Spaced Hybrid TiO2/Au Nanotube Arrays with Tailored Optical Properties for Surface-Enhanced Raman Scattering
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39676961
PubMed Central
PMC11635504
DOI
10.1021/acsomega.4c05485
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Controlling the overall geometry of plasmonic materials allows for tailoring their optical response and the effects that can be exploited to enhance the performance of a wide range of devices. This study demonstrates a simple method to control the size and distribution of gold (Au) nanoparticles grown on the surface of spaced titanium dioxide (TiO2) nanotubes by varying the deposition time of magnetron sputtering. While shorter depositions led to small and well-separated Au nanoparticles, longer depositions promoted the formation of quasi-continuous layers with small interparticle gaps. The optical spectra of Au/TiO2 nanotubes showed a region of strong absorption (200-550 nm) for all samples and a region of decreasing absorption with an increase of effective Au thickness (550-1100 nm). This behavior led to distinct trends in the Raman signal enhancement of the underlying TiO2 nanotubes depending on the excitation laser wavelength. Furthermore, the quasi-continuous layers formed at higher effective Au thicknesses promoted an amplification of the signal and an improvement in the detection limit of target molecules in surface-enhanced Raman scattering (SERS) experiments. These findings suggest a simple method for designing efficient devices with tailored light absorption and potential applications in detectors and other optical devices.
Zobrazit více v PubMed
Gwo S.Plasmonic Materials and Metastructures: Fundamentals, Current Status, and Perspectives; Elsevier: S.l., 2024.
Yu H.; Peng Y.; Yang Y.; Li Z.-Y. Plasmon-Enhanced Light–Matter Interactions and Applications. Npj Comput. Mater. 2019, 5 (1), 45.10.1038/s41524-019-0184-1. DOI
Hartland G. V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111 (6), 3858–3887. 10.1021/cr1002547. PubMed DOI
UV–VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization; Kumar C., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013.
Ding S.-Y.; Yi J.; Li J.-F.; Ren B.; Wu D.-Y.; Panneerselvam R.; Tian Z.-Q. Nanostructure-Based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials. Nat. Rev. Mater. 2016, 1 (6), 1602110.1038/natrevmats.2016.21. DOI
Etchegoin P. G.; Le Ru E. C. A Perspective on Single Molecule SERS: Current Status and Future Challenges. Phys. Chem. Chem. Phys. 2008, 10 (40), 6079.10.1039/b809196j. PubMed DOI
Lee D.; Yoon S. Effect of Nanogap Curvature on SERS: A Finite-Difference Time-Domain Study. J. Phys. Chem. C 2016, 120 (37), 20642–20650. 10.1021/acs.jpcc.6b01453. DOI
Langer J.; Jimenez De Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguié B.; Baumberg J. J.; Bazan G. C.; Bell S. E. J.; Boisen A.; Brolo A. G.; Choo J.; Cialla-May D.; Deckert V.; Fabris L.; Faulds K.; García De Abajo F. J.; Goodacre R.; Graham D.; Haes A. J.; Haynes C. L.; Huck C.; Itoh T.; Käll M.; Kneipp J.; Kotov N. A.; Kuang H.; Le Ru E. C.; Lee H. K.; Li J.-F.; Ling X. Y.; Maier S. A.; Mayerhöfer T.; Moskovits M.; Murakoshi K.; Nam J.-M.; Nie S.; Ozaki Y.; Pastoriza-Santos I.; Perez-Juste J.; Popp J.; Pucci A.; Reich S.; Ren B.; Schatz G. C.; Shegai T.; Schlücker S.; Tay L.-L.; Thomas K. G.; Tian Z.-Q.; Van Duyne R. P.; Vo-Dinh T.; Wang Y.; Willets K. A.; Xu C.; Xu H.; Xu Y.; Yamamoto Y. S.; Zhao B.; Liz-Marzán L. M. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14 (1), 28–117. 10.1021/acsnano.9b04224. PubMed DOI PMC
Kim J.; Lee C.; Lee Y.; Lee J.; Park S.; Park S.; Nam J. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. Adv. Mater. 2021, 33 (46), 200696610.1002/adma.202006966. PubMed DOI
Li C.; Man B.; Zhang C.; Yu J.; Liu G.; Tian M.; Li Z.; Zhao X.; Wang Z.; Cui W.; Wang T.; Wang J.; Lin X.; Xu S. Strong Plasmon Resonance Coupling in Micro-Extraction SERS Membrane for in Situ Detection of Molecular Aqueous Solutions. Sens. Actuators B Chem. 2024, 398, 13476710.1016/j.snb.2023.134767. DOI
Tabish T. A.; Dey P.; Mosca S.; Salimi M.; Palombo F.; Matousek P.; Stone N. Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy. Adv. Sci. 2020, 7 (15), 190344110.1002/advs.201903441. PubMed DOI PMC
Chen J.; Gong M.; Fan Y.; Feng J.; Han L.; Xin H. L.; Cao M.; Zhang Q.; Zhang D.; Lei D.; Yin Y. Collective Plasmon Coupling in Gold Nanoparticle Clusters for Highly Efficient Photothermal Therapy. ACS Nano 2022, 16 (1), 910–920. 10.1021/acsnano.1c08485. PubMed DOI
Hu Y.; Liu X.; Cai Z.; Zhang H.; Gao H.; He W.; Wu P.; Cai C.; Zhu J.-J.; Yan Z. Enhancing the Plasmon Resonance Absorption of Multibranched Gold Nanoparticles in the Near-Infrared Region for Photothermal Cancer Therapy: Theoretical Predictions and Experimental Verification. Chem. Mater. 2019, 31 (2), 471–482. 10.1021/acs.chemmater.8b04299. DOI
Gao M.; Zhu L.; Peh C. K.; Ho G. W. Solar Absorber Material and System Designs for Photothermal Water Vaporization towards Clean Water and Energy Production. Energy Environ. Sci. 2019, 12 (3), 841–864. 10.1039/C8EE01146J. DOI
Zhou L.; Tan Y.; Ji D.; Zhu B.; Zhang P.; Xu J.; Gan Q.; Yu Z.; Zhu J. Self-Assembly of Highly Efficient, Broadband Plasmonic Absorbers for Solar Steam Generation. Sci. Adv. 2016, 2 (4), e150122710.1126/sciadv.1501227. PubMed DOI PMC
Yu Y.; Xie Y.; Zhang P.; Zhang W.; Wang W.; Zhang S.; Ou Q.; Li W. Hot Spots Engineering by Dielectric Support for Enhanced Photocatalytic Redox Reactions. Nano Res. 2023, 16 (1), 239–247. 10.1007/s12274-022-4712-9. DOI
Liu D.; Xue C. Plasmonic Coupling Architectures for Enhanced Photocatalysis. Adv. Mater. 2021, 33 (46), 200573810.1002/adma.202005738. PubMed DOI
Duan H.; Hu H.; Kumar K.; Shen Z.; Yang J. K. W. Direct and Reliable Patterning of Plasmonic Nanostructures with Sub-10-Nm Gaps. ACS Nano 2011, 5 (9), 7593–7600. 10.1021/nn2025868. PubMed DOI
Chen Y.; Li H.; Chen J.; Li D.; Zhang M.; Yu G.; Jiang L.; Zong Y.; Dong B.; Zeng Z.; Wang Y.; Chi L. Self-Generating Nanogaps for Highly Effective Surface-Enhanced Raman Spectroscopy. Nano Res. 2022, 15 (4), 3496–3503. 10.1007/s12274-021-3924-8. DOI
Ding T.; Herrmann L. O.; De Nijs B.; Benz F.; Baumberg J. J. Self-Aligned Colloidal Lithography for Controllable and Tuneable Plasmonic Nanogaps. Small 2015, 11 (18), 2139–2143. 10.1002/smll.201402639. PubMed DOI PMC
Wang Z.; Horseman T.; Straub A. P.; Yip N. Y.; Li D.; Elimelech M.; Lin S. Pathways and Challenges for Efficient Solar-Thermal Desalination. Sci. Adv. 2019, 5 (7), eaax076310.1126/sciadv.aax0763. PubMed DOI PMC
Zhao F.; Guo Y.; Zhou X.; Shi W.; Yu G. Materials for Solar-Powered Water Evaporation. Nat. Rev. Mater. 2020, 5 (5), 388–401. 10.1038/s41578-020-0182-4. DOI
Zhu M.; Li Y.; Chen F.; Zhu X.; Dai J.; Li Y.; Yang Z.; Yan X.; Song J.; Wang Y.; Hitz E.; Luo W.; Lu M.; Yang B.; Hu L. Plasmonic Wood for High-Efficiency Solar Steam Generation. Adv. Energy Mater. 2018, 8 (4), 170102810.1002/aenm.201701028. DOI
Dzhagan V.; Mazur N.; Kapush O.; Skoryk M.; Pirko Y.; Yemets A.; Dzhahan V.; Shepeliavyi P.; Valakh M.; Yukhymchuk V. Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots. ACS Omega 2024, 9 (4), 4819–4830. 10.1021/acsomega.3c08393. PubMed DOI PMC
Riboni F.; Nguyen N. T.; So S.; Schmuki P. Aligned Metal Oxide Nanotube Arrays: Key-Aspects of Anodic TiO 2 Nanotube Formation and Properties. Nanoscale Horiz. 2016, 1 (6), 445–466. 10.1039/C6NH00054A. PubMed DOI
Ozkan S.; Mazare A.; Schmuki P. Critical Parameters and Factors in the Formation of Spaced TiO2 Nanotubes by Self-Organizing Anodization. Electrochim. Acta 2018, 268, 435–447. 10.1016/j.electacta.2018.02.120. DOI
Ozkan S.; Nguyen N. T.; Mazare A.; Schmuki P. Optimized Spacing between TiO 2 Nanotubes for Enhanced Light Harvesting and Charge Transfer. ChemElectroChem. 2018, 5 (21), 3183–3190. 10.1002/celc.201801136. DOI
Wawrzyniak J.; Grochowska K.; Karczewski J.; Kupracz P.; Ryl J.; Dołęga A.; Siuzdak K. The Geometry of Free-Standing Titania Nanotubes as a Critical Factor Controlling Their Optical and Photoelectrochemical Performance. Surf. Coat. Technol. 2020, 389, 12562810.1016/j.surfcoat.2020.125628. DOI
Zhou L.; Tan Y.; Wang J.; Xu W.; Yuan Y.; Cai W.; Zhu S.; Zhu J. 3D Self-Assembly of Aluminium Nanoparticles for Plasmon-Enhanced Solar Desalination. Nat. Photonics 2016, 10 (6), 393–398. 10.1038/nphoton.2016.75. DOI
Lee K.; Mazare A.; Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114 (19), 9385–9454. 10.1021/cr500061m. PubMed DOI
Gudmundsson J. T. Physics and Technology of Magnetron Sputtering Discharges. Plasma Sources Sci. Technol. 2020, 29 (11), 11300110.1088/1361-6595/abb7bd. DOI
Ozkan S.; Nguyen N. T.; Hwang I.; Mazare A.; Schmuki P. Highly Conducting Spaced TiO 2 Nanotubes Enable Defined Conformal Coating with Nanocrystalline Nb 2 O 5 and High Performance Supercapacitor Applications. Small 2017, 13 (14), 160382110.1002/smll.201603821. PubMed DOI
Ozkan S.; Yoo J.; Nguyen N. T.; Mohajernia S.; Zazpe R.; Prikryl J.; Macak J. M.; Schmuki P. Spaced TiO 2 Nanotubes Enable Optimized Pt Atomic Layer Deposition for Efficient Photocatalytic H 2 Generation. ChemistryOpen 2018, 7 (10), 797–802. 10.1002/open.201800172. PubMed DOI PMC
Tesler A. B.; Altomare M.; Schmuki P. Morphology and Optical Properties of Highly Ordered TiO 2 Nanotubes Grown in NH 4 F/ o -H 3 PO 4 Electrolytes in View of Light-Harvesting and Catalytic Applications. ACS Appl. Nano Mater. 2020, 3 (11), 10646–10658. 10.1021/acsanm.0c01859. DOI
Xi J.-Q.; Schubert M. F.; Kim J. K.; Schubert E. F.; Chen M.; Lin S.-Y.; Liu W.; Smart J. A. Optical Thin-Film Materials with Low Refractive Index for Broadband Elimination of Fresnel Reflection. Nat. Photonics 2007, 1 (3), 176–179. 10.1038/nphoton.2007.26. DOI
Raut H. K.; Ganesh V. A.; Nair A. S.; Ramakrishna S. Anti-Reflective Coatings: A Critical, in-Depth Review. Energy Environ. Sci. 2011, 4 (10), 3779.10.1039/c1ee01297e. DOI
Zhang F.; Tang F.; Xu X.; Adam P.-M.; Martin J.; Plain J. Influence of Order-to-Disorder Transitions on the Optical Properties of the Aluminum Plasmonic Metasurface. Nanoscale 2020, 12 (45), 23173–23182. 10.1039/D0NR06334G. PubMed DOI
Palani S.; Kenison J. P.; Sabuncu S.; Huang T.; Civitci F.; Esener S.; Nan X. Multispectral Localized Surface Plasmon Resonance (msLSPR) Reveals and Overcomes Spectral and Sensing Heterogeneities of Single Gold Nanoparticles. ACS Nano 2023, 17 (3), 2266–2278. 10.1021/acsnano.2c08702. PubMed DOI PMC
Henrotte O.; Santiago E. Y.; Movsesyan A.; Mascaretti L.; Afshar M.; Minguzzi A.; Vertova A.; Wang Z. M.; Zboril R.; Kment S.; Govorov A. O.; Naldoni A. Local Photochemical Nanoscopy of Hot-Carrier-Driven Catalytic Reactions Using Plasmonic Nanosystems. ACS Nano 2023, 17 (12), 11427–11438. 10.1021/acsnano.3c01009. PubMed DOI
Reineck P.; Brick D.; Mulvaney P.; Bach U. Plasmonic Hot Electron Solar Cells: The Effect of Nanoparticle Size on Quantum Efficiency. J. Phys. Chem. Lett. 2016, 7 (20), 4137–4141. 10.1021/acs.jpclett.6b01884. PubMed DOI
Kim H. J.; Lee S. H.; Upadhye A. A.; Ro I.; Tejedor-Tejedor M. I.; Anderson M. A.; Kim W. B.; Huber G. W. Plasmon-Enhanced Photoelectrochemical Water Splitting with Size-Controllable Gold Nanodot Arrays. ACS Nano 2014, 8 (10), 10756–10765. 10.1021/nn504484u. PubMed DOI
Balachandran U.; Eror N. G. Raman Spectra of Titanium Dioxide. J. Solid State Chem. 1982, 42 (3), 276–282. 10.1016/0022-4596(82)90006-8. DOI
Ohsaka T.; Izumi F.; Fujiki Y. Raman Spectrum of Anatase, TiO 2. J. Raman Spectrosc. 1978, 7 (6), 321–324. 10.1002/jrs.1250070606. DOI
Chih Lin M.; Nien L.-W.; Chen C.-H.; Lee C.-W.; Chen M.-J. Surface Enhanced Raman Scattering and Localized Surface Plasmon Resonance of Nanoscale Ultrathin Films Prepared by Atomic Layer Deposition. Appl. Phys. Lett. 2012, 101 (2), 02311210.1063/1.4729411. DOI
Kashyap K. K.; Choudhuri B.; Chinnamuthu P. Enhanced Optical and Electrical Properties of Metallic Surface Plasmon Sensitized TiO 2 Nanowires. IEEE Trans. Nanotechnol. 2020, 19, 519–526. 10.1109/TNANO.2020.3004876. DOI
Stroyuk O. L.; Dzhagan V. M.; Kozytskiy A. V.; Breslavskiy A. Ya.; Kuchmiy S. Ya.; Villabona A.; Zahn D. R. T. Nanocrystalline TiO2/Au Films: Photocatalytic Deposition of Gold Nanocrystals and Plasmonic Enhancement of Raman Scattering from Titania. Mater. Sci. Semicond. Process. 2015, 37, 3–8. 10.1016/j.mssp.2014.12.033. DOI
Virga A.; Rivolo P.; Frascella F.; Angelini A.; Descrovi E.; Geobaldo F.; Giorgis F. Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS Regime. J. Phys. Chem. C 2013, 117 (39), 20139–20145. 10.1021/jp405117p. DOI
Coluccio M. L.; Das G.; Mecarini F.; Gentile F.; Pujia A.; Bava L.; Tallerico R.; Candeloro P.; Liberale C.; De Angelis F.; Di Fabrizio E. Silver-Based Surface Enhanced Raman Scattering (SERS) Substrate Fabrication Using Nanolithography and Site Selective Electroless Deposition. Microelectron. Eng. 2009, 86 (4–6), 1085–1088. 10.1016/j.mee.2008.12.061. DOI
Torrell M.; Kabir R.; Cunha L.; Vasilevskiy M. I.; Vaz F.; Cavaleiro A.; Alves E.; Barradas N. P. Tuning of the Surface Plasmon Resonance in TiO2/Au Thin Films Grown by Magnetron Sputtering: The Effect of Thermal Annealing. J. Appl. Phys. 2011, 109 (7), 07431010.1063/1.3565066. DOI
Brognara A.; Mohamad Ali Nasri I. F.; Bricchi B. R.; Li Bassi A.; Gauchotte-Lindsay C.; Ghidelli M.; Lidgi-Guigui N. Highly Sensitive Detection of Estradiol by a SERS Sensor Based on TiO 2 Covered with Gold Nanoparticles. Beilstein J. Nanotechnol. 2020, 11, 1026–1035. 10.3762/bjnano.11.87. PubMed DOI PMC