SiO2 Fibers of Two Lengths and Their Effect on Cellular Responses of Macrophage-like Cells

. 2022 Jul 12 ; 27 (14) : . [epub] 20220712

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35889328

Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007421 Ministry of Education, Youth and Sports of the Czech Republic

The immunoreactivity or/and stress response can be induced by nanomaterials' different properties, such as size, shape, etc. These effects are, however, not yet fully understood. This study aimed to clarify the effects of SiO2 nanofibers (SiO2NFs) on the cellular responses of THP-1-derived macrophage-like cells. The effects of SiO2NFs with different lengths on reactive oxygen species (ROS) and pro-inflammatory cytokines TNF-α and IL-1β in THP-1 cells were evaluated. From the two tested lengths, it was only the L-SiO2NFs with a length ≈ 44 ± 22 µm that could induce ROS. Compared to this, only S-SiO2NFs with a length ≈ 14 ± 17 µm could enhance TNF-α and IL-1β expression. Our results suggested that L-SiO2NFs disassembled by THP-1 cells produced ROS and that the inflammatory reaction was induced by the uptake of S-SiO2NFs by THP-1 cells. The F-actin staining results indicated that SiO2NFs induced cell motility and phagocytosis. There was no difference in cytotoxicity between L- and S-SiO2NFs. However, our results suggested that the lengths of SiO2NFs induced different cellular responses.

Zobrazit více v PubMed

Villanueva-Flores F., Castro-Lugo A., Ramírez O.T., Palomares L.A. Understanding Cellular Interactions with Nanomaterials: Towards a Rational Design of Medical Nanodevices. Nanotechnology. 2020;31:132002. doi: 10.1088/1361-6528/ab5bc8. PubMed DOI PMC

Eldawud R., Wagner A., Dong C., Stueckle T.A., Rojanasakul Y., Dinu C.Z. Carbon Nanotubes Physicochemical Properties Influence the Overall Cellular Behavior and Fate. NanoImpact. 2018;9:72–84. doi: 10.1016/j.impact.2017.10.006. PubMed DOI PMC

Kurtz-Chalot A., Villiers C., Pourchez J., Boudard D., Martini M., Marche P.N., Cottier M., Forest V. Impact of Silica Nanoparticle Surface Chemistry on Protein Corona Formation and Consequential Interactions with Biological Cells. Mater. Sci. Eng. C. 2017;75:16–24. doi: 10.1016/j.msec.2017.02.028. PubMed DOI

Valsesia A., Desmet C., Ojea-Jiménez I., Oddo A., Capomaccio R., Rossi F., Colpo P. Direct Quantification of Nanoparticle Surface Hydrophobicity. Commun. Chem. 2018;1:53. doi: 10.1038/s42004-018-0054-7. DOI

Coreas R., Cao X., DeLoid G.M., Demokritou P., Zhong W. Lipid and Protein Corona of Food-Grade TiO2 Nanoparticles in Simulated Gastrointestinal Digestion. NanoImpact. 2020;20:100272. doi: 10.1016/j.impact.2020.100272. PubMed DOI PMC

Karmali P.P., Simberg D. Interactions of Nanoparticles with Plasma Proteins: Implication on Clearance and Toxicity of Drug Delivery Systems. Expert Opin. Drug Deliv. 2011;8:343–357. doi: 10.1517/17425247.2011.554818. PubMed DOI

Mohammad-Beigi H., Hayashi Y., Zeuthen C.M., Eskandari H., Scavenius C., Juul-Madsen K., Vorup-Jensen T., Enghild J.J., Sutherland D.S. Mapping and Identification of Soft Corona Proteins at Nanoparticles and Their Impact on Cellular Association. Nat. Commun. 2020;11:4535. doi: 10.1038/s41467-020-18237-7. PubMed DOI PMC

Kupcik R., Macak J.M., Rehulkova H., Sopha H., Fabrik I., Anitha V.C., Klimentova J., Murasova P., Bilkova Z., Rehulka P. Amorphous TiO2 Nanotubes as a Platform for Highly Selective Phosphopeptide Enrichment. ACS Omega. 2019;4:12156–12166. doi: 10.1021/acsomega.9b00571. PubMed DOI PMC

Zhou S., Li X., Zhu M., Yu H., Chu R., Chen W., Wang B., Wang M., Zheng L., Chai Z., et al. Hepatic Impacts of Gold Nanoparticles with Different Surface Coatings as Revealed by Assessing the Hepatic Drug-Metabolizing Enzyme and Lipid Homeostasis in Mice. NanoImpact. 2020;20:100259. doi: 10.1016/j.impact.2020.100259. DOI

Zheng H., Mortensen L.J., Ravichandran S., Bentley K., DeLouise L.A. Effect of Nanoparticle Surface Coating on Cell Toxicity and Mitochondria Uptake. J. Biomed. Nanotechnol. 2017;13:155–166. doi: 10.1166/jbn.2017.2337. PubMed DOI PMC

Sakai N., Matsui Y., Nakayama A., Tsuda A., Yoneda M. Functional-Dependent and Size-Dependent Uptake of Nanoparticles in PC12. J. Phys. Conf. Ser. 2011;304:012049. doi: 10.1088/1742-6596/304/1/012049. DOI

Ichikawa S., Shimokawa N., Takagi M., Kitayama Y., Takeuchi T. Size-Dependent Uptake of Electrically Neutral Amphipathic Polymeric Nanoparticles by Cell-Sized Liposomes and an Insight into Their Internalization Mechanism in Living Cells. Chem. Commun. 2018;54:4557–4560. doi: 10.1039/C8CC00977E. PubMed DOI

Pan Y., Neuss S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W. Size-Dependent Cytotoxicity of Gold Nanoparticles. Small. 2007;3:1941–1949. doi: 10.1002/smll.200700378. PubMed DOI

Shi W., Wang J., Fan X., Gao H. Size and Shape Effects on Diffusion and Absorption of Colloidal Particles near a Partially Absorbing Sphere: Implications for Uptake of Nanoparticles in Animal Cells. Phys. Rev. E. 2008;78:061914. doi: 10.1103/PhysRevE.78.061914. PubMed DOI

Sharifi S., Behzadi S., Laurent S., Forrest M.L., Stroeve P., Mahmoudi M. Toxicity of Nanomaterials. Chem. Soc. Rev. 2012;41:2323–2343. doi: 10.1039/C1CS15188F. PubMed DOI PMC

Hamilton R.F., Wu N., Porter D., Buford M., Wolfarth M., Holian A. Particle Length-Dependent Titanium Dioxide Nanomaterials Toxicity and Bioactivity. Part. Fibre Toxicol. 2009;6:35. doi: 10.1186/1743-8977-6-35. PubMed DOI PMC

Schinwald A., Murphy F.A., Prina-Mello A., Poland C.A., Byrne F., Movia D., Glass J.R., Dickerson J.C., Schultz D.A., Jeffree C.E., et al. The Threshold Length for Fiber-Induced Acute Pleural Inflammation: Shedding Light on the Early Events in Asbestos-Induced Mesothelioma. Toxicol. Sci. 2012;128:461–470. doi: 10.1093/toxsci/kfs171. PubMed DOI

Cacchioli A., Ravanetti F., Alinovi R., Pinelli S., Rossi F., Negri M., Bedogni E., Campanini M., Galetti M., Goldoni M., et al. Cytocompatibility and Cellular Internalization Mechanisms of SiC/SiO2 Nanowires. Nano Lett. 2014;14:4368–4375. doi: 10.1021/nl501255m. PubMed DOI

Ahmad H. Biocompatible SiO2 in the Fabrication of Stimuli-Responsive Hybrid Composites and Their Application Potential. J. Chem. 2015;2015:e846328. doi: 10.1155/2015/846328. DOI

Lovětinská-Šlamborová I., Holý P., Exnar P., Veverková I. Silica Nanofibers with Immobilized Tetracycline for Wound Dressing. J. Nanomater. 2016;2016:2485173. doi: 10.1155/2016/2485173. DOI

Wang L., Zhao C., Shan H., Jiao Y., Zhang Q., Li X., Yu J., Ding B. Deoxycholic Acid-Modified Microporous SiO2 Nanofibers Mimicking Colorectal Microenvironment to Optimize Radiotherapy-Chemotherapy Combined Therapy. Biomed. Mater. 2021;16:065020. doi: 10.1088/1748-605X/ac2bbb. PubMed DOI

Xu L., Li W., Sadeghi-Soureh S., Amirsaadat S., Pourpirali R., Alijani S. Dual Drug Release Mechanisms through Mesoporous Silica Nanoparticle/Electrospun Nanofiber for Enhanced Anticancer Efficiency of Curcumin. J. Biomed. Mater. Res. Part A. 2022;110:316–330. doi: 10.1002/jbm.a.37288. PubMed DOI

Ways T.M.M., Ng K.W., Lau W.M., Khutoryanskiy V.V. Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics. 2020;12:751. doi: 10.3390/pharmaceutics12080751. PubMed DOI PMC

Guo L., Wang T., Jia L., Chen S., Huang D., Chen W. Synthesis and Drug Delivery Property of Silica Nanotubes Prepared Using Gelatin Nanofibers as Novel Sacrificed Template. Mater. Lett. 2017;209:334–337. doi: 10.1016/j.matlet.2017.08.055. DOI

Eivazzadeh-Keihan R., Chenab K.K., Taheri-Ledari R., Mosafer J., Hashemi S.M., Mokhtarzadeh A., Maleki A., Hamblin M.R. Recent Advances in the Application of Mesoporous Silica-Based Nanomaterials for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;107:110267. doi: 10.1016/j.msec.2019.110267. PubMed DOI PMC

Chanput W., Mes J.J., Wichers H.J. THP-1 Cell Line: An in Vitro Cell Model for Immune Modulation Approach. Int. Immunopharmacol. 2014;23:37–45. doi: 10.1016/j.intimp.2014.08.002. PubMed DOI

Forman H.J., Torres M. Redox Signaling in Macrophages. Mol. Asp. Med. 2001;22:189–216. doi: 10.1016/S0098-2997(01)00010-3. PubMed DOI

Widdrington J.D., Gomez-Duran A., Pyle A., Ruchaud-Sparagano M.-H., Scott J., Baudouin S.V., Rostron A.J., Lovat P.E., Chinnery P.F., Simpson A.J. Exposure of Monocytic Cells to Lipopolysaccharide Induces Coordinated Endotoxin Tolerance, Mitochondrial Biogenesis, Mitophagy, and Antioxidant Defenses. Front. Immunol. 2018;9:2217. doi: 10.3389/fimmu.2018.02217. PubMed DOI PMC

Ott L.W., Resing K.A., Sizemore A.W., Heyen J.W., Cocklin R.R., Pedrick N.M., Woods H.C., Chen J.Y., Goebl M.G., Witzmann F.A., et al. Tumor Necrosis Factor-α- and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information. J. Proteome Res. 2007;6:2176–2185. doi: 10.1021/pr060665l. PubMed DOI PMC

Evans J.G., Matsudaira P. Structure and Dynamics of Macrophage Podosomes. Eur. J. Cell Biol. 2006;85:145–149. doi: 10.1016/j.ejcb.2005.08.006. PubMed DOI

Hromádko L., Koudelková E., Bulánek R., Macák J.M. SiO2 Fibers by Centrifugal Spinning with Excellent Textural Properties and Water Adsorption Performance. ACS Omega. 2017;2:5052–5059. doi: 10.1021/acsomega.7b00770. PubMed DOI PMC

Padron S., Fuentes A., Caruntu D., Lozano K. Experimental Study of Nanofiber Production through Forcespinning. J. Appl. Phys. 2013;113:024318. doi: 10.1063/1.4769886. DOI

Huang Z.-M., Zhang Y.-Z., Kotaki M., Ramakrishna S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. DOI

Ao C., Niu Y., Zhang X., He X., Zhang W., Lu C. Fabrication and Characterization of Electrospun Cellulose/Nano-Hydroxyapatite Nanofibers for Bone Tissue Engineering. Int. J. Biol. Macromol. 2017;97:568–573. doi: 10.1016/j.ijbiomac.2016.12.091. PubMed DOI

Yamaguchi T., Sakai S., Kawakami K. Application of Silicate Electrospun Nanofibers for Cell Culture. J. Sol-Gel Sci. Technol. 2008;48:350–355. doi: 10.1007/s10971-008-1822-0. DOI

Cavo M., Serio F., Kale N., D’Amone E., Gigli G., del Mercato L.L. Electrospun Nanofibers in Cancer Research: From Engineering of in Vitro 3D Cancer Models to Therapy. Biomater. Sci. 2020;8:4887–4905. doi: 10.1039/D0BM00390E. PubMed DOI

Hardick O., Dods S., Stevens B., Bracewell D.G. Nanofiber Adsorbents for High Productivity Continuous Downstream Processing. J. Biotechnol. 2015;213:74–82. doi: 10.1016/j.jbiotec.2015.01.031. PubMed DOI

Kim G.-M., Lee S.-M., Michler G.H., Roggendorf H., Gösele U., Knez M. Nanostructured Pure Anatase Titania Tubes Replicated from Electrospun Polymer Fiber Templates by Atomic Layer Deposition. Chem. Mater. 2008;20:3085–3091. doi: 10.1021/cm703398b. DOI

Rihova M., Yurkevich O., Motola M., Hromadko L., Spotz Z., Zazpe R., Knez M., Macak J.M. ALD Coating of Centrifugally Spun Polymeric Fibers and Postannealing: Case Study for Nanotubular TiO2 Photocatalyst. Nanoscale Adv. 2021;3:4589–4596. doi: 10.1039/D1NA00288K. PubMed DOI PMC

Lund M.E., To J., O’Brien B.A., Donnelly S. The Choice of Phorbol 12-Myristate 13-Acetate Differentiation Protocol Influences the Response of THP-1 Macrophages to a pro-Inflammatory Stimulus. J. Immunol. Methods. 2016;430:64–70. doi: 10.1016/j.jim.2016.01.012. PubMed DOI

Schwende H., Fitzke E., Ambs P., Dieter P. Differences in the State of Differentiation of THP-1 Cells Induced by Phorbol Ester and 1,25-Dihydroxyvitamin D3. J. Leukoc. Biol. 1996;59:555–561. doi: 10.1002/jlb.59.4.555. PubMed DOI

Pinto S.M., Kim H., Subbannayya Y., Giambelluca M., Bösl K., Kandasamy R.K. Dose-Dependent Phorbol 12-Myristate-13-Acetate-Mediated Monocyte-to-Macrophage Differentiation Induces Unique Proteomic Signatures in THP-1 Cells. bioRxiv. :2020. doi: 10.1101/2020.02.27.968016. PubMed DOI PMC

Lopes V.R., Sanchez-Martinez C., Strømme M., Ferraz N. In Vitro Biological Responses to Nanofibrillated Cellulose by Human Dermal, Lung and Immune Cells: Surface Chemistry Aspect. Part. Fibre Toxicol. 2017;14:1. doi: 10.1186/s12989-016-0182-0. PubMed DOI PMC

Boonrungsiman S., Suchaoin W., Chetprayoon P., Viriya-empikul N., Aueviriyavit S., Maniratanachote R. Shape and Surface Properties of Titanate Nanomaterials Influence Differential Cellular Uptake Behavior and Biological Responses in THP-1 Cells. Biochem. Biophys. Rep. 2017;9:203–210. doi: 10.1016/j.bbrep.2016.12.014. PubMed DOI PMC

Feldman D. The Effect of Size of Materials Formed or Implanted In Vivo on the Macrophage Response and the Resultant Influence on Clinical Outcome. Materials. 2021;14:4572. doi: 10.3390/ma14164572. PubMed DOI PMC

Ye J., Shi X., Jones W., Rojanasakul Y., Cheng N., Schwegler-Berry D., Baron P., Deye G.J., Li C., Castranova V. Critical Role of Glass Fiber Length in TNF-Alpha Production and Transcription Factor Activation in Macrophages. Am. J. Physiol. 1999;276:L426–L434. doi: 10.1152/ajplung.1999.276.3.L426. PubMed DOI

Padmore T., Stark C., Turkevich L.A., Champion J.A. Quantitative Analysis of the Role of Fiber Length on Phagocytosis and Inflammatory Response by Alveolar Macrophages. Biochim. Biophys. Acta. 2017;1861:58–67. doi: 10.1016/j.bbagen.2016.09.031. PubMed DOI PMC

Miller Y.I., Worrall D.S., Funk C.D., Feramisco J.R., Witztum J.L. Actin Polymerization in Macrophages in Response to Oxidized LDL and Apoptotic Cells: Role of 12/15-Lipoxygenase and Phosphoinositide 3-Kinase. Mol. Biol. Cell. 2003;14:4196–4206. doi: 10.1091/mbc.e03-02-0063. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...