The effects of titanium topography and chemical composition on human osteoblast cell

. 2021 Jul 12 ; 70 (3) : 413-423. [epub] 20210512

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33982574

The objective of this study was to evaluate and compare titanium surfaces: machined (MA); sintered ceramic-blasted (HAS); sintered ceramic-blasted and acid-etched (HAS DE) and to determine the effects of surface topography, roughness and chemical composition on human osteoblast cell reaction. Titanium surface samples were analyzed with respect to surface chemical composition, topography, and roughness. The effects of material surface characteristics on osteoblasts was examined by analyzing osteoblast morphology, viability and differentiation. Osteoblasts cultured on these materials had attached, spread and proliferated on every sample. The viability of osteoblasts cultured on HAS and HAS DE samples increased more intensively in time comparing to MA sample. The viability of osteoblast cultured on HAS samples increased more intensively in the early phases of culture while for cells cultured on HAS DE the cells viability increased later in time. Alkaline phosphate activity was the highest for the cells cultured on HAS sample and statistically higher than for the MA sample. The least activity occurred on the smooth MA sample along with the rougher HAS DE samples. All the examined samples were found to be biocompatible, as indicated by cell attachment, proliferation, and differentiation. Titanium surfaces modification improved the dynamics of osteoblast viability increase. Osteoblast differentiation was found to be affected by the etching procedure and presence of Ca and P on the surface.

Zobrazit více v PubMed

ANSELME K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–681. doi: 10.1016/S0142-9612(99)00242-2. PubMed DOI

ANSELME K, BIGERELLE M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 2005;1:211–222. doi: 10.1016/j.actbio.2004.11.009. PubMed DOI

ANSELME K, BIGERELLE M. Effect of a gold-palladium coating on the long-term adhesion of human osteoblasts on biocompatible metallic materials. Surf Coat Tech. 2006;200:6325–6330. doi: 10.1016/j.surfcoat.2005.11.001. DOI

BARRADAS AM, FERNANDES HA, GROEN N, CHAI YC, SCHROOTEN J, Van de PEPPEL J, Van LEEUWEN JPTM, Van BLITTERSWIJK CA, De BOER J. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials. 2012;33:3205–3215. doi: 10.1016/j.biomaterials.2012.01.020. PubMed DOI

BATZER R, LIU Y, COCHRAN DL, SZMUCKLER-MONCLER S, DEAN DD, BOYAN BD, SCHWARTZ Z. Prostaglandins mediate the effects of titanium surface roughness on MG63 osteoblast-like cells and alter cell responsiveness to 1 alpha, 25-(OH)2D3. Biomed Mater Res. 1998;41:489–496. doi: 10.1002/(SICI)1097-4636(19980905)41:3<489::AID-JBM20>3.0.CO;2-C. PubMed DOI

BELLOWS CG, HEERSCHE JN, AUBIN JE. Aluminum accelerates osteoblastic differentiation but is cytotoxic in long-term rat calvaria cell cultures. Calcif Tissue Int. 1999;65:59–65. doi: 10.1007/s002239900658. PubMed DOI

BIGERELLE M, ANSELME K, NOEL B, RUDERMAN I, HARDOUIN P, IOST A. Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. Biomaterials. 2002;23:1563–1577. doi: 10.1016/S0142-9612(01)00271-X. PubMed DOI

BIN SULAIMAN S, KEONG TK, CHENG CH, SAIM AB, IDRUS RBHI. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J Med Res. 2013;137:1093–1101. PubMed PMC

BRETSCHNEIDER H, METTELSIEFEN J, RENTSCH C, GELINSKY M, LINK HD, GUNTHER KP, LODE A, HOFBAUER C. Evaluation of topographical and chemical modified TiAl6V4 implant surfaces in a weight-bearing intramedullary femur model in rabbit. J Biomed Mater Res. 2020;108:1117–1128. doi: 10.1002/jbm.b.34463. PubMed DOI

CANABARRO A, DINIZ MG, PACIORNIK S, CARVALHO L, SAMPAIO EM, BELOTI MM, ROSA AL, FISCHER RG. High concentration of residual aluminum oxide on titanium surface inhibits extracellular matrix mineralization. J Biomed Mater Res A. 2008;87:588–597. doi: 10.1002/jbm.a.31810. PubMed DOI

DOROCKA-BOBKOWSKA B, MEDYNSKI D, PRYLINSKI M. Recent advances in tissue conditioners for prosthetic treatment: A review. Adv Clin Exp Med. 2017;26:723–728. doi: 10.17219/acem/62634. PubMed DOI

EPOSITO M, HIRSCH M, LEKHOM U, THOMSEN P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci. 1998;106:721–764. doi: 10.1046/j.0909-8836..t01-6-.x. PubMed DOI

FENG B, WENG J, YANG BC, QU SX, ZHANG X. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Biomaterials. 2004;25:3421–3428. doi: 10.1016/j.biomaterials.2003.10.044. PubMed DOI

GEHRKE SA, RAMIREZ-FERNANDEZ MP, GRANERO JMM, SALLES MB, Del FABBRO M, GUIRADO JLC. A comparative evaluation between aluminium and titanium dioxide microparticles for blasting the surface titanium dental implants: an experimental study in rabbits. Clin Oral Implants Res. 2018;29:802–807. doi: 10.1111/clr.12973. PubMed DOI

HOTCHKISS KM, AYAD NB, HYZY SL, BOYAN BD, OLIVARES-NAVARRETE R. Dental implant surface chemistry and energy alter macrophage activation in vitro. Clin Oral Implants Res. 2017;28:414–423. doi: 10.1111/clr.12814. PubMed DOI

JACOBS JJ, SKIPOR AK, BLACK J, URBAN RM, GALANTE JO. Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy. J Bone Joint Surg Am. 1991;73:1475–1486. doi: 10.2106/00004623-199173100-00005. PubMed DOI

JEFFERY EH, ABREO K, BURGESS E, CANNATA J, GREGER JL. Systemic aluminum toxicity: effects on bone, hematopoietic tissue, and kidney. J Toxicol Environ Health. 1996;48:649–665. doi: 10.1080/009841096161122. PubMed DOI

JOKSTAD A, BRAEGGER U, BRUNSKI JB, CARR AB, NAERT I, WENNERBERG A. Quality of dental implants. Int Dent J. 2003;53(6 Suppl 2):409–443. doi: 10.1111/j.1875-595X.2003.tb00918.x. PubMed DOI

Le GUEHENNEC L, LOPEZ-HEREDIA MA, ENKEL P, WEISS Y, AMOURIQ Y, LAYROLLE P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 2008;4:535–543. doi: 10.1016/j.actbio.2007.12.002. PubMed DOI

LUKASZEWSKA-KUSKA M, WIRSTLEIN P, MAJCHROWSKI R, DOROCKA-BOBKOWSKA B. Osteoblastic cell behaviour on modified titanium surfaces. Micron. 2018a;105:55–63. doi: 10.1016/j.micron.2017.11.010. PubMed DOI

LUKASZEWSKA-KUSKA M, KRAWCZYK P, MARTYLA A, HEDZELEK W, DOROCKA-BOBKOWSKA B. Hydroxyapatite coating on titanium endosseous implants for improved osseointegration: Physical and chemical considerations. Adv Clin Exp Med. 2018b;27:1055–1059. doi: 10.17219/acem/69084. PubMed DOI

LUKASZEWSKA-KUSKA M, KRAWCZYK P, MARTYLA A, HEDZELEK W, DOROCKA-BOBKOWSKA B. Effects of a hydroxyapatite coating on the stability of endosseous implants in rabbit tibiae. Dent Med Probl. 2019;56:123–129. doi: 10.17219/dmp/103851. PubMed DOI

LUKASZEWSKA-KUSKA M, IDZIOR-HAUFA M, DOROCKA-BOBKOWSKA B. Evaluation of human osteoblast metabolic activity in modified titanium-conditioned medium. Proc Inst Mech Eng H. 2020;234:603–611. doi: 10.1177/0954411920911281. PubMed DOI

KIM MJ, KIM CW, LIM YJ, HEO SJ. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res A. 2006;79:1023–1032. doi: 10.1002/jbm.a.31040. PubMed DOI

KUBIES D, HIMMLOVÁ L, RIEDEL T, CHÁNOVÁ E, BALÍK K, DOUDĔROVÁ M, BÁRTOVÁ J, PEŠÁKOVÁ V. The interaction of osteoblasts with bone-implant materials: 1. The effect of physicochemical surface properties of implant materials. Physiol Res. 2011;60:95–111. doi: 10.33549/physiolres.931882. PubMed DOI

MASTROGIACOMO M, SCAGLIONE S, MARTINETTI R, DOLCINI L, BELTRAME F, CANCEDDA R, QUARTO R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006;27:3230–3237. doi: 10.1016/j.biomaterials.2006.01.031. PubMed DOI

NICOLAS-SILVENTE AI, VELASCO-ORTEGA E, ORTIZ-GARCIA I, MONSALVE-GUIL L, GIL J, JIMENEZ-GUERRERA A. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials. 2020;13 doi: 10.3390/ma13020314. article ID 314. PubMed DOI PMC

OLIVARES-NAVARRETE R, HYZY SL, GITTENS RAI, SCHNEIDER JM, HAITHCOCK DA, ULLRICH PF, SLOSAR PJ, SCHWARTZ Z, BOYAN BD. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J. 2013;13:1563–1570. doi: 10.1016/j.spinee.2013.03.047. PubMed DOI PMC

ORSINI G, ASSENZA B, SCARANO A, PIATTELLI M, PIATTELLI A. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants. 2000;15:779–784. PubMed

PIATTELLI A, DEGIDI M, PAOLANTONIO M, MANGANO C, SCARANO A. Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. Biomaterials. 2003;24:4081–4089. doi: 10.1016/S0142-9612(03)00300-4. PubMed DOI

RAUSCH-FAN X, QU Z, WIELAND M, MATEJKA A, ACHEDLE A. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent Mater. 2008;24:102–110. doi: 10.1016/j.dental.2007.03.001. PubMed DOI

REBL H, FINKE B, LANGE R, WELTMANN KD, NEBE JB. Impact of plasma chemistry versus titanium surface topography on osteoblast orientation. Acta Biomater. 2012;8:3840–3851. doi: 10.1016/j.actbio.2012.06.015. PubMed DOI

RIZO-GORRITA M, FERNANDEZ-ASIAN I, GARCIA-DE-FRENZA A, VAZQUEZ-PACHON C, SERRERA-FIGALLO MA, TORRES-LAGARES D, GUTIERREZ-PEREZ JL. Influence of three dental implant surfaces on cell viability and bone behavior. An in vitro and a histometric study in a rabbit model. Appl Sci. 2020;10 doi: 10.3390/app10144790. article ID 4790. DOI

SUNARSO, TOITA R, TSURU K, ISHIKAWA K. Immobilization of calcium and phosphate ions improves the osteoconductivity of titanium implants. Mater Sci Eng C Matter Biol Appl. 2016;68:291–298. doi: 10.1016/j.msec.2016.05.090. PubMed DOI

SURMANEV RA, SURMANEVA A, IVANOVA AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review. Acta Biomater. 2014;10:557–579. doi: 10.1016/j.actbio.2013.10.036. PubMed DOI

TRÁVNÍČKOVÁ M, BAČÁKOVÁ L. Application of adult mesenchymal stem cells in bone and vascular tissue engineering. Physiol Res. 2018;67:831–850. doi: 10.33549/physiolres.933820. PubMed DOI

VANDROVCOVÁ M, BAČÁKOVÁ L. Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants. Physiol Res. 2011;60:403–417. doi: 10.33549/physiolres.932045. PubMed DOI

WANG QG, ZHOU P, LIU SF, ATTARILAR S, MA RLW, ZHONG YS, WANG LQ. Multi-scale surface treatments of titanium implants for rapid osseointegration: a review. Nanomaterials. 2020;10 doi: 10.3390/nano10061244. article ID 1244. PubMed DOI PMC

WENNERBERG A, ALBREKTSSON T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 2009;20(Suppl 4):172–184. doi: 10.1111/j.1600-0501.2009.01775.x. PubMed DOI

WU G, LI P, FENG H, ZHANG X, CHU PK. Engineering and functionalization of biomaterials via surface modification. J Mater Chem B. 2015;3:2024–2042. doi: 10.1039/C4TB01934B. PubMed DOI

XAVIER SP, CARVALHO PSP, BELOTI M, ROSA AL. Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments. J Dent. 2003;31:173–180. doi: 10.1016/S0300-5712(03)00027-7. PubMed DOI

YURTTUTAN ME, KESKIN A. Evaluation of the effects of different sand particles that used in dental implant roughened for osseointegration. BMC Oral Health. 2018;18:47. doi: 10.1186/s12903-018-0509-3. PubMed DOI PMC

ZAREIDOOST A, YOUSEFPOUR M, GHASEME B, AMANZADEH A. The relationship of surface roughness and cell response of chemical surface modification of titanium. J Mater Sci Mater Med. 2012;23:1479–1488. doi: 10.1007/s10856-012-4611-9. PubMed DOI PMC

ZOFKOVA I. Involvement of bone in systemic endocrine regulation. Physiol Res. 2018;67:669–677. doi: 10.33549/physiolres.933843. PubMed DOI

ZOFKOVA I, BLAHOS J. New molecules modulating bone metabolism - new perspectives in the treatment of osteoporosis. Physiol Res. 2017;66(Suppl 3):S341–S347. doi: 10.33549/physiolres.933720. PubMed DOI

ZOFKOVA I, DAVIS M, BLAHOS J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res. 2017;66:391–402. doi: 10.33549/physiolres.933454. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...