Hydrophilic Interaction Liquid Chromatography-Hydrogen/Deuterium Exchange-Mass Spectrometry (HILIC-HDX-MS) for Untargeted Metabolomics

. 2024 Mar 01 ; 25 (5) : . [epub] 20240301

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38474147

Grantová podpora
20-21114S Czech Science Foundation
21-00477S Czech Science Foundation
LX22NPO5104 Ministry of Education Youth and Sports

Liquid chromatography with mass spectrometry (LC-MS)-based metabolomics detects thousands of molecular features (retention time-m/z pairs) in biological samples per analysis, yet the metabolite annotation rate remains low, with 90% of signals classified as unknowns. To enhance the metabolite annotation rates, researchers employ tandem mass spectral libraries and challenging in silico fragmentation software. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) may offer an additional layer of structural information in untargeted metabolomics, especially for identifying specific unidentified metabolites that are revealed to be statistically significant. Here, we investigate the potential of hydrophilic interaction liquid chromatography (HILIC)-HDX-MS in untargeted metabolomics. Specifically, we evaluate the effectiveness of two approaches using hypothetical targets: the post-column addition of deuterium oxide (D2O) and the on-column HILIC-HDX-MS method. To illustrate the practical application of HILIC-HDX-MS, we apply this methodology using the in silico fragmentation software MS-FINDER to an unknown compound detected in various biological samples, including plasma, serum, tissues, and feces during HILIC-MS profiling, subsequently identified as N1-acetylspermidine.

Zobrazit více v PubMed

Dettmer K., Aronov P.A., Hammock B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007;26:51–78. doi: 10.1002/mas.20108. PubMed DOI PMC

Lioupi A., Marinaki M., Virgiliou C., Begou O., Gika H., Wilson I., Theodoridis G. Probing the polar metabolome by UHPLC-MS. TrAC-Trend Anal. Chem. 2023;161:117014. doi: 10.1016/j.trac.2023.117014. DOI

Feizi N., Hashemi-Nasab F.S., Golpelichi F., Saburouh N., Parastar H. Recent trends in application of chemometric methods for GC-MS and GCxGC-MS-based metabolomic studies. TrAC-Trend Anal. Chem. 2021;138:116239. doi: 10.1016/j.trac.2021.116239. DOI

Rampler E., El Abiead Y., Schoeny H., Rusz M., Hildebrand F., Fitz V., Koellensperger G. Recurrent topics in mass spectrometry-based metabolomics and lipidomics-standardization, coverage, and throughput. Anal. Chem. 2021;93:519–545. doi: 10.1021/acs.analchem.0c04698. PubMed DOI PMC

Soga T. Advances in capillary electrophoresis mass spectrometry for metabolomics. TrAC-Trend Anal. Chem. 2023;158:116883. doi: 10.1016/j.trac.2022.116883. DOI

Rhee E.P., Waikar S.S., Rebholz C.M., Zheng Z.H., Perichon R., Clish C.B., Evans A.M., Avila J., Denburg M.R., Anderson A.H., et al. Variability of two metabolomic platforms in CKD. Clin. J. Am. Soc. Nephrol. 2019;14:40–48. doi: 10.2215/CJN.07070618. PubMed DOI PMC

Dyar K.A., Lutter D., Artati A., Ceglia N.J., Liu Y., Armenta D., Jastroch M., Schneider S., de Mateo S., Cervantes M., et al. Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell. 2018;174:1571–1585. doi: 10.1016/j.cell.2018.08.042. PubMed DOI PMC

Abbondante S., Eckel-Mahan K.L., Ceglia N.J., Baldi P., Sassone-Corsi P. Comparative circadian metabolomics reveal differential effects of nutritional challenge in the serum and liver. J. Biol. Chem. 2016;291:2812–2828. doi: 10.1074/jbc.M115.681130. PubMed DOI PMC

Rakusanova S., Fiehn O., Cajka T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. TrAC-Trend Anal. Chem. 2023;158:116825. doi: 10.1016/j.trac.2022.116825. DOI

da Silva R.R., Dorrestein P.C., Quinn R.A. Illuminating the dark matter in metabolomics. Proc. Natl. Acad. Sci. USA. 2015;112:12549–12550. doi: 10.1073/pnas.1516878112. PubMed DOI PMC

de Jonge N.F., Mildau K., Meijer D., Louwen J.J.R., Bueschl C., Huber F., van der Hooft J.J.J. Good practices and recommendations for using and benchmarking computational metabolomics metabolite annotation tools. Metabolomics. 2022;18:103. doi: 10.1007/s11306-022-01963-y. PubMed DOI PMC

Minami Y., Kasukawa T., Kakazu Y., Iigo M., Sugimoto M., Ikeda S., Yasui A., van der Horst G.T.J., Soga T., Ueda H.R. Measurement of internal body time by blood metabolomics. Proc. Natl. Acad. Sci. USA. 2009;106:9890–9895. doi: 10.1073/pnas.0900617106. PubMed DOI PMC

Mahieu N.G., Patti G.J. Systems-level annotation of a metabolomics data set reduces 25 000 features to fewer than 1000 unique metabolites. Anal. Chem. 2017;89:10397–10406. doi: 10.1021/acs.analchem.7b02380. PubMed DOI PMC

Pinto R.C., Karaman I., Lewis M.R., Hällqvist J., Kaluarachchi M., Graça G., Chekmeneva E., Durainayagam B., Ghanbari M., Ikram M.A., et al. Finding correspondence between metabolomic features in untargeted liquid chromatography-mass spectrometry metabolomics datasets. Anal. Chem. 2022;94:5493–5503. doi: 10.1021/acs.analchem.1c03592. PubMed DOI PMC

Kasukawa T., Sugimoto M., Hida A., Minami Y., Mori M., Honma S., Honma K., Mishima K., Soga T., Ueda H.R. Human blood metabolite timetable indicates internal body time. Proc. Natl. Acad. Sci. USA. 2012;109:15036–15041. doi: 10.1073/pnas.1207768109. PubMed DOI PMC

Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.M., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. PubMed DOI PMC

Chen Z.Z., Gerszten R.E. Metabolomics and proteomics in type 2 diabetes. Circ. Res. 2020;126:1613–1627. doi: 10.1161/CIRCRESAHA.120.315898. PubMed DOI PMC

Wikoff W.R., Hanash S., DeFelice B., Miyamoto S., Barnett M., Zhao Y., Goodman G., Feng Z., Gandara D., Fiehn O., et al. Diacetylspermine is a novel prediagnostic serum biomarker for non-small-cell lung cancer and has additive performance with pro-surfactant protein B. J. Clin. Oncol. 2015;33:3880–3886. doi: 10.1200/JCO.2015.61.7779. PubMed DOI PMC

Low D.Y., Lefvre-Arbogast S., Gonzlez-Domnguez R., Urpi-Sarda M., Micheau P., Petera M., Centeno D., Durand S., Pujos-Guillot E., Korosi A., et al. Diet-related metabolites associated with cognitive decline revealed by untargeted metabolomics in a prospective cohort. Mol. Nutr. Food Res. 2019;63:1900177. doi: 10.1002/mnfr.201900177. PubMed DOI PMC

Qiu S., Cai Y., Yao H., Lin C.S., Xie Y.Q., Tang S.Q., Zhang A.H. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023;8:132. doi: 10.1038/s41392-023-01399-3. PubMed DOI PMC

Cai Y.P., Zhou Z.W., Zhu Z.J. Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. TrAC-Trend Anal. Chem. 2023;158:116903. doi: 10.1016/j.trac.2022.116903. DOI

Zhu Z.J., Schultz A.W., Wang J.H., Johnson C.H., Yannone S.M., Patti G.J., Siuzdak G. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protoc. 2013;8:451–460. doi: 10.1038/nprot.2013.004. PubMed DOI PMC

Bittremieux W., Wang M.X., Dorrestein P.C. The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics. 2022;18:94. doi: 10.1007/s11306-022-01947-y. PubMed DOI PMC

Chaleckis R., Meister I., Zhang P., Wheelock C.E. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr. Opin. Biotechnol. 2019;55:44–50. doi: 10.1016/j.copbio.2018.07.010. PubMed DOI

Alseekh S., Aharoni A., Brotman Y., Contrepois K., D’Auria J., Ewald J., Ewald J.C., Fraser P.D., Giavalisco P., Hall R.D., et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods. 2021;18:747–756. doi: 10.1038/s41592-021-01197-1. PubMed DOI PMC

Purwaha P., Silva L.P., Hawke D.H., Weinstein J.N., Lorenzi P.L. An artifact in LC-MS/MS measurement of glutamine and glutamic acid: In-source cyclization to pyroglutamic acid. Anal. Chem. 2014;86:5633–5637. doi: 10.1021/ac501451v. PubMed DOI PMC

Tsugawa H., Kind T., Nakabayashi R., Yukihira D., Tanaka W., Cajka T., Saito K., Fiehn O., Arita M. Hydrogen rearrangement rules: Computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal. Chem. 2016;88:7946–7958. doi: 10.1021/acs.analchem.6b00770. PubMed DOI PMC

Krettler C.A., Thallinger G.G. A map of mass spectrometry-based fragmentation prediction and compound identification in metabolomics. Brief. Bioinform. 2021;22:bbab073. doi: 10.1093/bib/bbab073. PubMed DOI

Duhrkop K., Shen H.B., Meusel M., Rousu J., Bocker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA. 2015;112:12580–12585. doi: 10.1073/pnas.1509788112. PubMed DOI PMC

Allen F., Pon A., Wilson M., Greiner R., Wishart D. CFM-ID: A web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 2014;42:W94–W99. doi: 10.1093/nar/gku436. PubMed DOI PMC

Wang Y.F., Kora G., Bowen B.P., Pan C.L. MIDAS: A database-searching algorithm for metabolite identification in metabolomics. Anal. Chem. 2014;86:9496–9503. doi: 10.1021/ac5014783. PubMed DOI

Ruttkies C., Schymanski E.L., Wolf S., Hollender J., Neumann S. MetFrag relaunched: Incorporating strategies beyond fragmentation. J. Cheminform. 2016;8:3. doi: 10.1186/s13321-016-0115-9. PubMed DOI PMC

Liu D.Q., Wu L.M., Sun M.J., MacGregor P.A. On-line H/D exchange LC-MS strategy for structural elucidation of pharmaceutical impurities. J. Pharmaceut. Biomed. 2007;44:320–329. doi: 10.1016/j.jpba.2007.01.019. PubMed DOI

Fischer C.R., Wilmes P., Bowen B.P., Northen T.R., Banfield J.F. Deuterium-exchange metabolomics identifies N-methyl lyso phosphatidylethanolamines as abundant lipids in acidophilic mixed microbial communities. Metabolomics. 2012;8:566–578. doi: 10.1007/s11306-011-0344-x. DOI

Lam W., Ramanathan R. In electrospray ionization source hydrogen/deuterium exchange LC-MS and LC-MS/MS for characterization of metabolites. J. Am. Soc. Mass Spectr. 2002;13:345–353. doi: 10.1016/S1044-0305(02)00346-X. PubMed DOI

Liu D.Q., Hop C.E.C.A. Strategies for characterization of drug metabolites using liquid chromatography-tandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. J. Pharm. Biomed. Anal. 2005;37:1–18. doi: 10.1016/j.jpba.2004.09.003. PubMed DOI

Shah R.P., Garg A., Putlur S.P., Wagh S., Kumar V., Rao V., Singh S., Mandlekar S., Desikan S. Practical and economical implementation of online H/D exchange in LC-MS. Anal. Chem. 2013;85:10904–10912. doi: 10.1021/ac402339s. PubMed DOI

Damont A., Legrand A., Cao C.Q., Fenaille F., Tabet J.C. Hydrogen/deuterium exchange mass spectrometry in the world of small molecules. Mass Spectrom. Rev. 2023;42:1300–1331. doi: 10.1002/mas.21765. PubMed DOI

Pfeifer T., Tuerk J., Fuchs R. Structural characterization of sulfadiazine metabolites using H/D exchange combined with various MS/MS experiments. J. Am. Soc. Mass Spectr. 2005;16:1687–1694. doi: 10.1016/j.jasms.2005.06.008. PubMed DOI

Novak T.J., Helmy R., Santos I. Liquid chromatography-mass spectrometry using the hydrogen/deuterium exchange reaction as a tool for impurity identification in pharmaceutical process development. J. Chromatogr. B. 2005;825:161–168. doi: 10.1016/j.jchromb.2005.05.039. PubMed DOI

Muz M., Krauss M., Kutsarova S., Schulze T., Brack W. Mutagenicity in surface waters: Synergistic effects of carboline alkaloids and aromatic amines. Environ. Sci. Technol. 2017;51:1830–1839. doi: 10.1021/acs.est.6b05468. PubMed DOI

Acter T., Kim D., Ahmed A., Ha J.H., Kim S. Application of atmospheric pressure photoionization H/D-exchange mass spectrometry for speciation of sulfur-containing compounds. J. Am. Soc. Mass Spectr. 2017;28:1687–1695. doi: 10.1007/s13361-017-1678-z. PubMed DOI

Zherebker A., Kostyukevich Y., Kononikhin A., Roznyatovsky V.A., Popov I., Grishin Y.K., Perminova I.V., Nikolaev E. High desolvation temperature facilitates the ESI-source H/D exchange at non-labile sites of hydroxybenzoic acids and aromatic amino acids. Analyst. 2016;141:2426–2434. doi: 10.1039/C5AN02676H. PubMed DOI

Kostyukevich Y., Acter T., Zherebker A., Ahmed A., Kim S., Nikolaev E. Hydrogen/deuterium exchange in mass spectrometry. Mass Spectrom. Rev. 2018;37:811–853. doi: 10.1002/mas.21565. PubMed DOI

De Vijlder T., Valkenborg D., Lemiere F., Romijn E.P., Laukens K., Cuyckens F. A tutorial in small molecule identification via electrospray ionization-mass spectrometry: The practical art of structural elucidation. Mass Spectrom. Rev. 2018;37:607–629. doi: 10.1002/mas.21551. PubMed DOI PMC

Ruttkies C., Schymanski E.L., Strehmel N., Hollender J., Neumann S., Williams A.J., Krauss M. Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag. Anal. Bioanal. Chem. 2019;411:4683–4700. doi: 10.1007/s00216-019-01885-0. PubMed DOI PMC

Zhang Q.B., Ford L.A., Evans A.M., Toal D.R. Structure elucidation of metabolite x17299 by interpretation of mass spectrometric data. Metabolomics. 2017;13:92. doi: 10.1007/s11306-017-1231-x. PubMed DOI PMC

Zhang Q.B., Ford L.A., Evans A.M., Toal D.R. Identification of an endogenous organosulfur metabolite by interpretation of mass spectrometric data. Org. Lett. 2018;20:2100–2103. doi: 10.1021/acs.orglett.8b00664. PubMed DOI

Wei Y.Y., Sun Y., Jia S.L., Yan P., Xiong C.M., Qi M.L., Wang C.X., Du Z.F., Jiang H.L. Identification of endogenous carbonyl steroids in human serum by chemical derivatization, hydrogen/deuterium exchange mass spectrometry and the quantitative structure-retention relationship. J. Chromatogr. B. 2023;1226:123776. doi: 10.1016/j.jchromb.2023.123776. PubMed DOI

Kostyukeyich Y., Vladimirov G., Stekolschikova E., Ivanov D., Yablokov A., Zherebker A., Sosnin S., Orlov A., Fedoroy M., Khaitovich P., et al. Hydrogen/deuterium exchange aiding compound identification for LC-MS and MALDI imaging lipidomics. Anal. Chem. 2019;91:13465–13474. doi: 10.1021/acs.analchem.9b02461. PubMed DOI

Strehmel N., Böttcher C., Schmidt S., Scheel D. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry. 2014;108:35–46. doi: 10.1016/j.phytochem.2014.10.003. PubMed DOI

Cajka T., Hricko J., Rudl Kulhava L., Paucova M., Novakova M., Kuda O. Optimization of mobile phase modifiers for fast LC-MS-based untargeted metabolomics and lipidomics. Int. J. Mol. Sci. 2023;24:1987. doi: 10.3390/ijms24031987. PubMed DOI PMC

Hamuro Y. Tutorial: Chemistry of hydrogen/deuterium exchange mass spectrometry. J. Am. Soc. Mass Spectrom. 2021;32:133–151. doi: 10.1021/jasms.0c00260. PubMed DOI

Ball D., Nguyen T., Zhang N.F., D’Arcy S. Using hydrogen-deuterium exchange mass spectrometry to characterize Mtr4 interactions with RNA. Method Enzymol. 2022;673:475–516. PubMed PMC

Hatvany J.B., Liyanage O.T., Gallagher E.S. Effect of pH on in-electrospray hydrogen/deuterium exchange of carbohydrates and peptides. J. Am. Soc. Mass Spectrom. 2024. online ahead of print . PubMed DOI

Castillo P., Kuda O., Kopecky J., Pomar C.A., Palou A., Palou M., Picó C. Reverting to a healthy diet during lactation normalizes maternal milk lipid content of diet-induced obese rats and prevents early alterations in the plasma lipidome of the offspring. Mol. Nutr. Food Res. 2022;66:2200204. doi: 10.1002/mnfr.202200204. PubMed DOI PMC

Greiner P., Houdek P., Sládek M., Sumová A. Early rhythmicity in the fetal suprachiasmatic nuclei in response to maternal signals detected by omics approach. PLoS Biol. 2022;20:e3001637. doi: 10.1371/journal.pbio.3001637. PubMed DOI PMC

Benova A., Ferencakova M., Bardova K., Funda J., Prochazka J., Spoutil F., Cajka T., Dzubanova M., Balcaen T., Kerckhofs G., et al. Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones. Mol. Metab. 2022;65:101598. doi: 10.1016/j.molmet.2022.101598. PubMed DOI PMC

Janovska P., Melenovsky V., Svobodova M., Havlenova T., Kratochvilova H., Haluzik M., Hoskova E., Pelikanova T., Kautzner J., Monzo L., et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: The role of natriuretic peptides and cardiolipin. J. Cachexia Sarcopenia Muscle. 2020;11:1614–1627. doi: 10.1002/jcsm.12631. PubMed DOI PMC

Grazul H., Kanda L.L., Gondek D. Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes. 2016;7:101–114. doi: 10.1080/19490976.2016.1138197. PubMed DOI PMC

Hricko J., Kulhava L.R., Paucova M., Novakova M., Kuda O., Fiehn O., Cajka T. Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxidants. 2023;12:986. doi: 10.3390/antiox12050986. PubMed DOI PMC

Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., Okahashi N., Yamada Y., Tada I., Bonini P., et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI

Tsugawa H., Arita M., Kanazawa M., Ogiwara A., Bamba T., Fukusaki E. MRMPROBS: A data assessment and metabolite identification tool for large-scale multiple reaction monitoring based widely targeted metabolomics. Anal. Chem. 2013;85:5191–5199. doi: 10.1021/ac400515s. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...