Spaced TiO2 Nanotubes Enable Optimized Pt Atomic Layer Deposition for Efficient Photocatalytic H2 Generation
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30302303
PubMed Central
PMC6168027
DOI
10.1002/open.201800172
PII: OPEN201800172
Knihovny.cz E-zdroje
- Klíčová slova
- anodization, atomic layer deposition, photocatalysis, platinum, spaced TiO2 nanotubes,
- Publikační typ
- časopisecké články MeSH
In the present work, we report the use of TiO2 nanotube (NT) layers with a regular intertube spacing that are decorated by Pt nanoparticles through the atomic layer deposition (ALD) of Pt. These Pt-decorated spaced (SP) TiO2 NTs are subsequently explored for photocatalytic H2 evolution and are compared to classical close-packed (CP) TiO2 NTs that are also decorated with various amounts of Pt by using ALD. On both tube types, by varying the number of ALD cycles, Pt nanoparticles of different sizes and areal densities are formed, uniformly decorating the inner and outer walls from tube top to tube bottom. The photocatalytic activity for H2 evolution strongly depends on the size and density of Pt nanoparticles, driven by the number of ALD cycles. We show that, for SP NTs, a much higher photocatalytic performance can be achieved with significantly smaller Pt nanoparticles (i.e. for fewer ALD cycles) compared to CP NTs.
Zobrazit více v PubMed
Fujishima A., Honda K., Nature 1972, 283, 37–38. PubMed
Fujishima A., Zhang X., Tryk D. A., Surf. Sci. Rep. 2008, 63, 515–582.
Chen X., Mao S. S., Chem. Rev. 2007, 107, 2891–2959. PubMed
Lee K., Mazare A., Schmuki P., Chem. Rev. 2014, 114, 9385–9454. PubMed
Macak J. M., Zlamal M., Krysa J., Schmuki P., Small 2007, 3, 300–304. PubMed
Ozkan S., Nguyen N. T., Hwang I., Mazare A., Schmuki P., Small 2017, 13, 1603821. PubMed
Nguyen N. T., Ozkan S., Hwang I., Mazare A., Schmuki P., Nanoscale 2016, 8, 16868–16873. PubMed
Ozkan S., Cha G., Mazare A., Schmuki P., Nanotechnology 2018, 29, 195402. PubMed
Linsebigler A. L., Lu G., Yates J. T., Chem. Rev. 1995, 95, 735–758.
Anpo M., Takeuchi M., J. Catal. 2003, 216, 505–516.
Das C., Kot M., Rouissi Z., Kędzierski K., Henkel K., Schmeißer D., ACS Omega 2017, 2, 1360–1366. PubMed PMC
Kemppainen E., Bodin A., Sebok B., Pedersen T., Seger B., Mei B., Bae D., Vesborg P. C. K., Halme J., Hansen O., Lund P. D., Chorkendorff I., Energy Environ. Sci. 2015, 8, 2991–2999.
Ishitani O., Inoue C., Suzuki Y., Ibusuki T., J. Photochem. Photobiol. A 1993, 72, 269–271.
Honciuc A., Laurin M., Albu S., Sobota M., Schmuki P., Libuda J., Langmuir 2010, 26, 14014–14023. PubMed
Almeida L. C., Zanoni M. V. B., J. Braz. Chem. Soc. 2014, 25, 579–588.
Paramasivam I., Macak J. M., Schmuki P., Electrochem. commun. 2008, 10, 71–75.
Johnson R. W., Hultqvist A., Bent S. F., Mater. Today 2014, 17, 236–246.
Zazpe R., Knaut M., Sopha H., Hromadko L., Albert M., Prikryl J., Gärtnerová V., Bartha J. W., Macak J. M., Langmuir 2016, 32, 10551–10558. PubMed PMC
George S. M., Chem. Rev. 2010, 110, 111–131. PubMed
Ng S., Kuberský P., Krbal M., Prikryl J., Gärtnerová V., Moravcová D., Sopha H., Zazpe R., Yam F. K., Jäger A., Hromádko L., Beneš L., Hamáček A., Macak J. M., Adv. Eng. Mater. 2018, 20, 1700589.
Ozkan S., Nguyen N. T., Mazare A., Hahn R., Cerri I., Schmuki P., Electrochem. commun. 2017, 77, 98–102.
Vervuurt R. H. J., Kessels W. M. M. E., Bol A. A., Adv. Mater. Interfaces 2017, 4, 1700232.
Lee H.-B.-R., Bent S. F., Chem. Mater. 2012, 24, 279–286.
Ande C. K., Knoops H. C. M., de Peuter K., van Drunen M., Elliott S. D., Kessels W. M. M., J. Phys. Chem. Lett. 2015, 6, 3610–3614. PubMed
Yoo J., Zazpe R., Cha G., Prikryl J., Hwang I., Macak J. M., Schmuki P., Electrochem. commun. 2018, 86, 6–12.
Dasgupta N. P., Liu C., Andrews S., Prinz F. B., Yang P., J. Am. Chem. Soc. 2013, 135, 12932–12935. PubMed
Anitha V. C., Zazpe R., Krbal M., Yoo J., Sopha H., Prikryl J., Cha G., Slang S., Schmuki P., Macak J. M., J. Catal. 2018, 365, 86–93.
Mackus A. J. M., Verheijen M. A., Leick N., Bol A. A., Kessels W. M. M., Chem. Mater. 2013, 25, 1905–1911.
Zhang J., Chen C., Chen S., Hu Q., Gao Z., Li Y., Qin Y., Catal. Sci. Technol. 2017, 7, 322–329.
Mayrhofer K. J. J., Blizanac B. B., Arenz M., Stamenkovic V. R., Ross P. N., Markovic N. M., J. Phys. Chem. B 2005, 109, 14433–14440. PubMed
Baker L., Cavanagh A. S., Seghete D., George S. M., Mackus A. J. M., Kessels W. M. M., Liu Z. Y., Wagner F. T., J. Appl. Phys. 2011, 109, 84333.
Kiwi J., Graetzel M., J Phys Chem. 1984, 88, 1302–1307.
Bamwenda G. R., Tsubota S., Nakamura T., Haruta M., J. Photochem. Photobiol. A 1995, 89, 177–189.
So S., Kriesch A., Peschel U., Schmuki P., J. Mater. Chem. A 2015, 3, 12603–12608.
Bao X.-Q., Liu L. F., Mater. Chem. Phys. 2015, 149–150, 309–316.
Hwang I., So S., Mokhtar M., Alshehri A., Al-Thabaiti S. A., Mazare A., Schmuki P., Chem. Eur. J. 2015, 21, 9204–9208. PubMed
Patterson A. L., Phys. Rev. 1939, 56, 978–982.