The effects of titanium topography and chemical composition on human osteoblast cell
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33982574
PubMed Central
PMC8820562
DOI
10.33549/physiolres.934582
PII: 934582
Knihovny.cz E-zdroje
- MeSH
- alkalická fosfatasa metabolismus MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- fosfor farmakologie MeSH
- keramika MeSH
- kultivované buňky MeSH
- lidé MeSH
- osteoblasty fyziologie ultrastruktura MeSH
- osteogeneze účinky léků MeSH
- povrchové vlastnosti MeSH
- proliferace buněk MeSH
- titan chemie MeSH
- vápník farmakologie MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkalická fosfatasa MeSH
- fosfor MeSH
- titan MeSH
- vápník MeSH
The objective of this study was to evaluate and compare titanium surfaces: machined (MA); sintered ceramic-blasted (HAS); sintered ceramic-blasted and acid-etched (HAS DE) and to determine the effects of surface topography, roughness and chemical composition on human osteoblast cell reaction. Titanium surface samples were analyzed with respect to surface chemical composition, topography, and roughness. The effects of material surface characteristics on osteoblasts was examined by analyzing osteoblast morphology, viability and differentiation. Osteoblasts cultured on these materials had attached, spread and proliferated on every sample. The viability of osteoblasts cultured on HAS and HAS DE samples increased more intensively in time comparing to MA sample. The viability of osteoblast cultured on HAS samples increased more intensively in the early phases of culture while for cells cultured on HAS DE the cells viability increased later in time. Alkaline phosphate activity was the highest for the cells cultured on HAS sample and statistically higher than for the MA sample. The least activity occurred on the smooth MA sample along with the rougher HAS DE samples. All the examined samples were found to be biocompatible, as indicated by cell attachment, proliferation, and differentiation. Titanium surfaces modification improved the dynamics of osteoblast viability increase. Osteoblast differentiation was found to be affected by the etching procedure and presence of Ca and P on the surface.
Zobrazit více v PubMed
ANSELME K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–681. doi: 10.1016/S0142-9612(99)00242-2. PubMed DOI
ANSELME K, BIGERELLE M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 2005;1:211–222. doi: 10.1016/j.actbio.2004.11.009. PubMed DOI
ANSELME K, BIGERELLE M. Effect of a gold-palladium coating on the long-term adhesion of human osteoblasts on biocompatible metallic materials. Surf Coat Tech. 2006;200:6325–6330. doi: 10.1016/j.surfcoat.2005.11.001. DOI
BARRADAS AM, FERNANDES HA, GROEN N, CHAI YC, SCHROOTEN J, Van de PEPPEL J, Van LEEUWEN JPTM, Van BLITTERSWIJK CA, De BOER J. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials. 2012;33:3205–3215. doi: 10.1016/j.biomaterials.2012.01.020. PubMed DOI
BATZER R, LIU Y, COCHRAN DL, SZMUCKLER-MONCLER S, DEAN DD, BOYAN BD, SCHWARTZ Z. Prostaglandins mediate the effects of titanium surface roughness on MG63 osteoblast-like cells and alter cell responsiveness to 1 alpha, 25-(OH)2D3. Biomed Mater Res. 1998;41:489–496. doi: 10.1002/(SICI)1097-4636(19980905)41:3<489::AID-JBM20>3.0.CO;2-C. PubMed DOI
BELLOWS CG, HEERSCHE JN, AUBIN JE. Aluminum accelerates osteoblastic differentiation but is cytotoxic in long-term rat calvaria cell cultures. Calcif Tissue Int. 1999;65:59–65. doi: 10.1007/s002239900658. PubMed DOI
BIGERELLE M, ANSELME K, NOEL B, RUDERMAN I, HARDOUIN P, IOST A. Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. Biomaterials. 2002;23:1563–1577. doi: 10.1016/S0142-9612(01)00271-X. PubMed DOI
BIN SULAIMAN S, KEONG TK, CHENG CH, SAIM AB, IDRUS RBHI. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J Med Res. 2013;137:1093–1101. PubMed PMC
BRETSCHNEIDER H, METTELSIEFEN J, RENTSCH C, GELINSKY M, LINK HD, GUNTHER KP, LODE A, HOFBAUER C. Evaluation of topographical and chemical modified TiAl6V4 implant surfaces in a weight-bearing intramedullary femur model in rabbit. J Biomed Mater Res. 2020;108:1117–1128. doi: 10.1002/jbm.b.34463. PubMed DOI
CANABARRO A, DINIZ MG, PACIORNIK S, CARVALHO L, SAMPAIO EM, BELOTI MM, ROSA AL, FISCHER RG. High concentration of residual aluminum oxide on titanium surface inhibits extracellular matrix mineralization. J Biomed Mater Res A. 2008;87:588–597. doi: 10.1002/jbm.a.31810. PubMed DOI
DOROCKA-BOBKOWSKA B, MEDYNSKI D, PRYLINSKI M. Recent advances in tissue conditioners for prosthetic treatment: A review. Adv Clin Exp Med. 2017;26:723–728. doi: 10.17219/acem/62634. PubMed DOI
EPOSITO M, HIRSCH M, LEKHOM U, THOMSEN P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci. 1998;106:721–764. doi: 10.1046/j.0909-8836..t01-6-.x. PubMed DOI
FENG B, WENG J, YANG BC, QU SX, ZHANG X. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Biomaterials. 2004;25:3421–3428. doi: 10.1016/j.biomaterials.2003.10.044. PubMed DOI
GEHRKE SA, RAMIREZ-FERNANDEZ MP, GRANERO JMM, SALLES MB, Del FABBRO M, GUIRADO JLC. A comparative evaluation between aluminium and titanium dioxide microparticles for blasting the surface titanium dental implants: an experimental study in rabbits. Clin Oral Implants Res. 2018;29:802–807. doi: 10.1111/clr.12973. PubMed DOI
HOTCHKISS KM, AYAD NB, HYZY SL, BOYAN BD, OLIVARES-NAVARRETE R. Dental implant surface chemistry and energy alter macrophage activation in vitro. Clin Oral Implants Res. 2017;28:414–423. doi: 10.1111/clr.12814. PubMed DOI
JACOBS JJ, SKIPOR AK, BLACK J, URBAN RM, GALANTE JO. Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy. J Bone Joint Surg Am. 1991;73:1475–1486. doi: 10.2106/00004623-199173100-00005. PubMed DOI
JEFFERY EH, ABREO K, BURGESS E, CANNATA J, GREGER JL. Systemic aluminum toxicity: effects on bone, hematopoietic tissue, and kidney. J Toxicol Environ Health. 1996;48:649–665. doi: 10.1080/009841096161122. PubMed DOI
JOKSTAD A, BRAEGGER U, BRUNSKI JB, CARR AB, NAERT I, WENNERBERG A. Quality of dental implants. Int Dent J. 2003;53(6 Suppl 2):409–443. doi: 10.1111/j.1875-595X.2003.tb00918.x. PubMed DOI
Le GUEHENNEC L, LOPEZ-HEREDIA MA, ENKEL P, WEISS Y, AMOURIQ Y, LAYROLLE P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 2008;4:535–543. doi: 10.1016/j.actbio.2007.12.002. PubMed DOI
LUKASZEWSKA-KUSKA M, WIRSTLEIN P, MAJCHROWSKI R, DOROCKA-BOBKOWSKA B. Osteoblastic cell behaviour on modified titanium surfaces. Micron. 2018a;105:55–63. doi: 10.1016/j.micron.2017.11.010. PubMed DOI
LUKASZEWSKA-KUSKA M, KRAWCZYK P, MARTYLA A, HEDZELEK W, DOROCKA-BOBKOWSKA B. Hydroxyapatite coating on titanium endosseous implants for improved osseointegration: Physical and chemical considerations. Adv Clin Exp Med. 2018b;27:1055–1059. doi: 10.17219/acem/69084. PubMed DOI
LUKASZEWSKA-KUSKA M, KRAWCZYK P, MARTYLA A, HEDZELEK W, DOROCKA-BOBKOWSKA B. Effects of a hydroxyapatite coating on the stability of endosseous implants in rabbit tibiae. Dent Med Probl. 2019;56:123–129. doi: 10.17219/dmp/103851. PubMed DOI
LUKASZEWSKA-KUSKA M, IDZIOR-HAUFA M, DOROCKA-BOBKOWSKA B. Evaluation of human osteoblast metabolic activity in modified titanium-conditioned medium. Proc Inst Mech Eng H. 2020;234:603–611. doi: 10.1177/0954411920911281. PubMed DOI
KIM MJ, KIM CW, LIM YJ, HEO SJ. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res A. 2006;79:1023–1032. doi: 10.1002/jbm.a.31040. PubMed DOI
KUBIES D, HIMMLOVÁ L, RIEDEL T, CHÁNOVÁ E, BALÍK K, DOUDĔROVÁ M, BÁRTOVÁ J, PEŠÁKOVÁ V. The interaction of osteoblasts with bone-implant materials: 1. The effect of physicochemical surface properties of implant materials. Physiol Res. 2011;60:95–111. doi: 10.33549/physiolres.931882. PubMed DOI
MASTROGIACOMO M, SCAGLIONE S, MARTINETTI R, DOLCINI L, BELTRAME F, CANCEDDA R, QUARTO R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006;27:3230–3237. doi: 10.1016/j.biomaterials.2006.01.031. PubMed DOI
NICOLAS-SILVENTE AI, VELASCO-ORTEGA E, ORTIZ-GARCIA I, MONSALVE-GUIL L, GIL J, JIMENEZ-GUERRERA A. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials. 2020;13 doi: 10.3390/ma13020314. article ID 314. PubMed DOI PMC
OLIVARES-NAVARRETE R, HYZY SL, GITTENS RAI, SCHNEIDER JM, HAITHCOCK DA, ULLRICH PF, SLOSAR PJ, SCHWARTZ Z, BOYAN BD. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J. 2013;13:1563–1570. doi: 10.1016/j.spinee.2013.03.047. PubMed DOI PMC
ORSINI G, ASSENZA B, SCARANO A, PIATTELLI M, PIATTELLI A. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants. 2000;15:779–784. PubMed
PIATTELLI A, DEGIDI M, PAOLANTONIO M, MANGANO C, SCARANO A. Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. Biomaterials. 2003;24:4081–4089. doi: 10.1016/S0142-9612(03)00300-4. PubMed DOI
RAUSCH-FAN X, QU Z, WIELAND M, MATEJKA A, ACHEDLE A. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent Mater. 2008;24:102–110. doi: 10.1016/j.dental.2007.03.001. PubMed DOI
REBL H, FINKE B, LANGE R, WELTMANN KD, NEBE JB. Impact of plasma chemistry versus titanium surface topography on osteoblast orientation. Acta Biomater. 2012;8:3840–3851. doi: 10.1016/j.actbio.2012.06.015. PubMed DOI
RIZO-GORRITA M, FERNANDEZ-ASIAN I, GARCIA-DE-FRENZA A, VAZQUEZ-PACHON C, SERRERA-FIGALLO MA, TORRES-LAGARES D, GUTIERREZ-PEREZ JL. Influence of three dental implant surfaces on cell viability and bone behavior. An in vitro and a histometric study in a rabbit model. Appl Sci. 2020;10 doi: 10.3390/app10144790. article ID 4790. DOI
SUNARSO, TOITA R, TSURU K, ISHIKAWA K. Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants. Mater Sci Eng C Matter Biol Appl. 2016;68:291–298. doi: 10.1016/j.msec.2016.05.090. PubMed DOI
SURMANEV RA, SURMANEVA A, IVANOVA AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review. Acta Biomater. 2014;10:557–579. doi: 10.1016/j.actbio.2013.10.036. PubMed DOI
TRÁVNÍČKOVÁ M, BAČÁKOVÁ L. Application of adult mesenchymal stem cells in bone and vascular tissue engineering. Physiol Res. 2018;67:831–850. doi: 10.33549/physiolres.933820. PubMed DOI
VANDROVCOVÁ M, BAČÁKOVÁ L. Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants. Physiol Res. 2011;60:403–417. doi: 10.33549/physiolres.932045. PubMed DOI
WANG QG, ZHOU P, LIU SF, ATTARILAR S, MA RLW, ZHONG YS, WANG LQ. Multi-scale surface treatments of titanium implants for rapid osseointegration: a review. Nanomaterials. 2020;10 doi: 10.3390/nano10061244. article ID 1244. PubMed DOI PMC
WENNERBERG A, ALBREKTSSON T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20(Suppl 4):172–184. doi: 10.1111/j.1600-0501.2009.01775.x. PubMed DOI
WU G, LI P, FENG H, ZHANG X, CHU PK. Engineering and functionalization of biomaterials via surface modification. J Mater Chem B. 2015;3:2024–2042. doi: 10.1039/C4TB01934B. PubMed DOI
XAVIER SP, CARVALHO PSP, BELOTI M, ROSA AL. Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments. J Dent. 2003;31:173–180. doi: 10.1016/S0300-5712(03)00027-7. PubMed DOI
YURTTUTAN ME, KESKIN A. Evaluation of the effects of different sand particles that used in dental implant roughened for osseointegration. BMC Oral Health. 2018;18:47. doi: 10.1186/s12903-018-0509-3. PubMed DOI PMC
ZAREIDOOST A, YOUSEFPOUR M, GHASEME B, AMANZADEH A. The relationship of surface roughness and cell response of chemical surface modification of titanium. J Mater Sci Mater Med. 2012;23:1479–1488. doi: 10.1007/s10856-012-4611-9. PubMed DOI PMC
ZOFKOVA I. Involvement of bone in systemic endocrine regulation. Physiol Res. 2018;67:669–677. doi: 10.33549/physiolres.933843. PubMed DOI
ZOFKOVA I, BLAHOS J. New molecules modulating bone metabolism - new perspectives in the treatment of osteoporosis. Physiol Res. 2017;66(Suppl 3):S341–S347. doi: 10.33549/physiolres.933720. PubMed DOI
ZOFKOVA I, DAVIS M, BLAHOS J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res. 2017;66:391–402. doi: 10.33549/physiolres.933454. PubMed DOI