Effect of ID ACE gene polymorphism on dietary composition and obesity-related anthropometric parameters in the Czech adult population
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
19609587
PubMed Central
PMC2745746
DOI
10.1007/s12263-009-0130-9
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The aim of this study was to investigate the possible associations between insertion/deletion (ID) polymorphism in angiotensin-converting enzyme (ACE) (dbSNP rs 4646994) with the food intake and body composition in the Czech non-obese, obese and extremely obese populations. A total of 453 various-weighted individuals were enrolled in the study and were according to their BMI assigned into following subgroups, such as obese (30 = BMI < 40), morbidly obese (BMI >/=40) and non-obese (20 < BMI < 30) subjects. Both the obese cases and the non-obese controls underwent the identical subset of standardized examinations (BMI, % body fat, waist-to-hip ratio, skin fold thickness, native dietary composition examined by 7-day food records, etc.). No significant case-control differences in genotype distributions or allelic frequencies were observed. There were no differences in genotype frequencies between males and females either. The prevalence of obesity was significantly higher among subjects with the II genotype (42 %) when compared with those with DD (36%) and those with ID (37%) genotypes (P = 0.04). When compared with carbohydrate intake in the whole studied cohort, the odds ratios of carrying the DD allele in the morbidly obese cohort were 0.84 (95% CI 0.34, 2.10, P = 0.17), 0.27 (0.07, 0.98, P = 0.02), and 4.25 (1.44, 12.51, P = 0.005) in those individuals consuming <210, 210-260, and >260 g of carbohydrates/day, respectively. Based on our findings, the ID ACE polymorphism could represent a gene modulator of carbohydrate intake in morbidly obese Czech population; the strong significant effect of DD genotype was observed in the phenotypes of extreme obesity with the highest carbohydrate intake.
See more in PubMed
Baura GD, Foster DM, Porte D Jr et al (1993) Saturable transport of insulin from plasma into the central nervous system of dogs in vivo: a mechanism for regulated insulin delivery to the brain. J Clin Invest 92(4):1824–1830 PubMed PMC
Bienertova-Vasku J, Bienert P, Tomandl J et al (2008) No association of defined variability in leptin, leptin receptor, adiponectin, proopiomelanocortin and ghrelin gene with food preferences in the Czech population. Nutr Neurosci 11:2–8 PubMed
Bouchard L, Tremblay A, Bouchard C, Pérusse L et al (2007) Contribution of several candidate gene polymorphisms in the determination of adiposity changes: results from the Québec Family Study. Int J Obes (Lond) 31:891–899 PubMed
Cambien F, Poirier O, Lecerf L et al (1992) Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 359:641–644 PubMed
None PubMed
Charalambous M, da Rocha ST, Ferguson-Smith AC (2007) Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr Opin Endocrinol Diabetes Obes 14:3–12 PubMed
Chung WK, Patki A, Matsuoka N et al (2009) Analysis of 30 genes (355 SNPS) related to energy homeostasis for association with adiposity in European-American and Yup’ik Eskimo populations. Hum Hered 67:193–205 PubMed PMC
None PubMed
Danser AH, Schalekamp MA, Bax WA et al (1995) Angiotensin-converting enzyme in the human heart. Circulation 92:1387–1388 PubMed
de Castro JM (1993) Genetic influences on daily intake and meal patterns of humans. Physiol Behav 53:777–782 PubMed
de Castro JM (2002) Independence of heritable influences on the food intake of free-living humans. Nutrition 18:11–16 PubMed
de Castro JM, Plunkett S (2002) A general model of intake regulation. Neurosci Biobehav Rev 26:581–595 PubMed
Han JC, Rutledge MS, Kozlosky M, Salaita CG et al (2008) Insulin resistance, hyperinsulinemia, and energy intake in overweight children. J Pediatr 152(5):612–617 PubMed PMC
Iimura O, Shimamoto K, Matsuda K et al (1995) Effects of angiotensin receptor antagonist and angiotensin converting enzyme inhibitor on insulin sensitivity in fructose-fed hypertensive rats and essential hypertensives. Am J Hypertens 8:353–357 PubMed
Kinoshita M, Nakaya Y, Harada N et al (2002) Combination therapy of exercise and angiotensin-converting enzyme inhibitor markedly improves insulin sensitivities in hypertensive patients with insulin resistance. Circ J 7:655–658 PubMed
Kourlaba G, Pitsiladis YP, Lagou V et al (2008) Interaction effects between total energy and macronutrient intakes and angiotensin-converting enzyme 1 (ACE) I/D polymorphism on adiposity-related phenotypes in toddlers and preschoolers: the Growth, Exercise and Nutrition Epidemiological Study in preSchoolers (GENESIS). Br J Nutr 100:1333–1340 PubMed
Lagou V, Manios Y, Moran CN et al (2007) Developmental changes in adiposity in toddlers and preschoolers in the GENESIS study and associations with the ACE I/D polymorphism. Int J Obes (Lond) 31:1052–1060 PubMed
Larsson H, Elmståhl S, Berglund G et al (1998) Evidence for leptin regulation of food intake in humans. J Clin Endocrinol Metab 83:4382–4385 PubMed
Llewellyn CH, van Jaarsveld CH, Boniface D et al (2008) Eating rate is a heritable phenotype related to weight in children. Am J Clin Nutr 88:1560–1566 PubMed
Ma Y, Bertone ER, Stanek EJ 3rd et al (2003) Association between eating patterns and obesity in a free-living US adult population. Am J Epidemiol 158:85–92 PubMed
Moran CN, Vassilopoulos C, Tsiokanos A et al (2005) Effects of interaction between angiotensin I-converting enzyme polymorphisms and lifestyle on adiposity in adolescent Greeks. Obes Res 13:1499–1504 PubMed
None PubMed
Nickenig G, Roling J, Strehlow K et al (1998) Insulin induces upregulation of vascular AT1 receptor gene expression by posttranscriptional mechanisms. Circulation 22:2453–2460 PubMed
None PubMed
Niswender KD, Baskin DG, Schwartz MW (2004) Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends Endocrinol Metab. 15(8):362–369 PubMed
Ogihara T, Asano T, Ando K et al (2002) Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension 40:872–879 PubMed
Perrot-Sinal TS (2009) Do these genes make me look fat? Endocrinology 150:1075–1077 PubMed
Rao RH (1996) Pressor doses of angiotensin II increase hepatic glucose output and decrease insulin sensitivity in rats. J Endocrinol 148:311–318 PubMed
Rigat B, Hubert C, Alhenc-Gelas F et al (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346 PubMed PMC
Rigat B, Hubert C, Corvol P et al (1992) PCR detection of the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase. Nucl Acids Res 20:1433 PubMed PMC
Santos JL, Boutin P, Verdich C et al (2006) Genotype-by-nutrient interactions assessed in European obese women: a case-only study: NUGENOB* consortium. Eur J Nutr 45:454–462 PubMed
None PubMed
Shanmugam V, Sell KW, Saha BK (1993) Mistyping ACE heterozygotes. PCR Methods Appl 3:120–121 PubMed
None PubMed
Steinle NI, Hsueh WC, Snitker S et al (2002) Eating behavior in the Old Order Amish: heritability analysis and a genome-wide linkage analysis. Am J Clin Nutr 75:1098–1106 PubMed
None PubMed
Strazzullo P, Iacone R, Iacoviello L et al (2003) Genetic variation in the renin–angiotensin system and abdominal adiposity in men: the Olivetti Prospective Heart Study. Ann Intern Med 138:17–23 PubMed
None PubMed
van den Bree MB, Eaves LJ, Dwyer JT (1999) Genetic and environmental influences on eating patterns of twins aged >50 y. Am J Clin Nutr 70:456–465 PubMed
Wallum BJ, Taborsky GJ Jr, Porte DJ et al (1987) Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Endocrinol Metab 64(1):190–194 PubMed