SiO2 Fibers of Two Lengths and Their Effect on Cellular Responses of Macrophage-like Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007421
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
35889328
PubMed Central
PMC9320682
DOI
10.3390/molecules27144456
PII: molecules27144456
Knihovny.cz E-zdroje
- Klíčová slova
- SiO2 nanofibers, THP-1-derived macrophage-like cells, cytotoxicity, immunoreactivity,
- MeSH
- cytokiny metabolismus MeSH
- lidé MeSH
- makrofágy MeSH
- oxid křemičitý * farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- THP-1 buňky MeSH
- TNF-alfa * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny MeSH
- oxid křemičitý * MeSH
- reaktivní formy kyslíku MeSH
- TNF-alfa * MeSH
The immunoreactivity or/and stress response can be induced by nanomaterials' different properties, such as size, shape, etc. These effects are, however, not yet fully understood. This study aimed to clarify the effects of SiO2 nanofibers (SiO2NFs) on the cellular responses of THP-1-derived macrophage-like cells. The effects of SiO2NFs with different lengths on reactive oxygen species (ROS) and pro-inflammatory cytokines TNF-α and IL-1β in THP-1 cells were evaluated. From the two tested lengths, it was only the L-SiO2NFs with a length ≈ 44 ± 22 µm that could induce ROS. Compared to this, only S-SiO2NFs with a length ≈ 14 ± 17 µm could enhance TNF-α and IL-1β expression. Our results suggested that L-SiO2NFs disassembled by THP-1 cells produced ROS and that the inflammatory reaction was induced by the uptake of S-SiO2NFs by THP-1 cells. The F-actin staining results indicated that SiO2NFs induced cell motility and phagocytosis. There was no difference in cytotoxicity between L- and S-SiO2NFs. However, our results suggested that the lengths of SiO2NFs induced different cellular responses.
Zobrazit více v PubMed
Villanueva-Flores F., Castro-Lugo A., Ramírez O.T., Palomares L.A. Understanding Cellular Interactions with Nanomaterials: Towards a Rational Design of Medical Nanodevices. Nanotechnology. 2020;31:132002. doi: 10.1088/1361-6528/ab5bc8. PubMed DOI PMC
Eldawud R., Wagner A., Dong C., Stueckle T.A., Rojanasakul Y., Dinu C.Z. Carbon Nanotubes Physicochemical Properties Influence the Overall Cellular Behavior and Fate. NanoImpact. 2018;9:72–84. doi: 10.1016/j.impact.2017.10.006. PubMed DOI PMC
Kurtz-Chalot A., Villiers C., Pourchez J., Boudard D., Martini M., Marche P.N., Cottier M., Forest V. Impact of Silica Nanoparticle Surface Chemistry on Protein Corona Formation and Consequential Interactions with Biological Cells. Mater. Sci. Eng. C. 2017;75:16–24. doi: 10.1016/j.msec.2017.02.028. PubMed DOI
Valsesia A., Desmet C., Ojea-Jiménez I., Oddo A., Capomaccio R., Rossi F., Colpo P. Direct Quantification of Nanoparticle Surface Hydrophobicity. Commun. Chem. 2018;1:53. doi: 10.1038/s42004-018-0054-7. DOI
Coreas R., Cao X., DeLoid G.M., Demokritou P., Zhong W. Lipid and Protein Corona of Food-Grade TiO2 Nanoparticles in Simulated Gastrointestinal Digestion. NanoImpact. 2020;20:100272. doi: 10.1016/j.impact.2020.100272. PubMed DOI PMC
Karmali P.P., Simberg D. Interactions of Nanoparticles with Plasma Proteins: Implication on Clearance and Toxicity of Drug Delivery Systems. Expert Opin. Drug Deliv. 2011;8:343–357. doi: 10.1517/17425247.2011.554818. PubMed DOI
Mohammad-Beigi H., Hayashi Y., Zeuthen C.M., Eskandari H., Scavenius C., Juul-Madsen K., Vorup-Jensen T., Enghild J.J., Sutherland D.S. Mapping and Identification of Soft Corona Proteins at Nanoparticles and Their Impact on Cellular Association. Nat. Commun. 2020;11:4535. doi: 10.1038/s41467-020-18237-7. PubMed DOI PMC
Kupcik R., Macak J.M., Rehulkova H., Sopha H., Fabrik I., Anitha V.C., Klimentova J., Murasova P., Bilkova Z., Rehulka P. Amorphous TiO2 Nanotubes as a Platform for Highly Selective Phosphopeptide Enrichment. ACS Omega. 2019;4:12156–12166. doi: 10.1021/acsomega.9b00571. PubMed DOI PMC
Zhou S., Li X., Zhu M., Yu H., Chu R., Chen W., Wang B., Wang M., Zheng L., Chai Z., et al. Hepatic Impacts of Gold Nanoparticles with Different Surface Coatings as Revealed by Assessing the Hepatic Drug-Metabolizing Enzyme and Lipid Homeostasis in Mice. NanoImpact. 2020;20:100259. doi: 10.1016/j.impact.2020.100259. DOI
Zheng H., Mortensen L.J., Ravichandran S., Bentley K., DeLouise L.A. Effect of Nanoparticle Surface Coating on Cell Toxicity and Mitochondria Uptake. J. Biomed. Nanotechnol. 2017;13:155–166. doi: 10.1166/jbn.2017.2337. PubMed DOI PMC
Sakai N., Matsui Y., Nakayama A., Tsuda A., Yoneda M. Functional-Dependent and Size-Dependent Uptake of Nanoparticles in PC12. J. Phys. Conf. Ser. 2011;304:012049. doi: 10.1088/1742-6596/304/1/012049. DOI
Ichikawa S., Shimokawa N., Takagi M., Kitayama Y., Takeuchi T. Size-Dependent Uptake of Electrically Neutral Amphipathic Polymeric Nanoparticles by Cell-Sized Liposomes and an Insight into Their Internalization Mechanism in Living Cells. Chem. Commun. 2018;54:4557–4560. doi: 10.1039/C8CC00977E. PubMed DOI
Pan Y., Neuss S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W. Size-Dependent Cytotoxicity of Gold Nanoparticles. Small. 2007;3:1941–1949. doi: 10.1002/smll.200700378. PubMed DOI
Shi W., Wang J., Fan X., Gao H. Size and Shape Effects on Diffusion and Absorption of Colloidal Particles near a Partially Absorbing Sphere: Implications for Uptake of Nanoparticles in Animal Cells. Phys. Rev. E. 2008;78:061914. doi: 10.1103/PhysRevE.78.061914. PubMed DOI
Sharifi S., Behzadi S., Laurent S., Forrest M.L., Stroeve P., Mahmoudi M. Toxicity of Nanomaterials. Chem. Soc. Rev. 2012;41:2323–2343. doi: 10.1039/C1CS15188F. PubMed DOI PMC
Hamilton R.F., Wu N., Porter D., Buford M., Wolfarth M., Holian A. Particle Length-Dependent Titanium Dioxide Nanomaterials Toxicity and Bioactivity. Part. Fibre Toxicol. 2009;6:35. doi: 10.1186/1743-8977-6-35. PubMed DOI PMC
Schinwald A., Murphy F.A., Prina-Mello A., Poland C.A., Byrne F., Movia D., Glass J.R., Dickerson J.C., Schultz D.A., Jeffree C.E., et al. The Threshold Length for Fiber-Induced Acute Pleural Inflammation: Shedding Light on the Early Events in Asbestos-Induced Mesothelioma. Toxicol. Sci. 2012;128:461–470. doi: 10.1093/toxsci/kfs171. PubMed DOI
Cacchioli A., Ravanetti F., Alinovi R., Pinelli S., Rossi F., Negri M., Bedogni E., Campanini M., Galetti M., Goldoni M., et al. Cytocompatibility and Cellular Internalization Mechanisms of SiC/SiO2 Nanowires. Nano Lett. 2014;14:4368–4375. doi: 10.1021/nl501255m. PubMed DOI
Ahmad H. Biocompatible SiO2 in the Fabrication of Stimuli-Responsive Hybrid Composites and Their Application Potential. J. Chem. 2015;2015:e846328. doi: 10.1155/2015/846328. DOI
Lovětinská-Šlamborová I., Holý P., Exnar P., Veverková I. Silica Nanofibers with Immobilized Tetracycline for Wound Dressing. J. Nanomater. 2016;2016:2485173. doi: 10.1155/2016/2485173. DOI
Wang L., Zhao C., Shan H., Jiao Y., Zhang Q., Li X., Yu J., Ding B. Deoxycholic Acid-Modified Microporous SiO2 Nanofibers Mimicking Colorectal Microenvironment to Optimize Radiotherapy-Chemotherapy Combined Therapy. Biomed. Mater. 2021;16:065020. doi: 10.1088/1748-605X/ac2bbb. PubMed DOI
Xu L., Li W., Sadeghi-Soureh S., Amirsaadat S., Pourpirali R., Alijani S. Dual Drug Release Mechanisms through Mesoporous Silica Nanoparticle/Electrospun Nanofiber for Enhanced Anticancer Efficiency of Curcumin. J. Biomed. Mater. Res. Part A. 2022;110:316–330. doi: 10.1002/jbm.a.37288. PubMed DOI
Ways T.M.M., Ng K.W., Lau W.M., Khutoryanskiy V.V. Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics. 2020;12:751. doi: 10.3390/pharmaceutics12080751. PubMed DOI PMC
Guo L., Wang T., Jia L., Chen S., Huang D., Chen W. Synthesis and Drug Delivery Property of Silica Nanotubes Prepared Using Gelatin Nanofibers as Novel Sacrificed Template. Mater. Lett. 2017;209:334–337. doi: 10.1016/j.matlet.2017.08.055. DOI
Eivazzadeh-Keihan R., Chenab K.K., Taheri-Ledari R., Mosafer J., Hashemi S.M., Mokhtarzadeh A., Maleki A., Hamblin M.R. Recent Advances in the Application of Mesoporous Silica-Based Nanomaterials for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;107:110267. doi: 10.1016/j.msec.2019.110267. PubMed DOI PMC
Chanput W., Mes J.J., Wichers H.J. THP-1 Cell Line: An in Vitro Cell Model for Immune Modulation Approach. Int. Immunopharmacol. 2014;23:37–45. doi: 10.1016/j.intimp.2014.08.002. PubMed DOI
Forman H.J., Torres M. Redox Signaling in Macrophages. Mol. Asp. Med. 2001;22:189–216. doi: 10.1016/S0098-2997(01)00010-3. PubMed DOI
Widdrington J.D., Gomez-Duran A., Pyle A., Ruchaud-Sparagano M.-H., Scott J., Baudouin S.V., Rostron A.J., Lovat P.E., Chinnery P.F., Simpson A.J. Exposure of Monocytic Cells to Lipopolysaccharide Induces Coordinated Endotoxin Tolerance, Mitochondrial Biogenesis, Mitophagy, and Antioxidant Defenses. Front. Immunol. 2018;9:2217. doi: 10.3389/fimmu.2018.02217. PubMed DOI PMC
Ott L.W., Resing K.A., Sizemore A.W., Heyen J.W., Cocklin R.R., Pedrick N.M., Woods H.C., Chen J.Y., Goebl M.G., Witzmann F.A., et al. Tumor Necrosis Factor-α- and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information. J. Proteome Res. 2007;6:2176–2185. doi: 10.1021/pr060665l. PubMed DOI PMC
Evans J.G., Matsudaira P. Structure and Dynamics of Macrophage Podosomes. Eur. J. Cell Biol. 2006;85:145–149. doi: 10.1016/j.ejcb.2005.08.006. PubMed DOI
Hromádko L., Koudelková E., Bulánek R., Macák J.M. SiO2 Fibers by Centrifugal Spinning with Excellent Textural Properties and Water Adsorption Performance. ACS Omega. 2017;2:5052–5059. doi: 10.1021/acsomega.7b00770. PubMed DOI PMC
Padron S., Fuentes A., Caruntu D., Lozano K. Experimental Study of Nanofiber Production through Forcespinning. J. Appl. Phys. 2013;113:024318. doi: 10.1063/1.4769886. DOI
Huang Z.-M., Zhang Y.-Z., Kotaki M., Ramakrishna S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. DOI
Ao C., Niu Y., Zhang X., He X., Zhang W., Lu C. Fabrication and Characterization of Electrospun Cellulose/Nano-Hydroxyapatite Nanofibers for Bone Tissue Engineering. Int. J. Biol. Macromol. 2017;97:568–573. doi: 10.1016/j.ijbiomac.2016.12.091. PubMed DOI
Yamaguchi T., Sakai S., Kawakami K. Application of Silicate Electrospun Nanofibers for Cell Culture. J. Sol-Gel Sci. Technol. 2008;48:350–355. doi: 10.1007/s10971-008-1822-0. DOI
Cavo M., Serio F., Kale N., D’Amone E., Gigli G., del Mercato L.L. Electrospun Nanofibers in Cancer Research: From Engineering of in Vitro 3D Cancer Models to Therapy. Biomater. Sci. 2020;8:4887–4905. doi: 10.1039/D0BM00390E. PubMed DOI
Hardick O., Dods S., Stevens B., Bracewell D.G. Nanofiber Adsorbents for High Productivity Continuous Downstream Processing. J. Biotechnol. 2015;213:74–82. doi: 10.1016/j.jbiotec.2015.01.031. PubMed DOI
Kim G.-M., Lee S.-M., Michler G.H., Roggendorf H., Gösele U., Knez M. Nanostructured Pure Anatase Titania Tubes Replicated from Electrospun Polymer Fiber Templates by Atomic Layer Deposition. Chem. Mater. 2008;20:3085–3091. doi: 10.1021/cm703398b. DOI
Rihova M., Yurkevich O., Motola M., Hromadko L., Spotz Z., Zazpe R., Knez M., Macak J.M. ALD Coating of Centrifugally Spun Polymeric Fibers and Postannealing: Case Study for Nanotubular TiO2 Photocatalyst. Nanoscale Adv. 2021;3:4589–4596. doi: 10.1039/D1NA00288K. PubMed DOI PMC
Lund M.E., To J., O’Brien B.A., Donnelly S. The Choice of Phorbol 12-Myristate 13-Acetate Differentiation Protocol Influences the Response of THP-1 Macrophages to a pro-Inflammatory Stimulus. J. Immunol. Methods. 2016;430:64–70. doi: 10.1016/j.jim.2016.01.012. PubMed DOI
Schwende H., Fitzke E., Ambs P., Dieter P. Differences in the State of Differentiation of THP-1 Cells Induced by Phorbol Ester and 1,25-Dihydroxyvitamin D3. J. Leukoc. Biol. 1996;59:555–561. doi: 10.1002/jlb.59.4.555. PubMed DOI
Pinto S.M., Kim H., Subbannayya Y., Giambelluca M., Bösl K., Kandasamy R.K. Dose-Dependent Phorbol 12-Myristate-13-Acetate-Mediated Monocyte-to-Macrophage Differentiation Induces Unique Proteomic Signatures in THP-1 Cells. bioRxiv. :2020. doi: 10.1101/2020.02.27.968016. PubMed DOI PMC
Lopes V.R., Sanchez-Martinez C., Strømme M., Ferraz N. In Vitro Biological Responses to Nanofibrillated Cellulose by Human Dermal, Lung and Immune Cells: Surface Chemistry Aspect. Part. Fibre Toxicol. 2017;14:1. doi: 10.1186/s12989-016-0182-0. PubMed DOI PMC
Boonrungsiman S., Suchaoin W., Chetprayoon P., Viriya-empikul N., Aueviriyavit S., Maniratanachote R. Shape and Surface Properties of Titanate Nanomaterials Influence Differential Cellular Uptake Behavior and Biological Responses in THP-1 Cells. Biochem. Biophys. Rep. 2017;9:203–210. doi: 10.1016/j.bbrep.2016.12.014. PubMed DOI PMC
Feldman D. The Effect of Size of Materials Formed or Implanted In Vivo on the Macrophage Response and the Resultant Influence on Clinical Outcome. Materials. 2021;14:4572. doi: 10.3390/ma14164572. PubMed DOI PMC
Ye J., Shi X., Jones W., Rojanasakul Y., Cheng N., Schwegler-Berry D., Baron P., Deye G.J., Li C., Castranova V. Critical Role of Glass Fiber Length in TNF-Alpha Production and Transcription Factor Activation in Macrophages. Am. J. Physiol. 1999;276:L426–L434. doi: 10.1152/ajplung.1999.276.3.L426. PubMed DOI
Padmore T., Stark C., Turkevich L.A., Champion J.A. Quantitative Analysis of the Role of Fiber Length on Phagocytosis and Inflammatory Response by Alveolar Macrophages. Biochim. Biophys. Acta. 2017;1861:58–67. doi: 10.1016/j.bbagen.2016.09.031. PubMed DOI PMC
Miller Y.I., Worrall D.S., Funk C.D., Feramisco J.R., Witztum J.L. Actin Polymerization in Macrophages in Response to Oxidized LDL and Apoptotic Cells: Role of 12/15-Lipoxygenase and Phosphoinositide 3-Kinase. Mol. Biol. Cell. 2003;14:4196–4206. doi: 10.1091/mbc.e03-02-0063. PubMed DOI PMC