Spaced TiO2 Nanotubes Enable Optimized Pt Atomic Layer Deposition for Efficient Photocatalytic H2 Generation

. 2018 Oct ; 7 (10) : 797-802. [epub] 20181002

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30302303

In the present work, we report the use of TiO2 nanotube (NT) layers with a regular intertube spacing that are decorated by Pt nanoparticles through the atomic layer deposition (ALD) of Pt. These Pt-decorated spaced (SP) TiO2 NTs are subsequently explored for photocatalytic H2 evolution and are compared to classical close-packed (CP) TiO2 NTs that are also decorated with various amounts of Pt by using ALD. On both tube types, by varying the number of ALD cycles, Pt nanoparticles of different sizes and areal densities are formed, uniformly decorating the inner and outer walls from tube top to tube bottom. The photocatalytic activity for H2 evolution strongly depends on the size and density of Pt nanoparticles, driven by the number of ALD cycles. We show that, for SP NTs, a much higher photocatalytic performance can be achieved with significantly smaller Pt nanoparticles (i.e. for fewer ALD cycles) compared to CP NTs.

Zobrazit více v PubMed

Fujishima A., Honda K., Nature 1972, 283, 37–38. PubMed

Fujishima A., Zhang X., Tryk D. A., Surf. Sci. Rep. 2008, 63, 515–582.

Chen X., Mao S. S., Chem. Rev. 2007, 107, 2891–2959. PubMed

Lee K., Mazare A., Schmuki P., Chem. Rev. 2014, 114, 9385–9454. PubMed

Macak J. M., Zlamal M., Krysa J., Schmuki P., Small 2007, 3, 300–304. PubMed

Ozkan S., Nguyen N. T., Hwang I., Mazare A., Schmuki P., Small 2017, 13, 1603821. PubMed

Nguyen N. T., Ozkan S., Hwang I., Mazare A., Schmuki P., Nanoscale 2016, 8, 16868–16873. PubMed

Ozkan S., Cha G., Mazare A., Schmuki P., Nanotechnology 2018, 29, 195402. PubMed

Linsebigler A. L., Lu G., Yates J. T., Chem. Rev. 1995, 95, 735–758.

Anpo M., Takeuchi M., J. Catal. 2003, 216, 505–516.

Das C., Kot M., Rouissi Z., Kędzierski K., Henkel K., Schmeißer D., ACS Omega 2017, 2, 1360–1366. PubMed PMC

Kemppainen E., Bodin A., Sebok B., Pedersen T., Seger B., Mei B., Bae D., Vesborg P. C. K., Halme J., Hansen O., Lund P. D., Chorkendorff I., Energy Environ. Sci. 2015, 8, 2991–2999.

Ishitani O., Inoue C., Suzuki Y., Ibusuki T., J. Photochem. Photobiol. A 1993, 72, 269–271.

Honciuc A., Laurin M., Albu S., Sobota M., Schmuki P., Libuda J., Langmuir 2010, 26, 14014–14023. PubMed

Almeida L. C., Zanoni M. V. B., J. Braz. Chem. Soc. 2014, 25, 579–588.

Paramasivam I., Macak J. M., Schmuki P., Electrochem. commun. 2008, 10, 71–75.

Johnson R. W., Hultqvist A., Bent S. F., Mater. Today 2014, 17, 236–246.

Zazpe R., Knaut M., Sopha H., Hromadko L., Albert M., Prikryl J., Gärtnerová V., Bartha J. W., Macak J. M., Langmuir 2016, 32, 10551–10558. PubMed PMC

George S. M., Chem. Rev. 2010, 110, 111–131. PubMed

Ng S., Kuberský P., Krbal M., Prikryl J., Gärtnerová V., Moravcová D., Sopha H., Zazpe R., Yam F. K., Jäger A., Hromádko L., Beneš L., Hamáček A., Macak J. M., Adv. Eng. Mater. 2018, 20, 1700589.

Ozkan S., Nguyen N. T., Mazare A., Hahn R., Cerri I., Schmuki P., Electrochem. commun. 2017, 77, 98–102.

Vervuurt R. H. J., Kessels W. M. M. E., Bol A. A., Adv. Mater. Interfaces 2017, 4, 1700232.

Lee H.-B.-R., Bent S. F., Chem. Mater. 2012, 24, 279–286.

Ande C. K., Knoops H. C. M., de Peuter K., van Drunen M., Elliott S. D., Kessels W. M. M., J. Phys. Chem. Lett. 2015, 6, 3610–3614. PubMed

Yoo J., Zazpe R., Cha G., Prikryl J., Hwang I., Macak J. M., Schmuki P., Electrochem. commun. 2018, 86, 6–12.

Dasgupta N. P., Liu C., Andrews S., Prinz F. B., Yang P., J. Am. Chem. Soc. 2013, 135, 12932–12935. PubMed

Anitha V. C., Zazpe R., Krbal M., Yoo J., Sopha H., Prikryl J., Cha G., Slang S., Schmuki P., Macak J. M., J. Catal. 2018, 365, 86–93.

Mackus A. J. M., Verheijen M. A., Leick N., Bol A. A., Kessels W. M. M., Chem. Mater. 2013, 25, 1905–1911.

Zhang J., Chen C., Chen S., Hu Q., Gao Z., Li Y., Qin Y., Catal. Sci. Technol. 2017, 7, 322–329.

Mayrhofer K. J. J., Blizanac B. B., Arenz M., Stamenkovic V. R., Ross P. N., Markovic N. M., J. Phys. Chem. B 2005, 109, 14433–14440. PubMed

Baker L., Cavanagh A. S., Seghete D., George S. M., Mackus A. J. M., Kessels W. M. M., Liu Z. Y., Wagner F. T., J. Appl. Phys. 2011, 109, 84333.

Kiwi J., Graetzel M., J Phys Chem. 1984, 88, 1302–1307.

Bamwenda G. R., Tsubota S., Nakamura T., Haruta M., J. Photochem. Photobiol. A 1995, 89, 177–189.

So S., Kriesch A., Peschel U., Schmuki P., J. Mater. Chem. A 2015, 3, 12603–12608.

Bao X.-Q., Liu L. F., Mater. Chem. Phys. 2015, 149–150, 309–316.

Hwang I., So S., Mokhtar M., Alshehri A., Al-Thabaiti S. A., Mazare A., Schmuki P., Chem. Eur. J. 2015, 21, 9204–9208. PubMed

Patterson A. L., Phys. Rev. 1939, 56, 978–982.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Spaced Hybrid TiO2/Au Nanotube Arrays with Tailored Optical Properties for Surface-Enhanced Raman Scattering

. 2024 Dec 10 ; 9 (49) : 48205-48212. [epub] 20241121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...