Metabolomics and Lipidomics for Studying Metabolic Syndrome: Insights into Cardiovascular Diseases, Type 1 & 2 Diabetes, and Metabolic Dysfunction-Associated Steatotic Liver Disease
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
39212142
PubMed Central
PMC11412346
DOI
10.33549/physiolres.935443
PII: 935443
Knihovny.cz E-zdroje
- MeSH
- biologické markery metabolismus MeSH
- diabetes mellitus 1. typu metabolismus komplikace MeSH
- diabetes mellitus 2. typu * metabolismus MeSH
- kardiovaskulární nemoci * metabolismus diagnóza MeSH
- lidé MeSH
- lipidomika * metody MeSH
- metabolický syndrom * metabolismus MeSH
- metabolomika * metody MeSH
- ztučnělá játra metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
Metabolomics and lipidomics have emerged as tools in understanding the connections of metabolic syndrome (MetS) with cardiovascular diseases (CVD), type 1 and type 2 diabetes (T1D, T2D), and metabolic dysfunction-associated steatotic liver disease (MASLD). This review highlights the applications of these omics approaches in large-scale cohort studies, emphasizing their role in biomarker discovery and disease prediction. Integrating metabolomics and lipidomics has significantly advanced our understanding of MetS pathology by identifying unique metabolic signatures associated with disease progression. However, challenges such as standardizing analytical workflows, data interpretation, and biomarker validation remain critical for translating research findings into clinical practice. Future research should focus on optimizing these methodologies to enhance their clinical utility and address the global burden of MetS-related diseases.
Zobrazit více v PubMed
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644. PubMed DOI
Alberti KG, Zimmet P, Shaw J. The metabolic syndrome - a new worldwide definition. Lancet. 2005;366:1059–1062. doi: 10.1016/S0140-6736(05)67402-8. PubMed DOI
Han TS, Lean MEJ. Metabolic syndrome. Medicine. 2015;43:80–87. doi: 10.1016/j.mpmed.2014.11.006. DOI
Grundy SM. Metabolic Syndrome Pandemic. Arterioscler Thromb Vasc Biol. 2008;28:629–636. doi: 10.1161/ATVBAHA.107.151092. PubMed DOI
Radu F, Potcovaru C-G, Salmen T, Filip PV, Pop C, Fierbințeanu-Braticievici C. The link between NAFLD and metabolic syndrome. Diagnostics. 2023;13:614. doi: 10.3390/diagnostics13040614. PubMed DOI PMC
Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT, Tounouga DN, Tianyi F-L, Foka AJ, Ndoadoumgue AL, et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res Clin Pr. 2022;188:109924. doi: 10.1016/j.diabres.2022.109924. PubMed DOI
Reisinger C, Nkeh-Chungag BN, Fredriksen PM, Goswami N. The prevalence of pediatric metabolic syndrome-a critical look on the discrepancies between definitions and its clinical importance. Int J Obes. 2021;45:12–24. doi: 10.1038/s41366-020-00713-1. PubMed DOI PMC
Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am. 2004;33:351–375. doi: 10.1016/j.ecl.2004.03.005. PubMed DOI
Allam-Ndoul B, Guénard F, Garneau V, Cormier H, Barbier O, Pérusse L, Vohl MC. Association between metabolite profiles, metabolic syndrome and obesity status. Nutrients. 2016;8:324. doi: 10.3390/nu8060324. PubMed DOI PMC
Gong L-L, Yang S, Zhang W, Han F-F, Lv Y-L, Xuan L-L, Liu H, Liu L-H. Discovery of metabolite profiles of metabolic syndrome using untargeted and targeted LC-MS based lipidomics approach. J Pharm Biomed. 2020;177:112848. doi: 10.1016/j.jpba.2019.112848. PubMed DOI
Hajjar G, Barros Santos MC, Bertrand-Michel J, Canlet C, Castelli F, Creusot N, Dechaumet S, et al. Scaling-up metabolomics: Current state and perspectives. Trends Analyt Chem. 2023;167:117225. doi: 10.1016/j.trac.2023.117225. DOI
Pujos-Guillot E, Brandolini M, Pétéra M, Grissa D, Joly C, Lyan B, Herquelot É, et al. Systems metabolomics for prediction of metabolic syndrome. J Proteome Res. 2017;16:2262–2272. doi: 10.1021/acs.jproteome.7b00116. PubMed DOI
Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–1083. doi: 10.1038/nprot.2011.335. PubMed DOI
Salek R, Emery L, Beisken S. Metabolomics: an introduction. EMBL-EMI. 2014 doi: 10.6019/TOL.MBS.2014.00001.1. DOI
Gardner MJ, Altman DG. Confidence intervals rather than P values: Estimation rather than hypothesis testing. Br Med J (Clin Res Ed) 1986;292:746–750. doi: 10.1136/bmj.292.6522.746. PubMed DOI PMC
Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O. A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites. 2012;2:775–795. doi: 10.3390/metabo2040775. PubMed DOI PMC
Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med. 2021;31:010502. doi: 10.11613/BM.2021.010502. PubMed DOI PMC
Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–1160. doi: 10.3758/BRM.41.4.1149. PubMed DOI
Zhao X, Niu L, Clerici C, Russo R, Byrd M, Setchell KDR. Data analysis of MS-based clinical lipidomics studies with crossover design: A tutorial mini-review of statistical methods. Clin Mass Spectrom. 2019;13:5–17. doi: 10.1016/j.clinms.2019.05.002. PubMed DOI PMC
Billoir E, Navratil V, Blaise BJ. Sample size calculation in metabolic phenotyping studies. Brief Bioinform. 2015;16:813–819. doi: 10.1093/bib/bbu052. PubMed DOI
Nyamundanda G, Gormley IC, Fan Y, Gallagher WM, Brennan L. MetSizeR: Selecting the optimal sample size for metabolomic studies using an analysis based approach. BMC Bioinform. 2013;14:338. doi: 10.1186/1471-2105-14-338. PubMed DOI PMC
Li F, Zhou Y, Zhang X, Tang J, Yang Q, Zhang Y, Luo Y, et al. SSizer: Determining the sample sufficiency for comparative biological study. J Mol Biol. 2020;432:3411–3421. doi: 10.1016/j.jmb.2020.01.027. PubMed DOI
Ivanisevic J, Want EJ. From samples to insights into metabolism: Uncovering biologically relevant information in LC-HRMS metabolomics data. Metabolites. 2019;9:308. doi: 10.3390/metabo9120308. PubMed DOI PMC
Lenth RV. Some practical guidelines for effective sample size determination. Am Stat. 2001;55:187–193. doi: 10.1198/000313001317098149. DOI
Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24:101–105. doi: 10.21315/mjms2017.24.5.11. PubMed DOI PMC
Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4:2249–2264. doi: 10.4155/bio.12.204. PubMed DOI
Smith L, Villaret-Cazadamont J, Claus SP, Canlet C, Guillou H, Cabaton NJ, Ellero-Simatos S. Important considerations for sample collection in metabolomics studies with a special focus on applications to liver functions. Metabolites. 2020;10:104. doi: 10.3390/metabo10030104. PubMed DOI PMC
Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’Auria J, Ewald J, Ewald JC, et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat Methods. 2021;18:747–756. doi: 10.1038/s41592-021-01197-1. PubMed DOI PMC
Rakusanova S, Fiehn O, Cajka T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. Trends Anal Chem. 2023;158:116825. doi: 10.1016/j.trac.2022.116825. DOI
Mushtaq MY, Choi YH, Verpoorte R, Wilson EG. Extraction for metabolomics: Access to the metabolome. Phytochem Anal. 2014;25:291–306. doi: 10.1002/pca.2505. PubMed DOI
Khamis MM, Holt T, Awad H, El-Aneed A, Adamko DJ. Comparative analysis of creatinine and osmolality as urine normalization strategies in targeted metabolomics for the differential diagnosis of asthma and COPD. Metabolomics. 2018;14:115. doi: 10.1007/s11306-018-1418-9. PubMed DOI
Álvarez-Sánchez B, Priego-Capote F, Castro MDL. Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Anal Chem. 2010;29:120–127. doi: 10.1016/j.trac.2009.12.004. DOI
Dunn WB. Mass spectrometry in systems biology an introduction. Methods Enzymol. 2011;500:15–35. doi: 10.1016/B978-0-12-385118-5.00002-5. PubMed DOI
Showalter MR, Nonnecke EB, Linderholm AL, Cajka T, Sa MR, Lönnerdal B, Kenyon NJ, Fiehn O. Obesogenic diets alter metabolism in mice. PLoS One. 2018;13:e0190632. doi: 10.1371/journal.pone.0190632. PubMed DOI PMC
Lepoittevin M, Blancart-Remaury Q, Kerforne T, Pellerin L, Hauet T, Thuillier R. Comparison between 5 extractions methods in either plasma or serum to determine the optimal extraction and matrix combination for human metabolomics. Cell Mol Biol Lett. 2023;28:43. doi: 10.1186/s11658-023-00452-x. PubMed DOI PMC
Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49:1137–1146. doi: 10.1194/jlr.D700041-JLR200. PubMed DOI PMC
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI
Southam AD, Haglington LD, Najdekr L, Jankevics A, Weber RJM, Dunn WB. Assessment of human plasma and urine sample preparation for reproducible and high-throughput UHPLC-MS clinical metabolic phenotyping. Analyst. 2020;145:6511–6523. doi: 10.1039/D0AN01319F. PubMed DOI
Vale G, Martin SA, Mitsche MA, Thompson BM, Eckert KM, McDonald JG. Three-phase liquid extraction: a simple and fast method for lipidomic workflows. J Lipid Res. 2019;60:694–706. doi: 10.1194/jlr.D090795. PubMed DOI PMC
Gasperotti M, Masuero D, Guella G, Mattivi F, Vrhovsek U. Development of a targeted method for twenty-three metabolites related to polyphenol gut microbial metabolism in biological samples, using SPE and UHPLC-ESI-MS/MS. Talanta. 2014;128:221–230. doi: 10.1016/j.talanta.2014.04.058. PubMed DOI
Cajka T, Hricko J, Rudl Kulhava L, Paucova M, Novakova M, Kuda O. Optimization of mobile phase modifiers for fast LC-MS-based untargeted metabolomics and lipidomics. Int J Mol Sci. 2023;24:1987. doi: 10.3390/ijms24031987. PubMed DOI PMC
Hricko J, Rudl Kulhava L, Paucova M, Novakova M, Kuda O, Fiehn O, Cajka T. Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxidants. 2023;12:986. doi: 10.3390/antiox12050986. PubMed DOI PMC
Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14:72. doi: 10.1007/s11306-018-1367-3. PubMed DOI PMC
Begou O, Gika HG, Theodoridis GA, Wilson ID. Quality control and validation issues in LC-MS metabolomics. Methods Mol Biol. 2018;1738:15–26. doi: 10.1007/978-1-4939-7643-0_2. PubMed DOI
Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, Ahonen L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in frozen human plasma. J Lipid Res. 2017;58:2275–2288. doi: 10.1194/jlr.M079012. PubMed DOI PMC
Dudzik D, Barbas-Bernardos C, García A, Barbas C. Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. J Pharm Biomed Anal. 2018;147:149–173. doi: 10.1016/j.jpba.2017.07.044. PubMed DOI
Jeppesen MJ, Powers R. Multiplatform untargeted metabolomics. Magn Reson Chem. 2023;61:628–653. doi: 10.1002/mrc.5350. PubMed DOI PMC
Harrieder EM, Kretschmer F, Böcker S, Witting M. Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics. J Chromatogr B. 2022;1188:123069. doi: 10.1016/j.jchromb.2021.123069. PubMed DOI
Zhou B, Xiao JF, Tuli L, Ressom HW. LC-MS-based metabolomics. Mol Biosyst. 2012;8:470–81. doi: 10.1039/C1MB05350G. PubMed DOI PMC
Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88:524–545. doi: 10.1021/acs.analchem.5b04491. PubMed DOI
Gowda GAN, Djukovic D. Overview of mass spectrometry-based metabolomics: Opportunities and challenges. In: RAFTERY D, editor. Mass Spectrometry in Metabolomics: Methods and Protocols. New York, NY: 2014. pp. 3–12. PubMed DOI PMC
Zarrouk E, El Balkhi S, Saint-Marcoux F. Low-resolution or high-resolution MS for clinical and forensic toxicology: some considerations from two real cases. LCGC Supplements. 2023;41:24–27. doi: 10.56530/lcgc.na.ez3089i6. DOI
Defossez E, Bourquin J, von Reuss S, Rasmann S, Glauser G. Eight key rules for successful data-dependent acquisition in mass spectrometry-based metabolomics. Mass Spectrom Rev. 2023;42:131–143. doi: 10.1002/mas.21715. PubMed DOI PMC
Nash WJ, Dunn WB. From mass to metabolite in human untargeted metabolomics: Recent advances in annotation of metabolites applying liquid chromatography-mass spectrometry data. Trends Anal Chem. 2019;120:115324. doi: 10.1016/j.trac.2018.11.022. DOI
Guo J, Huan T. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. Anal Chem. 2020;92:8072–8080. doi: 10.1021/acs.analchem.9b05135. PubMed DOI
Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H, Okahashi N, et al. A lipidome atlas in MS-DIAL 4. Nat Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI
Yin Y, Wang R, Cai Y, Wang Z, Zhu Z-J. DecoMetDIA: Deconvolution of multiplexed MS/MS spectra for metabolite identification in SWATH-MS-based untargeted metabolomics. Anal Chem. 2019;91:11897–11904. doi: 10.1021/acs.analchem.9b02655. PubMed DOI
Stancliffe E, Schwaiger-Haber M, Sindelar M, Patti GJ. DecoID improves identification rates in metabolomics through database-assisted MS/MS deconvolution. Nat Methods. 2021;18:779–787. doi: 10.1038/s41592-021-01195-3. PubMed DOI PMC
Katajamaa M, Oresic M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A. 2007;1158:318–28. doi: 10.1016/j.chroma.2007.04.021. PubMed DOI
Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M. Hydrogen rearrangement rules: Computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem. 2016;88:7946–7958. doi: 10.1021/acs.analchem.6b00770. PubMed DOI PMC
Jonge NF, Mildau K, Meijer D, Louwen JJR, Bueschl C, Huber F, van der Hooft JJJ. Good practices and recommendations for using and benchmarking computational metabolomics metabolite annotation tools. Metabolomics. 2022;18:103. doi: 10.1007/s11306-022-01963-y. PubMed DOI PMC
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC
Creek DJ, Dunn WB, Fiehn O, Griffin JL, Hall RD, Lei Z, Mistrik R, et al. Metabolite identification: Are you sure? And how do your peers gauge your confidence? Metabolomics. 2014;10:350–353. doi: 10.1007/s11306-014-0656-8. DOI
Spicer RA, Salek R, Steinbeck C. A decade after the metabolomics standards initiative it’s time for a revision. Sci Data. 2017;4:170138. doi: 10.1038/sdata.2017.138. PubMed DOI PMC
Salek RM, Steinbeck C, Viant MR, Goodacre R, Dunn WB. The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience. 2013;2:13. doi: 10.1186/2047-217X-2-13. PubMed DOI PMC
Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, Fedorova M, et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J Lipid Res. 2020;61:1539–1555. doi: 10.1194/jlr.S120001025. PubMed DOI PMC
Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev. 2018;37:513–532. doi: 10.1002/mas.21535. PubMed DOI PMC
Xue J, Guijas C, Benton HP, Warth B, Siuzdak G. METLIN MS2 molecular standards database: a broad chemical and biological resource. Nat Methods. 2020;17:953–954. doi: 10.1038/s41592-020-0942-5. PubMed DOI PMC
Witting M, Böcker S. Current status of retention time prediction in metabolite identification. J Sep Sci. 2020;43:1746–1754. doi: 10.1002/jssc.202000060. PubMed DOI
Damont A, Legrand A, Cao C, Fenaille F, Tabet J-C. Hydrogen/deuterium exchange mass spectrometry in the world of small molecules. Mass Spectrom Rev. 2023;42:1300–1331. doi: 10.1002/mas.21765. PubMed DOI
Cajka T, Hricko J, Rakusanova S, Brejchova K, Novakova M, Rudl Kulhava L, Hola V, et al. Hydrophilic interaction liquid chromatography-hydrogen/deuterium exchange-mass spectrometry (HILIC-HDX-MS) for untargeted metabolomics. Int J Mol Sci. 2024;25:2899. doi: 10.3390/ijms25052899. PubMed DOI PMC
Blaženović I, Kind T, Ji J, Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 2018;8:31. doi: 10.3390/metabo8020031. PubMed DOI PMC
Saccenti E, Hoefsloot HCJ, Smilde AK, Westerhuis JA, Hendriks MMWB. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics. 2014;10:361–374. doi: 10.1007/s11306-013-0598-6. DOI
Sedgwick P. Multiple significance tests: the Bonferroni correction. BMJ. 2012;344:e509. doi: 10.1136/bmj.e509. DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B Stat Method. 2002;64:479–498. doi: 10.1111/1467-9868.00346. DOI
Bartel J, Krumsiek J, Theis FJ. Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J. 2013;4:e201301009. doi: 10.5936/csbj.201301009. PubMed DOI PMC
Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. doi: 10.1093/nar/gkab382. PubMed DOI PMC
Chen Y, Li EM, Xu LY. Guide to metabolomics analysis: a bioinformatics workflow. Metabolites. 2022;12:357. doi: 10.3390/metabo12040357. PubMed DOI PMC
Vondrackova M, Kopczynski D, Hoffmann N, Kuda O. LORA, Lipid Over-Representation Analysis based on structural information. Anal Chem. 2023;95:12600–12604. doi: 10.1021/acs.analchem.3c02039. PubMed DOI PMC
Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC
Witting M. (Re-)use and (re-)analysis of publicly available metabolomics data. Proteomics. 2023;23:2300032. doi: 10.1002/pmic.202300032. PubMed DOI
Rus M, Crisan S, Andronie-Cioara FL, Indries M, Marian P, Pobirci OL, Ardelean AI. Prevalence and risk factors of metabolic syndrome: a prospective study on cardiovascular health. Medicina. 2023;59:1711. doi: 10.3390/medicina59101711. PubMed DOI PMC
Madan K, Paliwal S, Sharma S, Kesar S, Chauhan N, Madan M. Metabolic syndrome: the constellation of co-morbidities, a global threat. Endocr Metab Immune Disord Drug. 2023;23:1491–1504. doi: 10.2174/1871530323666230309144825. PubMed DOI
Mensah GA, Fuster V, Murray CJL, Roth GA, Mensah GA, Abate YH, Abbasian M, et al. Global burden of cardiovascular diseases and risks, 1990–2022. J Am Coll Cardiol. 2023;82:2350–2473. doi: 10.1016/j.jacc.2023.11.007. PubMed DOI PMC
World Health Organization. Cardiovascular diseases (CVDs) 2021. May 28, 2024. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Di Cesare M, Perel P, Taylor S, Kabudula C, Bixby H, Gaziano TA, McGhie DV, et al. The Heart of the World. Glob Heart. 2024;19:11. doi: 10.5334/gh.1288. PubMed DOI PMC
Eichelmann F, Sellem L, Wittenbecher C, Jäger S, Kuxhaus O, Prada M, Cuadrat R, et al. Deep lipidomics in human plasma: Cardiometabolic disease risk and effect of dietary fat modulation. Circulation. 2022;146:21–35. doi: 10.1161/CIRCULATIONAHA.121.056805. PubMed DOI PMC
Huang Z, Klaric L, Krasauskaite J, Khalid W, Strachan MWJ, Wilson JF, Price JF. Combining serum metabolomic profiles with traditional risk factors improves 10-year cardiovascular risk prediction in people with type 2 diabetes. Eur J Prev Cardiol. 2023;30:1255–1262. doi: 10.1093/eurjpc/zwad160. PubMed DOI
Lu Q, Chen J, Li R, Wang Y, Tu Z, Geng T, Liu L, Pan A, Liu G. Healthy lifestyle, plasma metabolites, and risk of cardiovascular disease among individuals with diabetes. Atherosclerosis. 2023;367:48–55. doi: 10.1016/j.atherosclerosis.2022.12.008. PubMed DOI
Tzoulaki I, Castagné R, Boulangé CL, Karaman I, Chekmeneva E, Evangelou E, Ebbels TMD, et al. Serum metabolic signatures of coronary and carotid atherosclerosis and subsequent cardiovascular disease. Eur Heart J. 2019;40:2883–2896. doi: 10.1093/eurheartj/ehz235. PubMed DOI PMC
Würtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, Ghorbani A, et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation. 2015;131:774–85. doi: 10.1161/CIRCULATIONAHA.114.013116. PubMed DOI PMC
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. PubMed DOI PMC
Benson TW, Conrad KA, Li XS, Wang Z, Helsley RN, Schugar RC, Coughlin TM, et al. Gut microbiota-derived trimethylamine N-oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation. 2023;147:1079–1096. doi: 10.1161/CIRCULATIONAHA.122.060573. PubMed DOI PMC
Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400. PubMed DOI PMC
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–124. doi: 10.1016/j.cell.2016.02.011. PubMed DOI PMC
Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG, Gu X, et al. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JC Insight. 2018;3:e99096. doi: 10.1172/jci.insight.99096. PubMed DOI PMC
Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors Cell 2020180862–877..e2210.1016/j.cell.2020.02.016 PubMed DOI PMC
Ferrell M, Wang Z, Anderson JT, Li XS, Witkowski M, DiDonato JA, Hilser JR, et al. A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. Nat Med. 2024;30:424–434. doi: 10.1038/s41591-023-02793-8. PubMed DOI PMC
Witkowski M, Nemet I, Alamri H, Wilcox J, Gupta N, Nimer N, Haghikia A, et al. The artificial sweetener erythritol and cardiovascular event risk. Nat Med. 2023;29:710–718. doi: 10.1038/s41591-023-02223-9. PubMed DOI PMC
Witkowski M, Nemet I, Li XS, Wilcox J, Ferrell M, Alamri H, Gupta N, et al. Xylitol is prothrombotic and associated with cardiovascular risk. Eur Heart J. 2024;45:2439–2452. doi: 10.1093/eurheartj/ehae244. PubMed DOI PMC
Fu Z, Liu Q, Liang J, Weng Z, Li W, Xu J, Zhang X, Xu C, Gu A. Association between NMR metabolomic signatures of healthy lifestyle and incident coronary artery disease. Eur J Prev Cardiol. 2022;30:243–253. doi: 10.1093/eurjpc/zwac252. PubMed DOI
Margara-Escudero HJ, Paz-Graniel I, García-Gavilán J, Ruiz-Canela M, Sun Q, Clish CB, Toledo E, et al. Plasma metabolite profile of legume consumption and future risk of type 2 diabetes and cardiovascular disease. Cardiovasc Diabetol. 2024;23:38. doi: 10.1186/s12933-023-02111-z. PubMed DOI PMC
Guasch-Ferré M, Hernández-Alonso P, Drouin-Chartier JP, Ruiz-Canela M, Razquin C, Toledo E, Li J, et al. Walnut consumption, plasma metabolomics, and risk of type 2 diabetes and cardiovascular disease. J Nutr. 2021;151:303–311. doi: 10.1093/jn/nxaa374. PubMed DOI PMC
Nemet I, Funabashi M, Li XS, Dwidar M, Sangwan N, Skye SM, Romano KA, et al. Microbe-derived uremic solutes enhance thrombosis potential in the host mBio 202314e013312310.1128/mbio.01331-23 PubMed DOI PMC
Harm T, Dittrich K, Brun A, Fu X, Frey M, Petersen Uribe A, Schwarz F-J, et al. Large-scale lipidomics profiling reveals characteristic lipid signatures associated with an increased cardiovascular risk. Clin Res Cardiol. 2023;112:1664–1678. doi: 10.1007/s00392-023-02260-x. PubMed DOI PMC
Seah JYH, Chew WS, Torta F, Khoo CM, Wenk MR, Herr DR, Choi H, Tai ES, van Dam RM. Plasma sphingolipids and risk of cardiovascular diseases: a large-scale lipidomic analysis. Metabolomics. 2020;16:89. doi: 10.1007/s11306-020-01709-8. PubMed DOI
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. PubMed DOI PMC
Gregory GA, Robinson TIG, Linklater SE, Wang F, Colagiuri S, de Beaufort C, Donaghue KC, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 2022;10:741–760. doi: 10.1016/S2213-8587(22)00218-2. PubMed DOI
Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Hosseini Fard H, Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot Perspect. 2020;10:98–115. doi: 10.34172/hpp.2020.18. PubMed DOI PMC
Rakusanova S, Cajka T. Current analytical methods to monitor type 2 diabetes medication in biological samples. Trends Anal Chem. 2023;158:116831. doi: 10.1016/j.trac.2022.116831. DOI
World Health Organization. Diabetes. 2023. Apr 5, 2023. https://www.who.int/news-room/fact-sheets/detail/diabetes .
Sen P, Hyötyläinen T, Orešič M. 1-Deoxyceramides - Key players in lipotoxicity and progression to type 2 diabetes? Acta Physiol. 2021;232:e13635. doi: 10.1111/apha.13635. PubMed DOI
La Torre D, Seppänen-Laakso T, Larsson HE, Hyötyläinen T, Ivarsson SA, Lernmark Å, Orešič M Group atDS. Decreased cord-blood phospholipids in young age-at-onset type 1 diabetes. Diabetes. 2013;62:3951–3956. doi: 10.2337/db13-0215. PubMed DOI PMC
Tapia G, Suvitaival T, Ahonen L, Lund-Blix NA, Njølstad PR, Joner G, Skrivarhaug T, et al. Prediction of type 1 diabetes at birth: Cord blood metabolites vs genetic risk score in the Norwegian Mother, Father, and Child cohort. J Clin Endocrinol Metab. 2021;106:e4062–e4071. doi: 10.1210/clinem/dgab400. PubMed DOI PMC
Webb-Robertson B-JM, Nakayasu ES, Frohnert BI, Bramer LM, Akers SM, Norris JM, Vehik K, et al. Integration of infant metabolite, genetic, and islet autoimmunity signatures to predict type 1 diabetes by age 6 years. J Clin Endocrinol Metab. 2022;107:2329–2338. doi: 10.1210/clinem/dgac225. PubMed DOI PMC
Lee DH, Jin Q, Shi N, Wang F, Bever AM, Liang L, Hu FB, et al. The metabolic potential of inflammatory and insulinaemic dietary patterns and risk of type 2 diabetes. Diabetologia. 2024;67:88–101. doi: 10.1007/s00125-023-06021-3. PubMed DOI PMC
Hannich JT, Loizides-Mangold U, Sinturel F, Harayama T, Vandereycken B, Saini C, Gosselin P, et al. Ether lipids, sphingolipids and toxic 1-deoxyceramides as hallmarks for lean and obese type 2 diabetic patients. Acta Physiol. 2021;232:e13610. doi: 10.1111/apha.13610. PubMed DOI
Prada M, Wittenbecher C, Eichelmann F, Wernitz A, Drouin-Chartier J-P, Schulze MB. Association of the odd-chain fatty acid content in lipid groups with type 2 diabetes risk: A targeted analysis of lipidomics data in the EPIC-Potsdam cohort. Clin Nutr. 2021;40:4988–4999. doi: 10.1016/j.clnu.2021.06.006. PubMed DOI
Sun L, Liang L, Gao X, Zhang H, Yao P, Hu Y, Ma Y, Wang F, Jin Q, Li H, et al. Early prediction of developing type 2 diabetes by plasma acylcarnitines: A population-based study. Diabetes Care. 2016;39:1563–1570. doi: 10.2337/dc16-0232. PubMed DOI
Thaker VV, Kwee LC, Chen H, Bahnson J, Ilkayeva O, Muehlbauer MJ, Wolfe B, et al. Metabolite signature of diabetes remission in individuals with obesity undergoing weight loss interventions. Obesity. 2024;32:304–314. doi: 10.1002/oby.23943. PubMed DOI PMC
Ahola-Olli AV, Mustelin L, Kalimeri M, Kettunen J, Jokelainen J, Auvinen J, Puukka K, et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia. 2019;62:2298–2309. doi: 10.1007/s00125-019-05001-w. PubMed DOI PMC
Delgado-Velandia M, Gonzalez-Marrachelli V, Domingo-Relloso A, Galvez-Fernandez M, Grau-Perez M, Olmedo P, Galan I, et al. Healthy lifestyle, metabolomics and incident type 2 diabetes in a population-based cohort from Spain. Int J Behav Nutr Phys Act. 2022;19:8. doi: 10.1186/s12966-021-01219-3. PubMed DOI PMC
Liu J, Semiz S, van der Lee SJ, van der Spek A, Verhoeven A, van Klinken JB, Sijbrands E, et al. Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics. 2017;13:104. doi: 10.1007/s11306-017-1239-2. PubMed DOI PMC
Menni C, Fauman E, Erte I, Perry JR, Kastenmüller G, Shin SY, Petersen AK, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013;62:4270–4276. doi: 10.2337/db13-0570. PubMed DOI PMC
Peddinti G, Cobb J, Yengo L, Froguel P, Kravić J, Balkau B, Tuomi T, Aittokallio T, Groop L. Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia. 2017;60:1740–1750. doi: 10.1007/s00125-017-4325-0. PubMed DOI PMC
Rebholz CM, Yu B, Zheng Z, Chang P, Tin A, Köttgen A, Wagenknecht LE, Coresh J, Boerwinkle E, Selvin E. Serum metabolomic profile of incident diabetes. Diabetologia. 2018;61:1046–1054. doi: 10.1007/s00125-018-4573-7. PubMed DOI PMC
Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam KP, Milburn MV, et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes. 2013;62:1730–1737. doi: 10.2337/db12-0707. PubMed DOI PMC
Lemaitre RN, Jensen PN, Wang Z, Fretts AM, McKnight B, Nemet I, Biggs ML, Sotoodehnia N, de Oliveira Otto MC, Psaty BM, et al. Association of Trimethylamine N-Oxide and Related Metabolites in Plasma and Incident Type 2 Diabetes: The Cardiovascular Health Study. JAMA Netw Open. 2021;4:e2122844–e2122844. doi: 10.1001/jamanetworkopen.2021.22844. PubMed DOI PMC
Song R, Li Z, Zhang Y, Tan J, Chen Z. Comparison of NAFLD, MAFLD and MASLD characteristics and mortality outcomes in United States adults. Liver Int. 2024;44:1051–1060. doi: 10.1111/liv.15856. PubMed DOI
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73:202–209. doi: 10.1016/j.jhep.2020.03.039. PubMed DOI
Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, Romero D, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023;78:1966–1986. doi: 10.1097/HEP.0000000000000520. PubMed DOI PMC
Ramírez-Mejía MM, Jiménez-Gutiérrez C, Eslam M, George J, Méndez-Sánchez N. Breaking new ground: MASLD vs. MAFLD-which holds the key for risk stratification? Hepatol Int. 2024;18:168–178. doi: 10.1007/s12072-023-10620-y. PubMed DOI
Chen L, Tao X, Zeng M, Mi Y, Xu L. Clinical and histological features under different nomenclatures of fatty liver disease: NAFLD, MAFLD, MASLD and MetALD. J Hepatol. 2024;80:e64–e66. doi: 10.1016/j.jhep.2023.08.021. PubMed DOI
De A, Bhagat N, Mehta M, Taneja S, Duseja A. Metabolic dysfunction-associated steatotic liver disease (MASLD) definition is better than MAFLD criteria for lean patients with NAFLD. J Hepatol. 2024;80:e61–e62. doi: 10.1016/j.jhep.2023.07.031. PubMed DOI
Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77:1335–1347. doi: 10.1097/HEP.0000000000000004. PubMed DOI PMC
Wang D, Xu Y, Zhu Z, Li Y, Li X, Li Y, Shen H, et al. Changes in the global, regional, and national burdens of NAFLD from 1990 to 2019: A systematic analysis of the global burden of disease study 2019. Front Nutr. 2022;9:1047129. doi: 10.3389/fnut.2022.1047129. PubMed DOI PMC
Miao L, Targher G, Byrne CD, Cao YY, Zheng MH. Current status and future trends of the global burden of MASLD. Trends Endocrinol Metab. 2024 doi: 10.1016/j.tem.2024.02.007. S1043–2760(24)00036–5. PubMed DOI
Gagnon E, Manikpurage HD, Mitchell PL, Girard A, Gobeil É, Bourgault J, Bégin F, et al. Large-scale metabolomic profiling and incident non-alcoholic fatty liver disease. iScience. 2023;26:107127. doi: 10.1016/j.isci.2023.107127. PubMed DOI PMC
Gobeil É, Maltais-Payette I, Taba N, Brière F, Ghodsian N, Abner E, Bourgault J, et al. Mendelian randomization analysis identifies blood tyrosine levels as a biomarker of non-alcoholic fatty liver disease. Metabolites. 2022;12:440. doi: 10.3390/metabo12050440. PubMed DOI PMC
Hartley A, Santos Ferreira DL, Anderson EL, Lawlor DA. Metabolic profiling of adolescent non-alcoholic fatty liver disease [version 2; peer review: 2 approved] Wellcome Open Res. 2019;3:166. doi: 10.12688/wellcomeopenres.14974.2. PubMed DOI PMC
Hirata A, Harada S, Iida M, Kurihara A, Fukai K, Kuwabara K, Kato S, et al. Association of Nonalcoholic Fatty Liver Disease with Arterial Stiffness and its Metabolomic Profiling in Japanese Community-Dwellers. J Atheroscler Thromb. 2024;31:1–17. doi: 10.5551/jat.64616. PubMed DOI PMC
Khusial R, Cioffi C, Caltharp S, Krasinskas A, Alazraki A, Knight-Scott J, Cleeton R, et al. Development of a plasma screening panel for pediatric nonalcoholic fatty liver disease using metabolomics. Hepatol Commun. 2019;3:1311–1321. doi: 10.1002/hep4.1417. PubMed DOI PMC
Martínez-Arranz I, Bruzzone C, Noureddin M, Gil-Redondo R, Mincholé I, Bizkarguenaga M, Arretxe E, et al. Metabolic subtypes of patients with NAFLD exhibit distinctive cardiovascular risk profiles. Hepatology. 2022;76:1121–1134. doi: 10.1002/hep.32427. PubMed DOI PMC
McGlinchey AJ, Govaere O, Geng D, Ratziu V, Allison M, Bousier J, Petta S, et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep. 2022;4:100477. doi: 10.1016/j.jhepr.2022.100477. PubMed DOI PMC
Hu X-Y, Li Y, Li L-Q, Zheng Y, Lv J-H, Huang S-C, Zhang W, Liu L, Zhao L, Liu Z, et al. Risk factors and biomarkers of non-alcoholic fatty liver disease: an observational cross-sectional population survey. BMJ Open. 2018;8:e019974. doi: 10.1136/bmjopen-2017-019974. PubMed DOI PMC
Kimberly WT, O’Sullivan JF, Nath AK, Keyes M, Shi X, Larson MG, Yang Q, et al. Metabolite profiling identifies anandamide as a biomarker of nonalcoholic steatohepatitis. JCI Insight. 2017;2:e92989. doi: 10.1172/jci.insight.92989. PubMed DOI PMC
Zeng F, Su X, Liang X, Liao M, Zhong H, Xu J, Gou W, Zhang X, Shen L, Zheng J-S, et al. Gut microbiome features and metabolites in non-alcoholic fatty liver disease among community-dwelling middle-aged and older adults. BMC Med. 2024;22:104. doi: 10.1186/s12916-024-03317-y. PubMed DOI PMC