Metabolomics and Lipidomics for Studying Metabolic Syndrome: Insights into Cardiovascular Diseases, Type 1 & 2 Diabetes, and Metabolic Dysfunction-Associated Steatotic Liver Disease

. 2024 Aug 30 ; 73 (S1) : S165-S183.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39212142

Metabolomics and lipidomics have emerged as tools in understanding the connections of metabolic syndrome (MetS) with cardiovascular diseases (CVD), type 1 and type 2 diabetes (T1D, T2D), and metabolic dysfunction-associated steatotic liver disease (MASLD). This review highlights the applications of these omics approaches in large-scale cohort studies, emphasizing their role in biomarker discovery and disease prediction. Integrating metabolomics and lipidomics has significantly advanced our understanding of MetS pathology by identifying unique metabolic signatures associated with disease progression. However, challenges such as standardizing analytical workflows, data interpretation, and biomarker validation remain critical for translating research findings into clinical practice. Future research should focus on optimizing these methodologies to enhance their clinical utility and address the global burden of MetS-related diseases.

Zobrazit více v PubMed

Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644. PubMed DOI

Alberti KG, Zimmet P, Shaw J. The metabolic syndrome - a new worldwide definition. Lancet. 2005;366:1059–1062. doi: 10.1016/S0140-6736(05)67402-8. PubMed DOI

Han TS, Lean MEJ. Metabolic syndrome. Medicine. 2015;43:80–87. doi: 10.1016/j.mpmed.2014.11.006. DOI

Grundy SM. Metabolic Syndrome Pandemic. Arterioscler Thromb Vasc Biol. 2008;28:629–636. doi: 10.1161/ATVBAHA.107.151092. PubMed DOI

Radu F, Potcovaru C-G, Salmen T, Filip PV, Pop C, Fierbințeanu-Braticievici C. The link between NAFLD and metabolic syndrome. Diagnostics. 2023;13:614. doi: 10.3390/diagnostics13040614. PubMed DOI PMC

Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT, Tounouga DN, Tianyi F-L, Foka AJ, Ndoadoumgue AL, et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res Clin Pr. 2022;188:109924. doi: 10.1016/j.diabres.2022.109924. PubMed DOI

Reisinger C, Nkeh-Chungag BN, Fredriksen PM, Goswami N. The prevalence of pediatric metabolic syndrome-a critical look on the discrepancies between definitions and its clinical importance. Int J Obes. 2021;45:12–24. doi: 10.1038/s41366-020-00713-1. PubMed DOI PMC

Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am. 2004;33:351–375. doi: 10.1016/j.ecl.2004.03.005. PubMed DOI

Allam-Ndoul B, Guénard F, Garneau V, Cormier H, Barbier O, Pérusse L, Vohl MC. Association between metabolite profiles, metabolic syndrome and obesity status. Nutrients. 2016;8:324. doi: 10.3390/nu8060324. PubMed DOI PMC

Gong L-L, Yang S, Zhang W, Han F-F, Lv Y-L, Xuan L-L, Liu H, Liu L-H. Discovery of metabolite profiles of metabolic syndrome using untargeted and targeted LC-MS based lipidomics approach. J Pharm Biomed. 2020;177:112848. doi: 10.1016/j.jpba.2019.112848. PubMed DOI

Hajjar G, Barros Santos MC, Bertrand-Michel J, Canlet C, Castelli F, Creusot N, Dechaumet S, et al. Scaling-up metabolomics: Current state and perspectives. Trends Analyt Chem. 2023;167:117225. doi: 10.1016/j.trac.2023.117225. DOI

Pujos-Guillot E, Brandolini M, Pétéra M, Grissa D, Joly C, Lyan B, Herquelot É, et al. Systems metabolomics for prediction of metabolic syndrome. J Proteome Res. 2017;16:2262–2272. doi: 10.1021/acs.jproteome.7b00116. PubMed DOI

Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–1083. doi: 10.1038/nprot.2011.335. PubMed DOI

Salek R, Emery L, Beisken S. Metabolomics: an introduction. EMBL-EMI. 2014 doi: 10.6019/TOL.MBS.2014.00001.1. DOI

Gardner MJ, Altman DG. Confidence intervals rather than P values: Estimation rather than hypothesis testing. Br Med J (Clin Res Ed) 1986;292:746–750. doi: 10.1136/bmj.292.6522.746. PubMed DOI PMC

Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O. A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites. 2012;2:775–795. doi: 10.3390/metabo2040775. PubMed DOI PMC

Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med. 2021;31:010502. doi: 10.11613/BM.2021.010502. PubMed DOI PMC

Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–1160. doi: 10.3758/BRM.41.4.1149. PubMed DOI

Zhao X, Niu L, Clerici C, Russo R, Byrd M, Setchell KDR. Data analysis of MS-based clinical lipidomics studies with crossover design: A tutorial mini-review of statistical methods. Clin Mass Spectrom. 2019;13:5–17. doi: 10.1016/j.clinms.2019.05.002. PubMed DOI PMC

Billoir E, Navratil V, Blaise BJ. Sample size calculation in metabolic phenotyping studies. Brief Bioinform. 2015;16:813–819. doi: 10.1093/bib/bbu052. PubMed DOI

Nyamundanda G, Gormley IC, Fan Y, Gallagher WM, Brennan L. MetSizeR: Selecting the optimal sample size for metabolomic studies using an analysis based approach. BMC Bioinform. 2013;14:338. doi: 10.1186/1471-2105-14-338. PubMed DOI PMC

Li F, Zhou Y, Zhang X, Tang J, Yang Q, Zhang Y, Luo Y, et al. SSizer: Determining the sample sufficiency for comparative biological study. J Mol Biol. 2020;432:3411–3421. doi: 10.1016/j.jmb.2020.01.027. PubMed DOI

Ivanisevic J, Want EJ. From samples to insights into metabolism: Uncovering biologically relevant information in LC-HRMS metabolomics data. Metabolites. 2019;9:308. doi: 10.3390/metabo9120308. PubMed DOI PMC

Lenth RV. Some practical guidelines for effective sample size determination. Am Stat. 2001;55:187–193. doi: 10.1198/000313001317098149. DOI

Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24:101–105. doi: 10.21315/mjms2017.24.5.11. PubMed DOI PMC

Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4:2249–2264. doi: 10.4155/bio.12.204. PubMed DOI

Smith L, Villaret-Cazadamont J, Claus SP, Canlet C, Guillou H, Cabaton NJ, Ellero-Simatos S. Important considerations for sample collection in metabolomics studies with a special focus on applications to liver functions. Metabolites. 2020;10:104. doi: 10.3390/metabo10030104. PubMed DOI PMC

Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’Auria J, Ewald J, Ewald JC, et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat Methods. 2021;18:747–756. doi: 10.1038/s41592-021-01197-1. PubMed DOI PMC

Rakusanova S, Fiehn O, Cajka T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. Trends Anal Chem. 2023;158:116825. doi: 10.1016/j.trac.2022.116825. DOI

Mushtaq MY, Choi YH, Verpoorte R, Wilson EG. Extraction for metabolomics: Access to the metabolome. Phytochem Anal. 2014;25:291–306. doi: 10.1002/pca.2505. PubMed DOI

Khamis MM, Holt T, Awad H, El-Aneed A, Adamko DJ. Comparative analysis of creatinine and osmolality as urine normalization strategies in targeted metabolomics for the differential diagnosis of asthma and COPD. Metabolomics. 2018;14:115. doi: 10.1007/s11306-018-1418-9. PubMed DOI

Álvarez-Sánchez B, Priego-Capote F, Castro MDL. Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Anal Chem. 2010;29:120–127. doi: 10.1016/j.trac.2009.12.004. DOI

Dunn WB. Mass spectrometry in systems biology an introduction. Methods Enzymol. 2011;500:15–35. doi: 10.1016/B978-0-12-385118-5.00002-5. PubMed DOI

Showalter MR, Nonnecke EB, Linderholm AL, Cajka T, Sa MR, Lönnerdal B, Kenyon NJ, Fiehn O. Obesogenic diets alter metabolism in mice. PLoS One. 2018;13:e0190632. doi: 10.1371/journal.pone.0190632. PubMed DOI PMC

Lepoittevin M, Blancart-Remaury Q, Kerforne T, Pellerin L, Hauet T, Thuillier R. Comparison between 5 extractions methods in either plasma or serum to determine the optimal extraction and matrix combination for human metabolomics. Cell Mol Biol Lett. 2023;28:43. doi: 10.1186/s11658-023-00452-x. PubMed DOI PMC

Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49:1137–1146. doi: 10.1194/jlr.D700041-JLR200. PubMed DOI PMC

Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI

Southam AD, Haglington LD, Najdekr L, Jankevics A, Weber RJM, Dunn WB. Assessment of human plasma and urine sample preparation for reproducible and high-throughput UHPLC-MS clinical metabolic phenotyping. Analyst. 2020;145:6511–6523. doi: 10.1039/D0AN01319F. PubMed DOI

Vale G, Martin SA, Mitsche MA, Thompson BM, Eckert KM, McDonald JG. Three-phase liquid extraction: a simple and fast method for lipidomic workflows. J Lipid Res. 2019;60:694–706. doi: 10.1194/jlr.D090795. PubMed DOI PMC

Gasperotti M, Masuero D, Guella G, Mattivi F, Vrhovsek U. Development of a targeted method for twenty-three metabolites related to polyphenol gut microbial metabolism in biological samples, using SPE and UHPLC-ESI-MS/MS. Talanta. 2014;128:221–230. doi: 10.1016/j.talanta.2014.04.058. PubMed DOI

Cajka T, Hricko J, Rudl Kulhava L, Paucova M, Novakova M, Kuda O. Optimization of mobile phase modifiers for fast LC-MS-based untargeted metabolomics and lipidomics. Int J Mol Sci. 2023;24:1987. doi: 10.3390/ijms24031987. PubMed DOI PMC

Hricko J, Rudl Kulhava L, Paucova M, Novakova M, Kuda O, Fiehn O, Cajka T. Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxidants. 2023;12:986. doi: 10.3390/antiox12050986. PubMed DOI PMC

Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14:72. doi: 10.1007/s11306-018-1367-3. PubMed DOI PMC

Begou O, Gika HG, Theodoridis GA, Wilson ID. Quality control and validation issues in LC-MS metabolomics. Methods Mol Biol. 2018;1738:15–26. doi: 10.1007/978-1-4939-7643-0_2. PubMed DOI

Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, Ahonen L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in frozen human plasma. J Lipid Res. 2017;58:2275–2288. doi: 10.1194/jlr.M079012. PubMed DOI PMC

Dudzik D, Barbas-Bernardos C, García A, Barbas C. Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. J Pharm Biomed Anal. 2018;147:149–173. doi: 10.1016/j.jpba.2017.07.044. PubMed DOI

Jeppesen MJ, Powers R. Multiplatform untargeted metabolomics. Magn Reson Chem. 2023;61:628–653. doi: 10.1002/mrc.5350. PubMed DOI PMC

Harrieder EM, Kretschmer F, Böcker S, Witting M. Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics. J Chromatogr B. 2022;1188:123069. doi: 10.1016/j.jchromb.2021.123069. PubMed DOI

Zhou B, Xiao JF, Tuli L, Ressom HW. LC-MS-based metabolomics. Mol Biosyst. 2012;8:470–81. doi: 10.1039/C1MB05350G. PubMed DOI PMC

Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88:524–545. doi: 10.1021/acs.analchem.5b04491. PubMed DOI

Gowda GAN, Djukovic D. Overview of mass spectrometry-based metabolomics: Opportunities and challenges. In: RAFTERY D, editor. Mass Spectrometry in Metabolomics: Methods and Protocols. New York, NY: 2014. pp. 3–12. PubMed DOI PMC

Zarrouk E, El Balkhi S, Saint-Marcoux F. Low-resolution or high-resolution MS for clinical and forensic toxicology: some considerations from two real cases. LCGC Supplements. 2023;41:24–27. doi: 10.56530/lcgc.na.ez3089i6. DOI

Defossez E, Bourquin J, von Reuss S, Rasmann S, Glauser G. Eight key rules for successful data-dependent acquisition in mass spectrometry-based metabolomics. Mass Spectrom Rev. 2023;42:131–143. doi: 10.1002/mas.21715. PubMed DOI PMC

Nash WJ, Dunn WB. From mass to metabolite in human untargeted metabolomics: Recent advances in annotation of metabolites applying liquid chromatography-mass spectrometry data. Trends Anal Chem. 2019;120:115324. doi: 10.1016/j.trac.2018.11.022. DOI

Guo J, Huan T. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. Anal Chem. 2020;92:8072–8080. doi: 10.1021/acs.analchem.9b05135. PubMed DOI

Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H, Okahashi N, et al. A lipidome atlas in MS-DIAL 4. Nat Biotechnol. 2020;38:1159–1163. doi: 10.1038/s41587-020-0531-2. PubMed DOI

Yin Y, Wang R, Cai Y, Wang Z, Zhu Z-J. DecoMetDIA: Deconvolution of multiplexed MS/MS spectra for metabolite identification in SWATH-MS-based untargeted metabolomics. Anal Chem. 2019;91:11897–11904. doi: 10.1021/acs.analchem.9b02655. PubMed DOI

Stancliffe E, Schwaiger-Haber M, Sindelar M, Patti GJ. DecoID improves identification rates in metabolomics through database-assisted MS/MS deconvolution. Nat Methods. 2021;18:779–787. doi: 10.1038/s41592-021-01195-3. PubMed DOI PMC

Katajamaa M, Oresic M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A. 2007;1158:318–28. doi: 10.1016/j.chroma.2007.04.021. PubMed DOI

Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M. Hydrogen rearrangement rules: Computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem. 2016;88:7946–7958. doi: 10.1021/acs.analchem.6b00770. PubMed DOI PMC

Jonge NF, Mildau K, Meijer D, Louwen JJR, Bueschl C, Huber F, van der Hooft JJJ. Good practices and recommendations for using and benchmarking computational metabolomics metabolite annotation tools. Metabolomics. 2022;18:103. doi: 10.1007/s11306-022-01963-y. PubMed DOI PMC

Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–221. doi: 10.1007/s11306-007-0082-2. PubMed DOI PMC

Creek DJ, Dunn WB, Fiehn O, Griffin JL, Hall RD, Lei Z, Mistrik R, et al. Metabolite identification: Are you sure? And how do your peers gauge your confidence? Metabolomics. 2014;10:350–353. doi: 10.1007/s11306-014-0656-8. DOI

Spicer RA, Salek R, Steinbeck C. A decade after the metabolomics standards initiative it’s time for a revision. Sci Data. 2017;4:170138. doi: 10.1038/sdata.2017.138. PubMed DOI PMC

Salek RM, Steinbeck C, Viant MR, Goodacre R, Dunn WB. The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience. 2013;2:13. doi: 10.1186/2047-217X-2-13. PubMed DOI PMC

Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, Fedorova M, et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J Lipid Res. 2020;61:1539–1555. doi: 10.1194/jlr.S120001025. PubMed DOI PMC

Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev. 2018;37:513–532. doi: 10.1002/mas.21535. PubMed DOI PMC

Xue J, Guijas C, Benton HP, Warth B, Siuzdak G. METLIN MS2 molecular standards database: a broad chemical and biological resource. Nat Methods. 2020;17:953–954. doi: 10.1038/s41592-020-0942-5. PubMed DOI PMC

Witting M, Böcker S. Current status of retention time prediction in metabolite identification. J Sep Sci. 2020;43:1746–1754. doi: 10.1002/jssc.202000060. PubMed DOI

Damont A, Legrand A, Cao C, Fenaille F, Tabet J-C. Hydrogen/deuterium exchange mass spectrometry in the world of small molecules. Mass Spectrom Rev. 2023;42:1300–1331. doi: 10.1002/mas.21765. PubMed DOI

Cajka T, Hricko J, Rakusanova S, Brejchova K, Novakova M, Rudl Kulhava L, Hola V, et al. Hydrophilic interaction liquid chromatography-hydrogen/deuterium exchange-mass spectrometry (HILIC-HDX-MS) for untargeted metabolomics. Int J Mol Sci. 2024;25:2899. doi: 10.3390/ijms25052899. PubMed DOI PMC

Blaženović I, Kind T, Ji J, Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 2018;8:31. doi: 10.3390/metabo8020031. PubMed DOI PMC

Saccenti E, Hoefsloot HCJ, Smilde AK, Westerhuis JA, Hendriks MMWB. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics. 2014;10:361–374. doi: 10.1007/s11306-013-0598-6. DOI

Sedgwick P. Multiple significance tests: the Bonferroni correction. BMJ. 2012;344:e509. doi: 10.1136/bmj.e509. DOI

Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B Stat Method. 2002;64:479–498. doi: 10.1111/1467-9868.00346. DOI

Bartel J, Krumsiek J, Theis FJ. Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J. 2013;4:e201301009. doi: 10.5936/csbj.201301009. PubMed DOI PMC

Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. doi: 10.1093/nar/gkab382. PubMed DOI PMC

Chen Y, Li EM, Xu LY. Guide to metabolomics analysis: a bioinformatics workflow. Metabolites. 2022;12:357. doi: 10.3390/metabo12040357. PubMed DOI PMC

Vondrackova M, Kopczynski D, Hoffmann N, Kuda O. LORA, Lipid Over-Representation Analysis based on structural information. Anal Chem. 2023;95:12600–12604. doi: 10.1021/acs.analchem.3c02039. PubMed DOI PMC

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC

Witting M. (Re-)use and (re-)analysis of publicly available metabolomics data. Proteomics. 2023;23:2300032. doi: 10.1002/pmic.202300032. PubMed DOI

Rus M, Crisan S, Andronie-Cioara FL, Indries M, Marian P, Pobirci OL, Ardelean AI. Prevalence and risk factors of metabolic syndrome: a prospective study on cardiovascular health. Medicina. 2023;59:1711. doi: 10.3390/medicina59101711. PubMed DOI PMC

Madan K, Paliwal S, Sharma S, Kesar S, Chauhan N, Madan M. Metabolic syndrome: the constellation of co-morbidities, a global threat. Endocr Metab Immune Disord Drug. 2023;23:1491–1504. doi: 10.2174/1871530323666230309144825. PubMed DOI

Mensah GA, Fuster V, Murray CJL, Roth GA, Mensah GA, Abate YH, Abbasian M, et al. Global burden of cardiovascular diseases and risks, 1990–2022. J Am Coll Cardiol. 2023;82:2350–2473. doi: 10.1016/j.jacc.2023.11.007. PubMed DOI PMC

World Health Organization. Cardiovascular diseases (CVDs) 2021. May 28, 2024. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

Di Cesare M, Perel P, Taylor S, Kabudula C, Bixby H, Gaziano TA, McGhie DV, et al. The Heart of the World. Glob Heart. 2024;19:11. doi: 10.5334/gh.1288. PubMed DOI PMC

Eichelmann F, Sellem L, Wittenbecher C, Jäger S, Kuxhaus O, Prada M, Cuadrat R, et al. Deep lipidomics in human plasma: Cardiometabolic disease risk and effect of dietary fat modulation. Circulation. 2022;146:21–35. doi: 10.1161/CIRCULATIONAHA.121.056805. PubMed DOI PMC

Huang Z, Klaric L, Krasauskaite J, Khalid W, Strachan MWJ, Wilson JF, Price JF. Combining serum metabolomic profiles with traditional risk factors improves 10-year cardiovascular risk prediction in people with type 2 diabetes. Eur J Prev Cardiol. 2023;30:1255–1262. doi: 10.1093/eurjpc/zwad160. PubMed DOI

Lu Q, Chen J, Li R, Wang Y, Tu Z, Geng T, Liu L, Pan A, Liu G. Healthy lifestyle, plasma metabolites, and risk of cardiovascular disease among individuals with diabetes. Atherosclerosis. 2023;367:48–55. doi: 10.1016/j.atherosclerosis.2022.12.008. PubMed DOI

Tzoulaki I, Castagné R, Boulangé CL, Karaman I, Chekmeneva E, Evangelou E, Ebbels TMD, et al. Serum metabolic signatures of coronary and carotid atherosclerosis and subsequent cardiovascular disease. Eur Heart J. 2019;40:2883–2896. doi: 10.1093/eurheartj/ehz235. PubMed DOI PMC

Würtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, Ghorbani A, et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation. 2015;131:774–85. doi: 10.1161/CIRCULATIONAHA.114.013116. PubMed DOI PMC

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922. PubMed DOI PMC

Benson TW, Conrad KA, Li XS, Wang Z, Helsley RN, Schugar RC, Coughlin TM, et al. Gut microbiota-derived trimethylamine N-oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation. 2023;147:1079–1096. doi: 10.1161/CIRCULATIONAHA.122.060573. PubMed DOI PMC

Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400. PubMed DOI PMC

Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–124. doi: 10.1016/j.cell.2016.02.011. PubMed DOI PMC

Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG, Gu X, et al. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JC Insight. 2018;3:e99096. doi: 10.1172/jci.insight.99096. PubMed DOI PMC

Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors Cell 2020180862–877..e2210.1016/j.cell.2020.02.016 PubMed DOI PMC

Ferrell M, Wang Z, Anderson JT, Li XS, Witkowski M, DiDonato JA, Hilser JR, et al. A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. Nat Med. 2024;30:424–434. doi: 10.1038/s41591-023-02793-8. PubMed DOI PMC

Witkowski M, Nemet I, Alamri H, Wilcox J, Gupta N, Nimer N, Haghikia A, et al. The artificial sweetener erythritol and cardiovascular event risk. Nat Med. 2023;29:710–718. doi: 10.1038/s41591-023-02223-9. PubMed DOI PMC

Witkowski M, Nemet I, Li XS, Wilcox J, Ferrell M, Alamri H, Gupta N, et al. Xylitol is prothrombotic and associated with cardiovascular risk. Eur Heart J. 2024;45:2439–2452. doi: 10.1093/eurheartj/ehae244. PubMed DOI PMC

Fu Z, Liu Q, Liang J, Weng Z, Li W, Xu J, Zhang X, Xu C, Gu A. Association between NMR metabolomic signatures of healthy lifestyle and incident coronary artery disease. Eur J Prev Cardiol. 2022;30:243–253. doi: 10.1093/eurjpc/zwac252. PubMed DOI

Margara-Escudero HJ, Paz-Graniel I, García-Gavilán J, Ruiz-Canela M, Sun Q, Clish CB, Toledo E, et al. Plasma metabolite profile of legume consumption and future risk of type 2 diabetes and cardiovascular disease. Cardiovasc Diabetol. 2024;23:38. doi: 10.1186/s12933-023-02111-z. PubMed DOI PMC

Guasch-Ferré M, Hernández-Alonso P, Drouin-Chartier JP, Ruiz-Canela M, Razquin C, Toledo E, Li J, et al. Walnut consumption, plasma metabolomics, and risk of type 2 diabetes and cardiovascular disease. J Nutr. 2021;151:303–311. doi: 10.1093/jn/nxaa374. PubMed DOI PMC

Nemet I, Funabashi M, Li XS, Dwidar M, Sangwan N, Skye SM, Romano KA, et al. Microbe-derived uremic solutes enhance thrombosis potential in the host mBio 202314e013312310.1128/mbio.01331-23 PubMed DOI PMC

Harm T, Dittrich K, Brun A, Fu X, Frey M, Petersen Uribe A, Schwarz F-J, et al. Large-scale lipidomics profiling reveals characteristic lipid signatures associated with an increased cardiovascular risk. Clin Res Cardiol. 2023;112:1664–1678. doi: 10.1007/s00392-023-02260-x. PubMed DOI PMC

Seah JYH, Chew WS, Torta F, Khoo CM, Wenk MR, Herr DR, Choi H, Tai ES, van Dam RM. Plasma sphingolipids and risk of cardiovascular diseases: a large-scale lipidomic analysis. Metabolomics. 2020;16:89. doi: 10.1007/s11306-020-01709-8. PubMed DOI

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. PubMed DOI PMC

Gregory GA, Robinson TIG, Linklater SE, Wang F, Colagiuri S, de Beaufort C, Donaghue KC, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 2022;10:741–760. doi: 10.1016/S2213-8587(22)00218-2. PubMed DOI

Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Hosseini Fard H, Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot Perspect. 2020;10:98–115. doi: 10.34172/hpp.2020.18. PubMed DOI PMC

Rakusanova S, Cajka T. Current analytical methods to monitor type 2 diabetes medication in biological samples. Trends Anal Chem. 2023;158:116831. doi: 10.1016/j.trac.2022.116831. DOI

World Health Organization. Diabetes. 2023. Apr 5, 2023. https://www.who.int/news-room/fact-sheets/detail/diabetes .

Sen P, Hyötyläinen T, Orešič M. 1-Deoxyceramides - Key players in lipotoxicity and progression to type 2 diabetes? Acta Physiol. 2021;232:e13635. doi: 10.1111/apha.13635. PubMed DOI

La Torre D, Seppänen-Laakso T, Larsson HE, Hyötyläinen T, Ivarsson SA, Lernmark Å, Orešič M Group atDS. Decreased cord-blood phospholipids in young age-at-onset type 1 diabetes. Diabetes. 2013;62:3951–3956. doi: 10.2337/db13-0215. PubMed DOI PMC

Tapia G, Suvitaival T, Ahonen L, Lund-Blix NA, Njølstad PR, Joner G, Skrivarhaug T, et al. Prediction of type 1 diabetes at birth: Cord blood metabolites vs genetic risk score in the Norwegian Mother, Father, and Child cohort. J Clin Endocrinol Metab. 2021;106:e4062–e4071. doi: 10.1210/clinem/dgab400. PubMed DOI PMC

Webb-Robertson B-JM, Nakayasu ES, Frohnert BI, Bramer LM, Akers SM, Norris JM, Vehik K, et al. Integration of infant metabolite, genetic, and islet autoimmunity signatures to predict type 1 diabetes by age 6 years. J Clin Endocrinol Metab. 2022;107:2329–2338. doi: 10.1210/clinem/dgac225. PubMed DOI PMC

Lee DH, Jin Q, Shi N, Wang F, Bever AM, Liang L, Hu FB, et al. The metabolic potential of inflammatory and insulinaemic dietary patterns and risk of type 2 diabetes. Diabetologia. 2024;67:88–101. doi: 10.1007/s00125-023-06021-3. PubMed DOI PMC

Hannich JT, Loizides-Mangold U, Sinturel F, Harayama T, Vandereycken B, Saini C, Gosselin P, et al. Ether lipids, sphingolipids and toxic 1-deoxyceramides as hallmarks for lean and obese type 2 diabetic patients. Acta Physiol. 2021;232:e13610. doi: 10.1111/apha.13610. PubMed DOI

Prada M, Wittenbecher C, Eichelmann F, Wernitz A, Drouin-Chartier J-P, Schulze MB. Association of the odd-chain fatty acid content in lipid groups with type 2 diabetes risk: A targeted analysis of lipidomics data in the EPIC-Potsdam cohort. Clin Nutr. 2021;40:4988–4999. doi: 10.1016/j.clnu.2021.06.006. PubMed DOI

Sun L, Liang L, Gao X, Zhang H, Yao P, Hu Y, Ma Y, Wang F, Jin Q, Li H, et al. Early prediction of developing type 2 diabetes by plasma acylcarnitines: A population-based study. Diabetes Care. 2016;39:1563–1570. doi: 10.2337/dc16-0232. PubMed DOI

Thaker VV, Kwee LC, Chen H, Bahnson J, Ilkayeva O, Muehlbauer MJ, Wolfe B, et al. Metabolite signature of diabetes remission in individuals with obesity undergoing weight loss interventions. Obesity. 2024;32:304–314. doi: 10.1002/oby.23943. PubMed DOI PMC

Ahola-Olli AV, Mustelin L, Kalimeri M, Kettunen J, Jokelainen J, Auvinen J, Puukka K, et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia. 2019;62:2298–2309. doi: 10.1007/s00125-019-05001-w. PubMed DOI PMC

Delgado-Velandia M, Gonzalez-Marrachelli V, Domingo-Relloso A, Galvez-Fernandez M, Grau-Perez M, Olmedo P, Galan I, et al. Healthy lifestyle, metabolomics and incident type 2 diabetes in a population-based cohort from Spain. Int J Behav Nutr Phys Act. 2022;19:8. doi: 10.1186/s12966-021-01219-3. PubMed DOI PMC

Liu J, Semiz S, van der Lee SJ, van der Spek A, Verhoeven A, van Klinken JB, Sijbrands E, et al. Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics. 2017;13:104. doi: 10.1007/s11306-017-1239-2. PubMed DOI PMC

Menni C, Fauman E, Erte I, Perry JR, Kastenmüller G, Shin SY, Petersen AK, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013;62:4270–4276. doi: 10.2337/db13-0570. PubMed DOI PMC

Peddinti G, Cobb J, Yengo L, Froguel P, Kravić J, Balkau B, Tuomi T, Aittokallio T, Groop L. Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia. 2017;60:1740–1750. doi: 10.1007/s00125-017-4325-0. PubMed DOI PMC

Rebholz CM, Yu B, Zheng Z, Chang P, Tin A, Köttgen A, Wagenknecht LE, Coresh J, Boerwinkle E, Selvin E. Serum metabolomic profile of incident diabetes. Diabetologia. 2018;61:1046–1054. doi: 10.1007/s00125-018-4573-7. PubMed DOI PMC

Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam KP, Milburn MV, et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes. 2013;62:1730–1737. doi: 10.2337/db12-0707. PubMed DOI PMC

Lemaitre RN, Jensen PN, Wang Z, Fretts AM, McKnight B, Nemet I, Biggs ML, Sotoodehnia N, de Oliveira Otto MC, Psaty BM, et al. Association of Trimethylamine N-Oxide and Related Metabolites in Plasma and Incident Type 2 Diabetes: The Cardiovascular Health Study. JAMA Netw Open. 2021;4:e2122844–e2122844. doi: 10.1001/jamanetworkopen.2021.22844. PubMed DOI PMC

Song R, Li Z, Zhang Y, Tan J, Chen Z. Comparison of NAFLD, MAFLD and MASLD characteristics and mortality outcomes in United States adults. Liver Int. 2024;44:1051–1060. doi: 10.1111/liv.15856. PubMed DOI

Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73:202–209. doi: 10.1016/j.jhep.2020.03.039. PubMed DOI

Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, Romero D, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023;78:1966–1986. doi: 10.1097/HEP.0000000000000520. PubMed DOI PMC

Ramírez-Mejía MM, Jiménez-Gutiérrez C, Eslam M, George J, Méndez-Sánchez N. Breaking new ground: MASLD vs. MAFLD-which holds the key for risk stratification? Hepatol Int. 2024;18:168–178. doi: 10.1007/s12072-023-10620-y. PubMed DOI

Chen L, Tao X, Zeng M, Mi Y, Xu L. Clinical and histological features under different nomenclatures of fatty liver disease: NAFLD, MAFLD, MASLD and MetALD. J Hepatol. 2024;80:e64–e66. doi: 10.1016/j.jhep.2023.08.021. PubMed DOI

De A, Bhagat N, Mehta M, Taneja S, Duseja A. Metabolic dysfunction-associated steatotic liver disease (MASLD) definition is better than MAFLD criteria for lean patients with NAFLD. J Hepatol. 2024;80:e61–e62. doi: 10.1016/j.jhep.2023.07.031. PubMed DOI

Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77:1335–1347. doi: 10.1097/HEP.0000000000000004. PubMed DOI PMC

Wang D, Xu Y, Zhu Z, Li Y, Li X, Li Y, Shen H, et al. Changes in the global, regional, and national burdens of NAFLD from 1990 to 2019: A systematic analysis of the global burden of disease study 2019. Front Nutr. 2022;9:1047129. doi: 10.3389/fnut.2022.1047129. PubMed DOI PMC

Miao L, Targher G, Byrne CD, Cao YY, Zheng MH. Current status and future trends of the global burden of MASLD. Trends Endocrinol Metab. 2024 doi: 10.1016/j.tem.2024.02.007. S1043–2760(24)00036–5. PubMed DOI

Gagnon E, Manikpurage HD, Mitchell PL, Girard A, Gobeil É, Bourgault J, Bégin F, et al. Large-scale metabolomic profiling and incident non-alcoholic fatty liver disease. iScience. 2023;26:107127. doi: 10.1016/j.isci.2023.107127. PubMed DOI PMC

Gobeil É, Maltais-Payette I, Taba N, Brière F, Ghodsian N, Abner E, Bourgault J, et al. Mendelian randomization analysis identifies blood tyrosine levels as a biomarker of non-alcoholic fatty liver disease. Metabolites. 2022;12:440. doi: 10.3390/metabo12050440. PubMed DOI PMC

Hartley A, Santos Ferreira DL, Anderson EL, Lawlor DA. Metabolic profiling of adolescent non-alcoholic fatty liver disease [version 2; peer review: 2 approved] Wellcome Open Res. 2019;3:166. doi: 10.12688/wellcomeopenres.14974.2. PubMed DOI PMC

Hirata A, Harada S, Iida M, Kurihara A, Fukai K, Kuwabara K, Kato S, et al. Association of Nonalcoholic Fatty Liver Disease with Arterial Stiffness and its Metabolomic Profiling in Japanese Community-Dwellers. J Atheroscler Thromb. 2024;31:1–17. doi: 10.5551/jat.64616. PubMed DOI PMC

Khusial R, Cioffi C, Caltharp S, Krasinskas A, Alazraki A, Knight-Scott J, Cleeton R, et al. Development of a plasma screening panel for pediatric nonalcoholic fatty liver disease using metabolomics. Hepatol Commun. 2019;3:1311–1321. doi: 10.1002/hep4.1417. PubMed DOI PMC

Martínez-Arranz I, Bruzzone C, Noureddin M, Gil-Redondo R, Mincholé I, Bizkarguenaga M, Arretxe E, et al. Metabolic subtypes of patients with NAFLD exhibit distinctive cardiovascular risk profiles. Hepatology. 2022;76:1121–1134. doi: 10.1002/hep.32427. PubMed DOI PMC

McGlinchey AJ, Govaere O, Geng D, Ratziu V, Allison M, Bousier J, Petta S, et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep. 2022;4:100477. doi: 10.1016/j.jhepr.2022.100477. PubMed DOI PMC

Hu X-Y, Li Y, Li L-Q, Zheng Y, Lv J-H, Huang S-C, Zhang W, Liu L, Zhao L, Liu Z, et al. Risk factors and biomarkers of non-alcoholic fatty liver disease: an observational cross-sectional population survey. BMJ Open. 2018;8:e019974. doi: 10.1136/bmjopen-2017-019974. PubMed DOI PMC

Kimberly WT, O’Sullivan JF, Nath AK, Keyes M, Shi X, Larson MG, Yang Q, et al. Metabolite profiling identifies anandamide as a biomarker of nonalcoholic steatohepatitis. JCI Insight. 2017;2:e92989. doi: 10.1172/jci.insight.92989. PubMed DOI PMC

Zeng F, Su X, Liang X, Liao M, Zhong H, Xu J, Gou W, Zhang X, Shen L, Zheng J-S, et al. Gut microbiome features and metabolites in non-alcoholic fatty liver disease among community-dwelling middle-aged and older adults. BMC Med. 2024;22:104. doi: 10.1186/s12916-024-03317-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...