Jahns U. Schmuki P. J. Electroanal. Chem. 2008;621:254. doi: 10.1016/j.jelechem.2008.01.005. DOI
Wang B., Xue D., Shi Y. and Xue F., Titania 1D nanostructured materials: synthesis, properties and applications, in Nanorods, Nanotubes and Nanomaterials Research Progress, ed, W. V. Prescott and A. I. Schwartz, New Nova Science Publishers Inc., 2008, pp.163–201
Liang H.-W. Liu S. Yu S.-H. Adv. Mater. 2010;22:3925–3937. doi: 10.1002/adma.200904391. PubMed DOI
Peng Q. Sun X.-Y. Spagnola J. C. Hyde G. K. Spontak R. J. Parsons G. N. Nano Lett. 2007;7:719–722. doi: 10.1021/nl062948i. PubMed DOI
Kim G.-M. Lee S.-M. Michler G. H. Roggendorf H. Gösele U. Knez M. Chem. Mater. 2008;20:3085–3091. doi: 10.1021/cm703398b. DOI
Santala E. Kemell M. Leskelä M. Ritala M. Nanotechnology. 2009;20:035602. doi: 10.1088/0957-4484/20/3/035602. PubMed DOI
Szilágyi I. M. Nagy D. J. Phys.: Conf. Ser. 2014;559:012010. doi: 10.1088/1742-6596/559/1/012010. DOI
Huang Z.-M. Zhang Y.-Z. Kotaki M. Ramakrishna S. Compos. Sci. Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. DOI
Frenot A. Chronakis I. S. Curr. Opin. Colloid Interface Sci. 2003;8:64–75. doi: 10.1016/S1359-0294(03)00004-9. DOI
Padron S. Fuentes A. Caruntu D. Lozano K. J. Appl. Phys. 2013;113:024318. doi: 10.1063/1.4769886. DOI
Vazquez B. Vasquez H. Lozano K. Polym. Eng. Sci. 2012;52:2260–2265. doi: 10.1002/pen.23169. DOI
Rihova M. Ince A. E. Cicmanova V. Hromadko L. Castkova K. Pavlinak D. Vojtova L. Macak J. M. J. Appl. Polym. Sci. 2021;38:1–14.
Leskelä M. Ritala M. Adv. Electron. Mater. 2003;42:5548–5554. PubMed
Parsons G. N. George S. Knez M. MRS Bull. 2011;36:865–871. doi: 10.1557/mrs.2011.238. DOI
Knez M. Kadri A. Wege C. Gösele U. Jeske H. Nielsch K. Nano Lett. 2006;6:1172–1177. doi: 10.1021/nl060413j. PubMed DOI
Hyde G. K. Park K. J. Stewart M. Hinestroza J. P. Parsons G. N. Langmuir. 2007;23:9844–9849. doi: 10.1021/la701449t. PubMed DOI
Kim W.-S. Lee B.-S. Kim D.-H. Kim H.-C. Yu W.-R. Hong S.-H. Nanotechnology. 2010;21:245605. doi: 10.1088/0957-4484/21/24/245605. PubMed DOI
Lee B.-S. Kim W.-S. Kim D.-H. Kim H.-C. Hong S.-H. Yu W.-R. Smart Mater. Struct. 2011;20:105019. doi: 10.1088/0964-1726/20/10/105019. DOI
Cho S. Kim D.-H. Lee B.-S. Jung J. Yu W.-R. Hong S.-H. Lee S S. Sens. Actuators, B. 2012;162:300–306. doi: 10.1016/j.snb.2011.12.081. DOI
Chaaya A. A. Bechelany M. Balme S. Miele P. J. Mater. Chem. 2013;2:20650–20658. doi: 10.1039/C4TA05239K. DOI
Dwyer D. B. Lee D. T. Boyer S. Bernier W. E. Parsons N. Jones Jr W. E. ACS Appl. Mater. Interfaces. 2018;10:25794–25803. doi: 10.1021/acsami.8b08167. PubMed DOI
Kayaci F. Vempati S. Donmez I. Biyikli N. Uyar T. Nanoscale. 2014;6:10224–10234. doi: 10.1039/C4NR01887G. PubMed DOI
Vempati S. Kayaci-Senirmak F. Ozgit-Akgun C. Biyikli N. Uyar T. J. Phys. Chem. C. 2015;119:23268–23273. doi: 10.1021/acs.jpcc.5b07904. DOI
Kayaci F. Ozgit-Akgun C. Donmez I. Biyikli N. Uyar T. ACS Appl. Mater. Interfaces. 2012;4:6185–6194. doi: 10.1021/am3017976. PubMed DOI
Domnez I. Kayaci F. Ozgit-Akgun C. Uyar T. Biyikli N. N. J. Alloys Compd. 2013;559:146–151. doi: 10.1016/j.jallcom.2013.01.064. DOI
Kayaci F. Ozgit-Akgun C. Biyikli N. Uyar T. RSC Adv. 2013;3:6817–6820. doi: 10.1039/C3RA40359A. DOI
Haider A. Ozgit-Akgun C. Kayaci F. Okyay A. K. Uyar T. Biyikli N. APL Mater. 2014;2:096109. doi: 10.1063/1.4894782. DOI
Ozgit-Akgun C. Kayaci F. Vempati S. Haider A. Celebioglu A. Goldenberg E. Kizir S. Uyar T. Biyikli N. J. Mater. Chem. C. 2015;3:5199–5206. doi: 10.1039/C5TC00343A. DOI
Oldham C. J. Gong B. Spagnola J. C. Jur J. S. Senecal K. J. Godfrey T. A. Parsons G. N. ECS Trans. 2010;33:279–290. doi: 10.1149/1.3485265. DOI
McClure C. D. Oldham C. J. Walls H. J. Parsons G. N. J. Vac. Sci. Technol., A. 2013;31:061506. doi: 10.1116/1.4817718. DOI
Wang Z. Zhang L. Liu Z. Sang L. Yang L. Chen Q. Nanoscale Res. Lett. 2017;12:1–8. doi: 10.1186/s11671-016-1773-2. PubMed DOI PMC
Rodrigues B. V. M. Dias V. M. Fraga M. A. da Silva Sobrinho A. S. Lobo A. O. Maciel H. S. Pessoa R. S. Mater. Today. 2019;14:656–662.
Li D. McCann J. T. Xia Y. Marquez M. J. Am. Ceram. Soc. 2006;89:1861–1869. doi: 10.1111/j.1551-2916.2006.00989.x. DOI
Lubasova D. Niu H. Zhao X. Lin T. RSC Adv. 2015;5:54481–54487. doi: 10.1039/C5RA07514A. DOI
Bunyatova U. Rzayev Z. M. O. Simşek M. eXPRESS Polym. Lett. 2016;10:598–616. doi: 10.3144/expresspolymlett.2016.55. DOI
Choi S.-W. Park J. Y. Lee C. Lee J. G. Kim S. S. J. Am. Chem. Soc. 2011;94:1974–1977.
Jung M.-H. Yun Y. J. Chu M.-J. Kang M. G. Chem.–Eur. J. 2013;19:8543–8549. doi: 10.1002/chem.201300834. PubMed DOI
Kayaci F. Vempati S. Ozgit-Akgun C. Donmez I. Biyikli N. Uyar T. Nanoscale. 2014;6:5735–5745. doi: 10.1039/C3NR06665G. PubMed DOI
de Dicastillo C. L. Patiño C. Galotto M. J. Palma J. L. Alburquenque D. Escrig J. Nanomaterials. 2018;8:1–17. PubMed PMC
Putkonen M. Heikkilä P. Pasanen A. T. Rautkoski H. Svärd L. Simell P. Vähä-Nissi M. J. Vac. Sci. Technol., A. 2018;36:01A102. doi: 10.1116/1.4999826. DOI
Heikkilä P. Hirvikorpi T. Hilden H. Sievänen J. Hyvärinen L. Harlin A. Vähä-Nissi M. J. Mater. Sci. 2012;47:3607–3612. doi: 10.1007/s10853-011-6207-z. DOI
Xu C. Wang H. Song J. Bai X. Liu Z. Fang M. Yuan Y. Sheng J. Li X. Wang N. Wu H. J. Am. Ceram. Soc. 2017;101:1677–1683. doi: 10.1111/jace.15301. DOI
Kéri O. Kocsis E. Nagy Z. K. Parditka B. Erdélyi Z. Szilágyi I. M. Rev. Roum. Chim. 2018;63:401–406.
Fang X. Li S. Wang X. Fang F. Chu X. Wei Z. Li J. Chen Z. Wai F. Appl. Surf. Sci. 2012;263:14–17. doi: 10.1016/j.apsusc.2012.08.048. DOI
Kim G.-M. Lee S.-M. Knez M. Simon P. Thin Solid Films. 2014;562:291–298. doi: 10.1016/j.tsf.2014.04.079. DOI
Chen X. Zhai Y. Li J. Fang X. Fang F. Chu X. Wei Z. Wang X. Appl. Surf. Sci. 2014;319:216–220. doi: 10.1016/j.apsusc.2014.07.148. DOI
Katoch A. Abideen Z. U. Kim J.-H. Kim S. S. Sens. Actuators, B. 2016;232:698–704. doi: 10.1016/j.snb.2016.04.013. DOI
Huang J.-Y. Zhang K.-Q. Lai Y.-K. Int. J. Photoenergy. 2013;2013:1–19.
Hanaor D. A. H. Sorrell C. C. J. Mater. Sci. 2011;46:855–874. doi: 10.1007/s10853-010-5113-0. DOI
Mangum J. S. Agirseven O. Haggerty J. E. S. Perkins J. D. Schelhas L. T. Kitchaev D. A. Garten L. M. Ginley D. S. Toney M. F. Tate J. Gorman B. P. J. Non-Cryst. Solids. 2019;505:109–114. doi: 10.1016/j.jnoncrysol.2018.10.049. DOI
Schneider J. Matsuoka M. Takeuchi M. Zhang J. Horiuchi Y. Anpo M. Bahnemann D. W. Chem. Rev. 2014;114:9919–9986. doi: 10.1021/cr5001892. PubMed DOI
Choi S. K. Kim S. Lim S. K. Park H. J. Phys. Chem. C. 2010;114:16475–16480. doi: 10.1021/jp104317x. PubMed DOI
Lakshminarasimhan N. Bae E. Choi W. J. J. Phys. Chem. C. 2007;111:15244–15250. doi: 10.1021/jp0752724. DOI
Hu L. Yan X.-W. Zhang X.-J. Shan D. Appl. Surf. Sci. 2018;48:819–824. doi: 10.1016/j.apsusc.2017.09.216. DOI
Rajeshwar K. Osugi M. E. Chanmanee W. Chenthamarakshan C. R. Zanoni M. V. B. Kajitvichyanukul P. Krishnan-Ayer R. J. Photochem. Photobiol., C. 2008;9:71–192. doi: 10.1016/j.jphotochemrev.2008.09.001. DOI
Doh S. J. Kim C. Lee S. G. Lee S. J. Kim H. J. Hazard. Mater. 2008;154:118–127. doi: 10.1016/j.jhazmat.2007.09.118. PubMed DOI
Yang J. Wu H. Wang M. Liang Y. Int. J. Heat Mass Transfer. 2008;117:729–739. doi: 10.1016/j.ijheatmasstransfer.2017.09.069. DOI
Bao N. Wu G. Niu J. Zhang Q. He S. Wang J. J. Alloys Compd. 2014;599:40–48. doi: 10.1016/j.jallcom.2014.02.072. DOI
Zazpe R. Sopha H. Prikryl J. Krbal M. Mistrik J. Dvorak F. Hromadko L. Macak J. M. Nanoscale. 2018;10:16601–16612. doi: 10.1039/C8NR02418A. PubMed DOI PMC
Bickley R. I. Gonzalez-Carreno T. Lees J. S. Palmisano L. Tilley R. J. D. J. Solid State Chem. 1991;92:178–190. doi: 10.1016/0022-4596(91)90255-G. DOI
SiO2 Fibers of Two Lengths and Their Effect on Cellular Responses of Macrophage-like Cells