Postnatal induction of muscle fatty acid oxidation in mice differing in propensity to obesity: a role of pyruvate dehydrogenase
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30538280
DOI
10.1038/s41366-018-0281-0
PII: 10.1038/s41366-018-0281-0
Knihovny.cz E-resources
- MeSH
- Muscle, Skeletal metabolism MeSH
- Fatty Acids metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Animals, Newborn MeSH
- Obesity metabolism MeSH
- Oxidation-Reduction MeSH
- AMP-Activated Protein Kinases * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fatty Acids MeSH
- Prkaa2 protein, mouse MeSH Browser
- AMP-Activated Protein Kinases * MeSH
BACKGROUND/OBJECTIVE: Adaptation to the extrauterine environment depends on a switch from glycolysis to catabolism of fatty acids (FA) provided as milk lipids. We sought to learn whether the postnatal induction of muscle FA oxidation in mice could reflect propensity to obesity and to characterize the mechanisms controlling this induction. METHODS: Experiments were conducted using obesity-resistant A/J and obesity-prone C57BL/6J (B6) mice maintained at 30 °C, from 5 to 28 days after birth. At day 10, both A/J and B6 mice with genetic ablation (KO) of α2 subunit of AMP-activated protein kinase (AMPK) were also used. In skeletal muscle, expression of selected genes was determined using quantitative real-time PCR, and AMPK subunits content was evaluated using Western blotting. Activities of both AMPK and pyruvate dehydrogenase (PDH), as well as acylcarnitine levels in the muscle were measured. RESULTS: Acylcarnitine levels and gene expression indicated transient increase in FA oxidation during the first 2 weeks after birth, with a stronger increase in A/J mice. These data correlated with (i) the surge in plasma leptin levels, which peaked at day 10 and was higher in A/J mice, and (ii) relatively low activity of PDH linked with up-regulation of PDH kinase 4 gene (Pdk4) expression in the 10-day-old A/J mice. In contrast with the Pdk4 expression, transient up-regulation of uncoupling protein 3 gene was observed in B6 but not A/J mice. AMPK activity changed during the development, without major differences between A/J and B6 mice. Expression of neither Pdk4 nor other muscle genes was affected by AMPK-KO. CONCLUSIONS: Our results indicate a relatively strong postnatal induction of FA oxidation in skeletal muscle of the obesity-resistant A/J mice. This induction is transient and probably results from suppression of PDH activity, linked with a postnatal surge in plasma leptin levels, independent of AMPK.
See more in PubMed
Ferre P, Decaux JF, Issad T, Girard J. Changes in energy metabolism during the suckling and weaning period in the newborn. Reprod Nutr Dev. 1986;26(2B):619–31. PubMed
Koldovsky O, Dobiasova M, Drahota Z, Hahn P. Developmental aspects of lipid metabolism. Physiol Res. 1995;44:353–6. PubMed
Hahn P. Effect of litter size on plasma cholesterol and insulin and some liver and adipose tissue enzymes in adult rodents. J Nutr. 1984;114:1231–4. PubMed
Stocker CJ, Cawthorne MA. The influence of leptin on early life programming of obesity. Trends Biotechnol. 2008;26:545–51. PubMed
Pico C, Jilkova ZM, Kus V, Palou A, Kopecky J. Perinatal programming of body weight control by leptin: putative roles of AMP kinase and muscle thermogenesis. Am J Clin Nutr. 2011;94:1830S–7S. PubMed
Palou M, Pico C, Palou A. Leptin as a breast milk component for the prevention of obesity. Nutr Rev. 2018;76:875–892. PubMed
Koldovsky O, Hahn P, Hromadova M, Krecek J, Macho L. Late effects of early nutritional manipulations. Physiol Res. 1995;44:357–60. PubMed
Pico C, Oliver P, Sanchez J, Miralles O, Caimari A, Priego T, et al. The intake of physiological doses of leptin during lactation in rats prevents obesity in later life. Int J Obes. 2007;31:1199–209.
Sanchez J, Priego T, Palou M, Tobaruela A, Palou A, Pico C. Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life. Endocrinology. 2008;149:733–40. PubMed
Schuster S, Hechler C, Gebauer C, Kiess W, Kratzsch J. Leptin in maternal serum and breast milk: association with infants’ body weight gain in a longitudinal study over 6 months of lactation. Pediatr Res. 2011;70:633–7. PubMed
Devaskar SU, Ollesch C, Rajakumar RA, Rajakumar PA. Developmental changes in ob gene expression and circulating leptin peptide concentrations. Biochem Biophys Res Commun. 1997;238:44–7. PubMed
Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest. 1998;101:1020–7. PubMed PMC
Mistry AM, Swick A, Romsos DR. Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice. Am J Physiol. 1999;277:R742–R7. PubMed
Flier JS, Maratos-Flier E. Obesity and the hypothalamus: novel peptides for new pathways. Cell. 1998;92:437–40. PubMed
Stehling O, Doring H, Nuesslein-Hildesheim B, Olbort M, Schmidt I. Leptin does not reduce body fat content but augments cold defense abilities in thermoneutrally reared rat pups. Pflugers Arch. 1997;434:694–7. PubMed
Blumberg MS, Deaver K, Kirby RF. Leptin disinhibits nonshivering thermogenesis in infants after maternal separation. Am J Physiol. 1999;276:R606–R10. PubMed
Ukropec J, Anunciado RV, Ravussin Y, Kozak LP. Leptin is required for uncoupling protein-1-independent thermogenesis during cold stress. Endocrinology. 2006;147:2468–80. PubMed
Muoio DM, Dohm GL, Fiedorek FT Jr, Tapscott EB, Coleman RA. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes . 1997;46:1360–3. PubMed
Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase--development of the energy sensor concept. J Physiol . 2006;574(Pt 1):7–15. PubMed PMC
Viollet B, Andreelli F, Jorgensen SB, Perrin C, Flamez D, Mu J, et al. Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans. 2003;31(Pt 1):216–9. PubMed
Solinas G, Summermatter S, Mainieri D, Gubler M, Pirola L, Wymann MP, et al. The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation. FEBS Lett. 2004;577:539–44. PubMed
Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002;415:339–43. PubMed
Suzuki A, Okamoto S, Lee S, Saito K, Shiuchi T, Minokoshi Y. Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the alpha2 form of AMP-activated protein kinase. Mol Cell Biol. 2007;27:4317–27. PubMed PMC
Brun S, Carmona MC, Mampel T, Vinas O, Giralt M, Iglesias R, et al. Activators of peroxisome proliferator-activated receptor-a induce the expression of the uncoupling protein-3 gene in skeletal muscle. Diabetes. 1999;48:1217–22. PubMed
Garratt ES, Vickers MH, Gluckman PD, Hanson MA, Burdge GC, Lillycrop KA. Tissue-specific 5’ heterogeneity of PPARalpha transcripts and their differential regulation by leptin. PLoS ONE. 2013;8:e67483. PubMed PMC
Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62:720–33. PubMed
Fritzen AM, Lundsgaard AM, Jeppesen J, Christiansen ML, Bienso R, Dyck JR, et al. 5’-AMP activated protein kinase alpha2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4. J Physiol. 2015;593:4765–80. PubMed PMC
Flachs P, Adamcova K, Zouhar P, Marques C, Janovska P, Viegas I, et al. Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. Int J Obes. 2017;41:372–80.
Horakova O, Hansikova J, Bardova K, Gardlo A, Rombaldova M, Kuda O, et al. Plasma acylcarnitines and amino acid levels as an early complex biomarker of propensity to high-fat diet-induced obesity in mice. PLoS ONE. 2016;11:e0155776. PubMed PMC
Kus V, Prazak T, Brauner P, Hensler M, Kuda O, Flachs P, et al. Induction of muscle thermogenesis by high-fat diet in mice: association with obesity-resistance. Am J Physiol Endocrinol Metab. 2008;295:E356–67. PubMed
Bardova K, Horakova O, Janovska P, Hansikova J, Kus V, van Schothorst EM, et al. Early differences in metabolic flexibility between obesity-resistant and obesity-prone mice. Biochimie. 2016;124:163–70. PubMed
Collins S, Daniel KW, Petro AE, Surwit RS. Strain-specific response to beta3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology. 1997;138:405–13. PubMed
Guerra C, Koza RA, Yamashita H, King KW, Kozak LP. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest. 1998;102:412–20. PubMed PMC
Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, et al. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest. 2003;111:91–8. PubMed PMC
Cahova M, Chrastina P, Hansikova H, Drahota Z, Trnovska J, Skop V, et al. Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats. Appl Physiol Nutr Metab. 2015;40:280–91. PubMed
Pomar CA, Kuda O, Kopecky J, Rombaldova M, Castro H, Pico C, et al. Alterations in plasma acylcarnitine and amino acid profiles may be indicative of poor nutrition during the suckling period due to maternal intake of an unbalanced diet and predict later metabolic dysfunction. FASEB J. 2018:fj201800327RR.
Jelenik T, Rossmeisl M, Kuda O, Jilkova ZM, Medrikova D, Kus V, et al. AMP-activated protein kinase {alpha}2 subunit is required for the preservation of hepatic insulin sensitivity by n-3 polyunsaturated fatty acids. Diabetes. 2010;59:2737–46. PubMed PMC
Spacilova J, Hulkova M, Hrustincova A, Capek V, Tesarova M, Hansikova H, et al. Analysis of expression profiles of genes involved in F(o)F(1)-ATP synthase biogenesis during perinatal development in rat liver and skeletal muscle. Physiol Res. 2016;65:597–608. PubMed
McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat1. Biochem J. 1983;214:21–8. PubMed PMC
Cha SH, Rodgers JT, Puigserver P, Chohnan S, Lane MD. Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1alpha. Proc Natl Acad Sci USA. 2006;103:15410–5. PubMed
Shabalina IG, Hoeks J, Kramarova TV, Schrauwen P, Cannon B, Nedergaard J. Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects. Biochem. Biophys. Acta. 2010;1797:968–80. PubMed
MacLellan JD, Gerrits MF, Gowing A, Smith PJ, Wheeler MB, Harper ME. Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells. Diabetes. 2005;54:2343–50. PubMed
Kwon HS, Harris RA. Mechanisms responsible for regulation of pyruvate dehydrogenase kinase 4 gene expression. Adv Enzyme Regul. 2004;44:109–21. PubMed
Schooneman MG, Achterkamp N, Argmann CA, Soeters MR, Houten SM. Plasma acylcarnitines inadequately reflect tissue acylcarnitine metabolism. Biochim Biophys Acta. 2014;1841:987–94. PubMed
Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring). 2010;18:1695–700.
Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56. PubMed
Muoio DM, Noland RC, Kovalik JP, Seiler SE, Davies MN, DeBalsi KL, et al. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab. 2012;15:764–77. PubMed PMC
Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Pende M, Daegelen D, et al. Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy. FASEB J. 2009;23:2264–73. PubMed
Fu X, Zhu M, Zhang S, Foretz M, Viollet B, Du M. Obesity Impairs skeletal muscle regeneration through inhibition of AMPK. Diabetes. 2016;65:188–200. PubMed
Porter C, Constantin-Teodosiu D, Constantin D, Leighton B, Poucher SM, Greenhaff PL. Muscle carnitine availability plays a central role in regulating fuel metabolism in the rodent. J Physiol. 2017;595:5765–80. PubMed PMC
Soeters MR, Serlie MJ, Sauerwein HP, Duran M, Ruiter JP, Kulik W, et al. Characterization of D-3-hydroxybutyrylcarnitine (ketocarnitine): an identified ketosis-induced metabolite. Metabolism. 2012;61:966–73. PubMed
Gong DW, He Y, Karas M, Reitman M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem. 1997;272:24129–32. PubMed
Brun S, Carmona MC, Mampel T, Vinas O, Giralt M, Iglesias R, et al. Uncoupling protein-3 gene expression in skeletal muscle during development is regulated by nutritional factors that alter circulating non-esterified fatty acids. FEBS Lett. 1999;453:205–9. PubMed
Brauner P, Kopecky P, Flachs P, Kuda O, Vorlicek J, Planickova L, et al. Expression of uncoupling protein 3 and GLUT4 gene in skeletal muscle of preterm newborns: possible control by AMP-activated protein kinase. Pediatr Res. 2006;60:569–75. PubMed
Rinnankoski-Tuikka R, Silvennoinen M, Torvinen S, Hulmi JJ, Lehti M, Kivela R, et al. Effects of high-fat diet and physical activity on pyruvate dehydrogenase kinase-4 in mouse skeletal muscle. Nutr Metab. 2012;9:53.
Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab. 2014;11:10.
Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297:E578–E91. PubMed PMC
Broderick TL, Quinney HA, Lopaschuk GD. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. J Biol Chem. 1992;267:3758–63. PubMed
Wan Z, Thrush AB, Legare M, Frier BC, Sutherland LN, Williams DB, et al. Epinephrine-mediated regulation of PDK4 mRNA in rat adipose tissue. Am J Physiol Cell Physiol. 2010;299:C1162–70. PubMed
Puthanveetil P, Wang Y, Wang F, Kim MS, Abrahani A, Rodrigues B. The increase in cardiac pyruvate dehydrogenase kinase-4 after short-term dexamethasone is controlled by an Akt-p38-forkhead box other factor-1 signaling axis. Endocrinology. 2010;151:2306–18. PubMed