Hydrophilic Interaction Liquid Chromatography-Hydrogen/Deuterium Exchange-Mass Spectrometry (HILIC-HDX-MS) for Untargeted Metabolomics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-21114S
Czech Science Foundation
21-00477S
Czech Science Foundation
LX22NPO5104
Ministry of Education Youth and Sports
PubMed
38474147
PubMed Central
PMC10932214
DOI
10.3390/ijms25052899
PII: ijms25052899
Knihovny.cz E-zdroje
- Klíčová slova
- hydrogen/deuterium exchange, liquid chromatography, mass spectrometry, metabolomics, unknown identification,
- MeSH
- chromatografie kapalinová metody MeSH
- deuterium MeSH
- hydrofobní a hydrofilní interakce MeSH
- metabolomika * metody MeSH
- vodík/deuteriová výměna a hmotnostní spektrometrie * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deuterium MeSH
Liquid chromatography with mass spectrometry (LC-MS)-based metabolomics detects thousands of molecular features (retention time-m/z pairs) in biological samples per analysis, yet the metabolite annotation rate remains low, with 90% of signals classified as unknowns. To enhance the metabolite annotation rates, researchers employ tandem mass spectral libraries and challenging in silico fragmentation software. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) may offer an additional layer of structural information in untargeted metabolomics, especially for identifying specific unidentified metabolites that are revealed to be statistically significant. Here, we investigate the potential of hydrophilic interaction liquid chromatography (HILIC)-HDX-MS in untargeted metabolomics. Specifically, we evaluate the effectiveness of two approaches using hypothetical targets: the post-column addition of deuterium oxide (D2O) and the on-column HILIC-HDX-MS method. To illustrate the practical application of HILIC-HDX-MS, we apply this methodology using the in silico fragmentation software MS-FINDER to an unknown compound detected in various biological samples, including plasma, serum, tissues, and feces during HILIC-MS profiling, subsequently identified as N1-acetylspermidine.
Zobrazit více v PubMed
Dettmer K., Aronov P.A., Hammock B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007;26:51–78. doi: 10.1002/mas.20108. PubMed DOI PMC
Lioupi A., Marinaki M., Virgiliou C., Begou O., Gika H., Wilson I., Theodoridis G. Probing the polar metabolome by UHPLC-MS. TrAC-Trend Anal. Chem. 2023;161:117014. doi: 10.1016/j.trac.2023.117014. DOI
Feizi N., Hashemi-Nasab F.S., Golpelichi F., Saburouh N., Parastar H. Recent trends in application of chemometric methods for GC-MS and GCxGC-MS-based metabolomic studies. TrAC-Trend Anal. Chem. 2021;138:116239. doi: 10.1016/j.trac.2021.116239. DOI
Rampler E., El Abiead Y., Schoeny H., Rusz M., Hildebrand F., Fitz V., Koellensperger G. Recurrent topics in mass spectrometry-based metabolomics and lipidomics-standardization, coverage, and throughput. Anal. Chem. 2021;93:519–545. doi: 10.1021/acs.analchem.0c04698. PubMed DOI PMC
Soga T. Advances in capillary electrophoresis mass spectrometry for metabolomics. TrAC-Trend Anal. Chem. 2023;158:116883. doi: 10.1016/j.trac.2022.116883. DOI
Rhee E.P., Waikar S.S., Rebholz C.M., Zheng Z.H., Perichon R., Clish C.B., Evans A.M., Avila J., Denburg M.R., Anderson A.H., et al. Variability of two metabolomic platforms in CKD. Clin. J. Am. Soc. Nephrol. 2019;14:40–48. doi: 10.2215/CJN.07070618. PubMed DOI PMC
Dyar K.A., Lutter D., Artati A., Ceglia N.J., Liu Y., Armenta D., Jastroch M., Schneider S., de Mateo S., Cervantes M., et al. Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell. 2018;174:1571–1585. doi: 10.1016/j.cell.2018.08.042. PubMed DOI PMC
Abbondante S., Eckel-Mahan K.L., Ceglia N.J., Baldi P., Sassone-Corsi P. Comparative circadian metabolomics reveal differential effects of nutritional challenge in the serum and liver. J. Biol. Chem. 2016;291:2812–2828. doi: 10.1074/jbc.M115.681130. PubMed DOI PMC
Rakusanova S., Fiehn O., Cajka T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. TrAC-Trend Anal. Chem. 2023;158:116825. doi: 10.1016/j.trac.2022.116825. DOI
da Silva R.R., Dorrestein P.C., Quinn R.A. Illuminating the dark matter in metabolomics. Proc. Natl. Acad. Sci. USA. 2015;112:12549–12550. doi: 10.1073/pnas.1516878112. PubMed DOI PMC
de Jonge N.F., Mildau K., Meijer D., Louwen J.J.R., Bueschl C., Huber F., van der Hooft J.J.J. Good practices and recommendations for using and benchmarking computational metabolomics metabolite annotation tools. Metabolomics. 2022;18:103. doi: 10.1007/s11306-022-01963-y. PubMed DOI PMC
Minami Y., Kasukawa T., Kakazu Y., Iigo M., Sugimoto M., Ikeda S., Yasui A., van der Horst G.T.J., Soga T., Ueda H.R. Measurement of internal body time by blood metabolomics. Proc. Natl. Acad. Sci. USA. 2009;106:9890–9895. doi: 10.1073/pnas.0900617106. PubMed DOI PMC
Mahieu N.G., Patti G.J. Systems-level annotation of a metabolomics data set reduces 25 000 features to fewer than 1000 unique metabolites. Anal. Chem. 2017;89:10397–10406. doi: 10.1021/acs.analchem.7b02380. PubMed DOI PMC
Pinto R.C., Karaman I., Lewis M.R., Hällqvist J., Kaluarachchi M., Graça G., Chekmeneva E., Durainayagam B., Ghanbari M., Ikram M.A., et al. Finding correspondence between metabolomic features in untargeted liquid chromatography-mass spectrometry metabolomics datasets. Anal. Chem. 2022;94:5493–5503. doi: 10.1021/acs.analchem.1c03592. PubMed DOI PMC
Kasukawa T., Sugimoto M., Hida A., Minami Y., Mori M., Honma S., Honma K., Mishima K., Soga T., Ueda H.R. Human blood metabolite timetable indicates internal body time. Proc. Natl. Acad. Sci. USA. 2012;109:15036–15041. doi: 10.1073/pnas.1207768109. PubMed DOI PMC
Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., Dugar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.M., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. PubMed DOI PMC
Chen Z.Z., Gerszten R.E. Metabolomics and proteomics in type 2 diabetes. Circ. Res. 2020;126:1613–1627. doi: 10.1161/CIRCRESAHA.120.315898. PubMed DOI PMC
Wikoff W.R., Hanash S., DeFelice B., Miyamoto S., Barnett M., Zhao Y., Goodman G., Feng Z., Gandara D., Fiehn O., et al. Diacetylspermine is a novel prediagnostic serum biomarker for non-small-cell lung cancer and has additive performance with pro-surfactant protein B. J. Clin. Oncol. 2015;33:3880–3886. doi: 10.1200/JCO.2015.61.7779. PubMed DOI PMC
Low D.Y., Lefvre-Arbogast S., Gonzlez-Domnguez R., Urpi-Sarda M., Micheau P., Petera M., Centeno D., Durand S., Pujos-Guillot E., Korosi A., et al. Diet-related metabolites associated with cognitive decline revealed by untargeted metabolomics in a prospective cohort. Mol. Nutr. Food Res. 2019;63:1900177. doi: 10.1002/mnfr.201900177. PubMed DOI PMC
Qiu S., Cai Y., Yao H., Lin C.S., Xie Y.Q., Tang S.Q., Zhang A.H. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023;8:132. doi: 10.1038/s41392-023-01399-3. PubMed DOI PMC
Cai Y.P., Zhou Z.W., Zhu Z.J. Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. TrAC-Trend Anal. Chem. 2023;158:116903. doi: 10.1016/j.trac.2022.116903. DOI
Zhu Z.J., Schultz A.W., Wang J.H., Johnson C.H., Yannone S.M., Patti G.J., Siuzdak G. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protoc. 2013;8:451–460. doi: 10.1038/nprot.2013.004. PubMed DOI PMC
Bittremieux W., Wang M.X., Dorrestein P.C. The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics. 2022;18:94. doi: 10.1007/s11306-022-01947-y. PubMed DOI PMC
Chaleckis R., Meister I., Zhang P., Wheelock C.E. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr. Opin. Biotechnol. 2019;55:44–50. doi: 10.1016/j.copbio.2018.07.010. PubMed DOI
Alseekh S., Aharoni A., Brotman Y., Contrepois K., D’Auria J., Ewald J., Ewald J.C., Fraser P.D., Giavalisco P., Hall R.D., et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods. 2021;18:747–756. doi: 10.1038/s41592-021-01197-1. PubMed DOI PMC
Purwaha P., Silva L.P., Hawke D.H., Weinstein J.N., Lorenzi P.L. An artifact in LC-MS/MS measurement of glutamine and glutamic acid: In-source cyclization to pyroglutamic acid. Anal. Chem. 2014;86:5633–5637. doi: 10.1021/ac501451v. PubMed DOI PMC
Tsugawa H., Kind T., Nakabayashi R., Yukihira D., Tanaka W., Cajka T., Saito K., Fiehn O., Arita M. Hydrogen rearrangement rules: Computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal. Chem. 2016;88:7946–7958. doi: 10.1021/acs.analchem.6b00770. PubMed DOI PMC
Krettler C.A., Thallinger G.G. A map of mass spectrometry-based fragmentation prediction and compound identification in metabolomics. Brief. Bioinform. 2021;22:bbab073. doi: 10.1093/bib/bbab073. PubMed DOI
Duhrkop K., Shen H.B., Meusel M., Rousu J., Bocker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA. 2015;112:12580–12585. doi: 10.1073/pnas.1509788112. PubMed DOI PMC
Allen F., Pon A., Wilson M., Greiner R., Wishart D. CFM-ID: A web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 2014;42:W94–W99. doi: 10.1093/nar/gku436. PubMed DOI PMC
Wang Y.F., Kora G., Bowen B.P., Pan C.L. MIDAS: A database-searching algorithm for metabolite identification in metabolomics. Anal. Chem. 2014;86:9496–9503. doi: 10.1021/ac5014783. PubMed DOI
Ruttkies C., Schymanski E.L., Wolf S., Hollender J., Neumann S. MetFrag relaunched: Incorporating strategies beyond fragmentation. J. Cheminform. 2016;8:3. doi: 10.1186/s13321-016-0115-9. PubMed DOI PMC
Liu D.Q., Wu L.M., Sun M.J., MacGregor P.A. On-line H/D exchange LC-MS strategy for structural elucidation of pharmaceutical impurities. J. Pharmaceut. Biomed. 2007;44:320–329. doi: 10.1016/j.jpba.2007.01.019. PubMed DOI
Fischer C.R., Wilmes P., Bowen B.P., Northen T.R., Banfield J.F. Deuterium-exchange metabolomics identifies N-methyl lyso phosphatidylethanolamines as abundant lipids in acidophilic mixed microbial communities. Metabolomics. 2012;8:566–578. doi: 10.1007/s11306-011-0344-x. DOI
Lam W., Ramanathan R. In electrospray ionization source hydrogen/deuterium exchange LC-MS and LC-MS/MS for characterization of metabolites. J. Am. Soc. Mass Spectr. 2002;13:345–353. doi: 10.1016/S1044-0305(02)00346-X. PubMed DOI
Liu D.Q., Hop C.E.C.A. Strategies for characterization of drug metabolites using liquid chromatography-tandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. J. Pharm. Biomed. Anal. 2005;37:1–18. doi: 10.1016/j.jpba.2004.09.003. PubMed DOI
Shah R.P., Garg A., Putlur S.P., Wagh S., Kumar V., Rao V., Singh S., Mandlekar S., Desikan S. Practical and economical implementation of online H/D exchange in LC-MS. Anal. Chem. 2013;85:10904–10912. doi: 10.1021/ac402339s. PubMed DOI
Damont A., Legrand A., Cao C.Q., Fenaille F., Tabet J.C. Hydrogen/deuterium exchange mass spectrometry in the world of small molecules. Mass Spectrom. Rev. 2023;42:1300–1331. doi: 10.1002/mas.21765. PubMed DOI
Pfeifer T., Tuerk J., Fuchs R. Structural characterization of sulfadiazine metabolites using H/D exchange combined with various MS/MS experiments. J. Am. Soc. Mass Spectr. 2005;16:1687–1694. doi: 10.1016/j.jasms.2005.06.008. PubMed DOI
Novak T.J., Helmy R., Santos I. Liquid chromatography-mass spectrometry using the hydrogen/deuterium exchange reaction as a tool for impurity identification in pharmaceutical process development. J. Chromatogr. B. 2005;825:161–168. doi: 10.1016/j.jchromb.2005.05.039. PubMed DOI
Muz M., Krauss M., Kutsarova S., Schulze T., Brack W. Mutagenicity in surface waters: Synergistic effects of carboline alkaloids and aromatic amines. Environ. Sci. Technol. 2017;51:1830–1839. doi: 10.1021/acs.est.6b05468. PubMed DOI
Acter T., Kim D., Ahmed A., Ha J.H., Kim S. Application of atmospheric pressure photoionization H/D-exchange mass spectrometry for speciation of sulfur-containing compounds. J. Am. Soc. Mass Spectr. 2017;28:1687–1695. doi: 10.1007/s13361-017-1678-z. PubMed DOI
Zherebker A., Kostyukevich Y., Kononikhin A., Roznyatovsky V.A., Popov I., Grishin Y.K., Perminova I.V., Nikolaev E. High desolvation temperature facilitates the ESI-source H/D exchange at non-labile sites of hydroxybenzoic acids and aromatic amino acids. Analyst. 2016;141:2426–2434. doi: 10.1039/C5AN02676H. PubMed DOI
Kostyukevich Y., Acter T., Zherebker A., Ahmed A., Kim S., Nikolaev E. Hydrogen/deuterium exchange in mass spectrometry. Mass Spectrom. Rev. 2018;37:811–853. doi: 10.1002/mas.21565. PubMed DOI
De Vijlder T., Valkenborg D., Lemiere F., Romijn E.P., Laukens K., Cuyckens F. A tutorial in small molecule identification via electrospray ionization-mass spectrometry: The practical art of structural elucidation. Mass Spectrom. Rev. 2018;37:607–629. doi: 10.1002/mas.21551. PubMed DOI PMC
Ruttkies C., Schymanski E.L., Strehmel N., Hollender J., Neumann S., Williams A.J., Krauss M. Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag. Anal. Bioanal. Chem. 2019;411:4683–4700. doi: 10.1007/s00216-019-01885-0. PubMed DOI PMC
Zhang Q.B., Ford L.A., Evans A.M., Toal D.R. Structure elucidation of metabolite x17299 by interpretation of mass spectrometric data. Metabolomics. 2017;13:92. doi: 10.1007/s11306-017-1231-x. PubMed DOI PMC
Zhang Q.B., Ford L.A., Evans A.M., Toal D.R. Identification of an endogenous organosulfur metabolite by interpretation of mass spectrometric data. Org. Lett. 2018;20:2100–2103. doi: 10.1021/acs.orglett.8b00664. PubMed DOI
Wei Y.Y., Sun Y., Jia S.L., Yan P., Xiong C.M., Qi M.L., Wang C.X., Du Z.F., Jiang H.L. Identification of endogenous carbonyl steroids in human serum by chemical derivatization, hydrogen/deuterium exchange mass spectrometry and the quantitative structure-retention relationship. J. Chromatogr. B. 2023;1226:123776. doi: 10.1016/j.jchromb.2023.123776. PubMed DOI
Kostyukeyich Y., Vladimirov G., Stekolschikova E., Ivanov D., Yablokov A., Zherebker A., Sosnin S., Orlov A., Fedoroy M., Khaitovich P., et al. Hydrogen/deuterium exchange aiding compound identification for LC-MS and MALDI imaging lipidomics. Anal. Chem. 2019;91:13465–13474. doi: 10.1021/acs.analchem.9b02461. PubMed DOI
Strehmel N., Böttcher C., Schmidt S., Scheel D. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry. 2014;108:35–46. doi: 10.1016/j.phytochem.2014.10.003. PubMed DOI
Cajka T., Hricko J., Rudl Kulhava L., Paucova M., Novakova M., Kuda O. Optimization of mobile phase modifiers for fast LC-MS-based untargeted metabolomics and lipidomics. Int. J. Mol. Sci. 2023;24:1987. doi: 10.3390/ijms24031987. PubMed DOI PMC
Hamuro Y. Tutorial: Chemistry of hydrogen/deuterium exchange mass spectrometry. J. Am. Soc. Mass Spectrom. 2021;32:133–151. doi: 10.1021/jasms.0c00260. PubMed DOI
Ball D., Nguyen T., Zhang N.F., D’Arcy S. Using hydrogen-deuterium exchange mass spectrometry to characterize Mtr4 interactions with RNA. Method Enzymol. 2022;673:475–516. PubMed PMC
Hatvany J.B., Liyanage O.T., Gallagher E.S. Effect of pH on in-electrospray hydrogen/deuterium exchange of carbohydrates and peptides. J. Am. Soc. Mass Spectrom. 2024. online ahead of print . PubMed DOI
Castillo P., Kuda O., Kopecky J., Pomar C.A., Palou A., Palou M., Picó C. Reverting to a healthy diet during lactation normalizes maternal milk lipid content of diet-induced obese rats and prevents early alterations in the plasma lipidome of the offspring. Mol. Nutr. Food Res. 2022;66:2200204. doi: 10.1002/mnfr.202200204. PubMed DOI PMC
Greiner P., Houdek P., Sládek M., Sumová A. Early rhythmicity in the fetal suprachiasmatic nuclei in response to maternal signals detected by omics approach. PLoS Biol. 2022;20:e3001637. doi: 10.1371/journal.pbio.3001637. PubMed DOI PMC
Benova A., Ferencakova M., Bardova K., Funda J., Prochazka J., Spoutil F., Cajka T., Dzubanova M., Balcaen T., Kerckhofs G., et al. Novel thiazolidinedione analog reduces a negative impact on bone and mesenchymal stem cell properties in obese mice compared to classical thiazolidinediones. Mol. Metab. 2022;65:101598. doi: 10.1016/j.molmet.2022.101598. PubMed DOI PMC
Janovska P., Melenovsky V., Svobodova M., Havlenova T., Kratochvilova H., Haluzik M., Hoskova E., Pelikanova T., Kautzner J., Monzo L., et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: The role of natriuretic peptides and cardiolipin. J. Cachexia Sarcopenia Muscle. 2020;11:1614–1627. doi: 10.1002/jcsm.12631. PubMed DOI PMC
Grazul H., Kanda L.L., Gondek D. Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes. 2016;7:101–114. doi: 10.1080/19490976.2016.1138197. PubMed DOI PMC
Hricko J., Kulhava L.R., Paucova M., Novakova M., Kuda O., Fiehn O., Cajka T. Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxidants. 2023;12:986. doi: 10.3390/antiox12050986. PubMed DOI PMC
Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., Okahashi N., Yamada Y., Tada I., Bonini P., et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI
Tsugawa H., Arita M., Kanazawa M., Ogiwara A., Bamba T., Fukusaki E. MRMPROBS: A data assessment and metabolite identification tool for large-scale multiple reaction monitoring based widely targeted metabolomics. Anal. Chem. 2013;85:5191–5199. doi: 10.1021/ac400515s. PubMed DOI