Nutrition and Bone Marrow Adiposity in Relation to Bone Health
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38752771
PubMed Central
PMC11412336
DOI
10.33549/physiolres.935293
PII: 935293
Knihovny.cz E-zdroje
- Klíčová slova
- Nutrition, Diet composition, Bone, Bone marrow adiposity, Sex differences,
- MeSH
- adipozita * fyziologie MeSH
- kosti a kostní tkáň metabolismus MeSH
- kostní dřeň * metabolismus MeSH
- lidé MeSH
- nutriční stav MeSH
- pohlavní dimorfismus MeSH
- remodelace kosti fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bone remodeling is energetically demanding process. Energy coming from nutrients present in the diet contributes to function of different cell type including osteoblasts, osteocytes and osteoclasts in bone marrow participating in bone homeostasis. With aging, obesity and osteoporosis the function of key building blocks, bone marrow stromal cells (BMSCs), changes towards higher accumulation of bone marrow adipose tissue (BMAT) and decreased bone mass, which is affected by diet and sex dimorphism. Men and women have unique nutritional needs based on physiological and hormonal changes across the life span. However, the exact molecular mechanisms behind these pathophysiological conditions in bone are not well-known. In this review, we focus on bone and BMAT physiology in men and women and how this approach has been taken by animal studies. Furthermore, we discuss the different diet interventions and impact on bone and BMAT in respect to sex differences. We also discuss the future perspective on precision nutrition with a consideration of sex-based differences which could bring better understanding of the diet intervention in bone health and weight management.
Zobrazit více v PubMed
Buckwalter JA, Cooper RR. Bone structure and function. Instr Course Lect. 1987;36:27–48. PubMed
Ralston SH. Bone structure and metabolism. Medicine. 2021;49:567–571. doi: 10.1016/j.mpmed.2021.06.009. DOI
Benova A, Tencerova M. Obesity-induced changes in bone marrow homeostasis. Front Endocrinol (Lausanne) 2020;11:294. doi: 10.3389/fendo.2020.00294. PubMed DOI PMC
Tencerova M, Kassem M. The bone marrow-derived stromal cells: Commitment and regulation of adipogenesis. Front Endocrinol (Lausanne) 2016;7:127. doi: 10.3389/fendo.2016.00127. PubMed DOI PMC
Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, Ning X, et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014;20:368–375. doi: 10.1016/j.cmet.2014.06.003. PubMed DOI PMC
Tencerova M, Figeac F, Ditzel N, Taipaleenmaki H, Nielsen TK, Kassem M. High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J Bone Miner Res. 2018;33:1154–1165. doi: 10.1002/jbmr.3408. PubMed DOI
Tencerova M, Ferencakova M, Kassem M. Bone marrow adipose tissue: Role in bone remodeling and energy metabolism. Best Pract Res Clin Endocrinol Metab. 2021;35:101545. doi: 10.1016/j.beem.2021.101545. PubMed DOI
Carleton SM, Whitford GM, Phillips CL. Dietary fluoride restriction does not alter femoral biomechanical strength in col1a2-deficient (oim) mice with type I collagen glomerulopathy. J Nutr. 2010;140:1752–1756. doi: 10.3945/jn.109.120261. PubMed DOI
Lindberg MK, Alatalo SL, Halleen JM, Mohan S, Gustafsson JA, Ohlsson C. Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol. 2001;171:229–236. doi: 10.1677/joe.0.1710229. PubMed DOI
Wallace JM, Rajachar RM, Chen XD, Shi S, Allen MR, Bloomfield SA, Les CM, Robey PG, Young MF, Kohn DH. The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone. 2006;39:106–116. doi: 10.1016/j.bone.2005.12.081. PubMed DOI
Yao X, Carleton SM, Kettle AD, Melander J, Phillips CL, Wang Y. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model. Ann Biomed Eng. 2013;41:1139–1149. doi: 10.1007/s10439-013-0793-7. PubMed DOI PMC
Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F. Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res. 2005;20:529–535. doi: 10.1359/JBMR.041005. PubMed DOI
Laurent M, Antonio L, Sinnesael M, Dubois V, Gielen E, Classens F, Vanderschueren D. Androgens and estrogens in skeletal sexual dimorphism. Asian J Androl. 2014;16:213–222. doi: 10.4103/1008-682X.122356. PubMed DOI PMC
Gabel L, Macdonald HM, McKay HA. Sex differences and growth-related adaptations in bone microarchitecture, geometry, density, and strength from childhood to early adulthood: A mixed longitudinal HR-pQCT study. J Bone Miner Res. 2017;32:250–263. doi: 10.1002/jbmr.2982. PubMed DOI PMC
Oppenheimer-Velez ML, Giambini H, Rezaei A, Camp JJ, Khosla S, Lu L. The trabecular effect: A population-based longitudinal study on age and sex differences in bone mineral density and vertebral load bearing capacity. Clin Biomech (Bristol, Avon) 2018;55:73–78. doi: 10.1016/j.clinbiomech.2018.03.022. PubMed DOI PMC
Tanno M, Horiuchi T, Nakajima I, Maeda S, Igarashi M, Yamada H. Age-related changes in cortical and trabecular bone mineral status. A quantitative CT study in lumbar vertebrae. Acta Radiol. 2001;42:15–19. doi: 10.1080/028418501127346396. PubMed DOI
Nieuwoudt MK, Shahlori R, Naot D, Patel R, Holtkamp H, Aguergaray C, Watson M, et al. Raman spectroscopy reveals age- and sex-related differences in cortical bone from people with osteoarthritis. Sci Rep. 2020;10:19443. doi: 10.1038/s41598-020-76337-2. PubMed DOI PMC
Anderson JJ. Calcium requirements during adolescence to maximize bone health. J Am Coll Nutr. 2001;20(2 Suppl):186S–191S. doi: 10.1080/07315724.2001.10719030. PubMed DOI
Heo HR, Chen L, An B, Kim KS, Ji J, Hong SH. Hormonal regulation of hematopoietic stem cells and their niche: a focus on estrogen. Int J Stem Cells. 2015;8:18–23. doi: 10.15283/ijsc.2015.8.1.18. PubMed DOI PMC
Nakada D, Oguro H, Levi BP, Ryan N, Kitano A, Saitoh Y, Takeichi M, Wendt GR, Morrison SJ. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature. 2014;505:555–558. doi: 10.1038/nature12932. PubMed DOI PMC
Smithson G, Couse JF, Lubahn DB, Korach KS, Kincade PW. The role of estrogen receptors and androgen receptors in sex steroid regulation of B lymphopoiesis. J Immunol. 1998;161:27–34. doi: 10.4049/jimmunol.161.1.27. PubMed DOI
Singer K, Maley N, Mergian T, DelProposto J, Cho KW, Zamarron BF, Martinez-Santibanez G, et al. Differences in hematopoietic stem cells contribute to sexually dimorphic inflammatory responses to high fat diet-induced obesity. J Biol Chem. 2015;290:13250–13262. doi: 10.1074/jbc.M114.634568. PubMed DOI PMC
Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011;6:121–145. doi: 10.1146/annurev-pathol-011110-130203. PubMed DOI PMC
Connelly KJ, Larson EA, Marks DL, Klein RF. Neonatal estrogen exposure results in biphasic age-dependent effects on the skeletal development of male mice. Endocrinology. 2015;156:193–202. doi: 10.1210/en.2014-1324. PubMed DOI PMC
Dunsworth HM. Expanding the evolutionary explanations for sex differences in the human skeleton. Evol Anthropol. 2020;29:108–116. doi: 10.1002/evan.21834. PubMed DOI
Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL. Evidence of estrogen receptors in normal human osteoblast-like cells. Science. 1988;241:84–86. doi: 10.1126/science.3388021. PubMed DOI
Saxon LK, Galea G, Meakin L, Price J, Lanyon LE. Estrogen receptors alpha and beta have different gender-dependent effects on the adaptive responses to load bearing in cancellous and cortical bone. Endocrinology. 2012;153:2254–2266. doi: 10.1210/en.2011-1977. PubMed DOI
Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis. 2012;4:61–76. doi: 10.1177/1759720X11430858. PubMed DOI PMC
Lo JC, Burnett-Bowie SA, Finkelstein JS. Bone and the perimenopause. Obstet Gynecol Clin North Am. 2011;38:503–517. doi: 10.1016/j.ogc.2011.07.001. PubMed DOI PMC
Dalzell N, Kaptoge S, Morris N, Berthier A, Koller B, Braak L, van Rietbergen B, Reeve J. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int. 2009;20:1683–1694. doi: 10.1007/s00198-008-0833-6. PubMed DOI
Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, Peterson JM, Melton LJ., 3rd Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21:124–131. doi: 10.1359/JBMR.050916. PubMed DOI PMC
Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A. Marrow fat and bone - new perspectives. J Clin Endocrinol Metab. 2013;98:935–945. doi: 10.1210/jc.2012-3634. PubMed DOI PMC
Li Z, Hardij J, Bagchi DP, Scheller EL, MacDougald OA. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone. 2018;110:134–140. doi: 10.1016/j.bone.2018.01.008. PubMed DOI PMC
Li Y, Meng Y, Yu X. The unique metabolic characteristics of bone marrow adipose tissue. Front Endocrinol (Lausanne) 2019;10:69. doi: 10.3389/fendo.2019.00069. PubMed DOI PMC
Lecka-Czernik B, Stechschulte LA, Czernik PJ, Sherman SB, Huang S, Krings A. Marrow adipose tissue: Skeletal location, sexual dimorphism, and response to sex steroid deficiency. Front Endocrinol (Lausanne) 2017;8:188. doi: 10.3389/fendo.2017.00188. PubMed DOI PMC
Kricun ME. Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol. 1985;14:10–19. doi: 10.1007/BF00361188. PubMed DOI
Scheller EL, Troiano N, Vanhoutan JN, Bouxsein MA, Fretz JA, Xi Y, Nelson T, et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol. 2014;537:123–139. doi: 10.1016/B978-0-12-411619-1.00007-0. PubMed DOI PMC
Liney GP, Bernard CP, Manton DJ, Turnbull LW, Langton CM. Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla. J Magn Reson Imaging. 2007;26:787–793. doi: 10.1002/jmri.21072. PubMed DOI
Beekman KM, Regenboog M, Nederveen AJ, Bravenboer N, den Heijer M, Bisschop PH, Hollak CE, Akkerman EM, Maas M. Gender- and age-associated differences in bone marrow adipose tissue and bone marrow fat unsaturation throughout the skeleton, quantified using chemical shift encoding-based water-fat MRI. Front Endocrinol (Lausanne) 2022;13:815835. doi: 10.3389/fendo.2022.815835. PubMed DOI PMC
Baum T, Rohrmeier A, Syvari J, Diefenbach MN, Franz D, Dieckmeyer M, Scharr A, et al. Anatomical variation of age-related changes in vertebral bone marrow composition using chemical shift encoding-based water-fat magnetic resonance imaging. Front Endocrinol (Lausanne) 2018;9:141. doi: 10.3389/fendo.2018.00141. PubMed DOI PMC
Kugel H, Jung C, Schulte O, Heindel W. Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging. 2001;13:263–268. doi: 10.1002/1522-2586(200102)13:2<263::AID-JMRI1038>3.0.CO;2-M. PubMed DOI
Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging. 2012;36:225–230. doi: 10.1002/jmri.23619. PubMed DOI
Mistry SD, Woods GN, Sigurdsson S, Ewing SK, Hue TF, Eiriksdottir G, Xu K, Hilton JF, Kado DM, Gudnason V, Harris TB, Rosen CJ, Lang TF, Li X, Schwartz AV. Sex hormones are negatively associated with vertebral bone marrow fat. Bone. 2018;108:20–24. doi: 10.1016/j.bone.2017.12.009. PubMed DOI PMC
Syed FA, Oursler MJ, Hefferanm TE, Peterson JM, Riggs BL, Khosla S. Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int. 2008;19:1323–1330. doi: 10.1007/s00198-008-0574-6. PubMed DOI PMC
Limonard EJ, Veldhuis-Vlug AG, van Dussen L, Runge JH, Tanck MW, Endert E, Heijboer AC, et al. Short-term effect of estrogen on human bone marrow fat. J Bone Miner Res. 2015;30:2058–2066. doi: 10.1002/jbmr.2557. PubMed DOI
Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, Wu B, et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun. 2015;6:7808. doi: 10.1038/ncomms8808. PubMed DOI PMC
Mosialou I, Shikhel S, Luo N, Petropoulou PI, Panitsas K, Bisikirska B, Rothman NJ, et al. Lipocalin-2 counteracts metabolic dysregulation in obesity and diabetes. J Exp Med. 2020;217:e20191261. doi: 10.1084/jem.20191261. PubMed DOI PMC
Shen W, Chen J, Gantz M, Punyanitya M, Heymsfield SB, Gallagher D, Albu J, et al. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship. Osteoporos Int. 2012;23:2293–2301. doi: 10.1007/s00198-011-1873-x. PubMed DOI PMC
Beekman KM, Duque G, Corsi A, Tencerova M, Bisschop PH, Paccou J. Osteoporosis and bone marrow adipose tissue. Curr Osteoporos Rep. 2023;21:45–55. doi: 10.1007/s11914-022-00768-1. PubMed DOI
Karner CM, Long F. Glucose metabolism in bone. Bone. 2018;115:2–7. doi: 10.1016/j.bone.2017.08.008. PubMed DOI PMC
Zhu M, Fan Z. The role of the Wnt signalling pathway in the energy metabolism of bone remodelling. Cell Prolif. 2022;55:e13309. doi: 10.1111/cpr.13309. PubMed DOI PMC
Dong K, Hao P, Xu S, Liu S, Zhou W, Yue X, Rausch-Fan X, Liu Z. Alpha-lipoic acid alleviates high-glucose suppressed osteogenic differentiation of MC3T3-E1 cells via antioxidant effect and PI3K/Akt signaling pathway. Cell Physiol Biochem. 2017;42:1897–1906. doi: 10.1159/000479605. PubMed DOI
Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res. 2007;39:871–875. doi: 10.1055/s-2007-991157. PubMed DOI
Medeiros C, Wallace JM. High glucose-induced inhibition of osteoblast like MC3T3-E1 differentiation promotes mitochondrial perturbations. PLoS One. 2022;17:e0270001. doi: 10.1371/journal.pone.0270001. PubMed DOI PMC
Tjaderhane L, Larmas M. A high sucrose diet decreases the mechanical strength of bones in growing rats. J Nutr. 1998;128:1807–1810. doi: 10.1093/jn/128.10.1807. PubMed DOI
Li KC, Zernicke RF, Barnard RJ, Li AF. Effects of a high fat-sucrose diet on cortical bone morphology and biomechanics. Calcif Tissue Int. 1990;47:308–313. doi: 10.1007/BF02555914. PubMed DOI
Yarrow JF, Toklu HZ, Balaez A, Phillips EG, Otzel DM, Chen C, Wronski TJ, Aguirre JI, Sakarya Y, Tumer N, Scarpace PJ. Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone. 2016;85:99–106. doi: 10.1016/j.bone.2016.02.004. PubMed DOI PMC
Felice JI, Gangoiti MV, Molinuevo MS, McCarthy AD, Cortizo AM. Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism. 2014;63:296–305. doi: 10.1016/j.metabol.2013.11.002. PubMed DOI
Tsanzi E, Light HR, Tou JC. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength. Bone. 2008;42:960–968. doi: 10.1016/j.bone.2008.01.020. PubMed DOI
Lorincz C, Reimer RA, Boyd SK, Zernicke RF. High-fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br J Nutr. 2010;103:1302–1308. doi: 10.1017/S0007114509993084. PubMed DOI
Minematsu A, Nishii Y, Sakata S. High-fat/high-sucrose diet results in higher bone mass in aged rats. Bone Rep. 2018;8:18–24. doi: 10.1016/j.bonr.2018.01.001. PubMed DOI PMC
Wyshak G, Frisch RE. Carbonated beverages, dietary calcium, the dietary calcium/phosphorus ratio, and bone fractures in girls and boys. J Adolesc Health. 1994;15:210–215. doi: 10.1016/1054-139X(94)90506-1. PubMed DOI
Ma D, Jones G. Soft drink and milk consumption, physical activity, bone mass, and upper limb fractures in children: a population-based case-control study. Calcif Tissue Int. 2004;75:286–291. doi: 10.1007/s00223-004-0274-y. PubMed DOI
Montagnani A, Gonnelli S, Alessandri M, Nuti R. Osteoporosis and risk of fracture in patients with diabetes: an update. Aging Clin Exp Res. 2011;23:84–90. doi: 10.1007/BF03351073. PubMed DOI
Garcia-Gavilan JF, Bullo M, Camacho-Barcia L, Rosique-Esteban N, Hernandez-Alonso P, Basora J, Martinez-Gonzalez MA, et al. Higher dietary glycemic index and glycemic load values increase the risk of osteoporotic fracture in the PREvencion con DIeta MEDiterranea (PREDIMED)-Reus trial. Am J Clin Nutr. 2018;107:1035–1042. doi: 10.1093/ajcn/nqy043. PubMed DOI
Nouri M, Mahmoodi M, Shateri Z, Ghadiri M, Rajabzadeh-Dehkordi M, Vali M, Gargari BP. How do carbohydrate quality indices influence on bone mass density in postmenopausal women? A case-control study. BMC Womens Health. 2023;23:42. doi: 10.1186/s12905-023-02188-4. PubMed DOI PMC
Fazeli PK, Bredella MA, Pachon-Pena G, Zhao W, Zhang X, Faje AT, Resulaj M, et al. The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight. 2021;6:e138636. doi: 10.1172/jci.insight.138636. PubMed DOI PMC
Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, Ghomi RH, Rosen CJ, Klibanski A. Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab. 2009;94:2129–2136. doi: 10.1210/jc.2008-2532. PubMed DOI PMC
Bredella MA, Gill CM, Gerweck AV, Landa MG, Kumar V, Daley SM, Torriani M, Miller KK. Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology. 2013;269:534–541. doi: 10.1148/radiol.13130375. PubMed DOI PMC
Devlin MJ, Brooks DJ, Conlon C, Vliet M, Louis L, Rosen CJ, Bouxsein ML. Daily leptin blunts marrow fat but does not impact bone mass in calorie-restricted mice. J Endocrinol. 2016;229:295–306. doi: 10.1530/JOE-15-0473. PubMed DOI PMC
Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res. 2010;25:2078–2088. doi: 10.1002/jbmr.82. PubMed DOI PMC
Doucette CR, Horowitz MC, Berry R, MacDougald OA, Anunciado-Koza R, Koza RA, Rosen CJ. A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice. J Cell Physiol. 2015;230:2032–2037. doi: 10.1002/jcp.24954. PubMed DOI PMC
Hamrick MW, Ding KH, Ponnala S, Ferrari SL, Isales CM. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res. 2008;23:870–878. doi: 10.1359/jbmr.080213. PubMed DOI
McGrath C, Sankaran JS, Misaghian-Xanthos N, Sen B, Xie Z, Styner MA, Zong X, Rubin J, Styner M. Exercise degrades bone in caloric restriction, despite suppression of marrow adipose tissue (MAT) J Bone Miner Res. 2020;35:106–115. doi: 10.1002/jbmr.3872. PubMed DOI PMC
Bermudez B, Ishii T, Wu YH, Carpenter RD, Sherk VD. Energy Balance and bone health: a nutrient availability perspective. Curr Osteoporos Rep. 2023;21:77–84. doi: 10.1007/s11914-022-00765-4. PubMed DOI
Ali D, Figeac F, Caci A, Ditzel N, Schmal C, Kerckhofs G, Havelund J, et al. High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell. 2022;21:e13726. doi: 10.1111/acel.13726. PubMed DOI PMC
Baek K, Bloomfield SA. Blocking beta-adrenergic signaling attenuates reductions in circulating leptin, cancellous bone mass, and marrow adiposity seen with dietary energy restriction. J Appl Physiol. 2012;113:1792–1801. doi: 10.1152/japplphysiol.00187.2012. PubMed DOI
Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Rosen CJ, Klibanski A, Miller KK. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring) 2011;19:49–53. doi: 10.1038/oby.2010.106. PubMed DOI PMC
Vander Wyst KB, Hu HH, Pena A, Olson ML, Bailey SS, Shaibi GQ. Bone marrow adipose tissue content in Latino adolescents with prediabetes and obesity. Obesity (Silver Spring) 2021;29:2100–2107. doi: 10.1002/oby.23279. PubMed DOI PMC
Devlin MJ. Why does starvation make bones fat? Am J Hum Biol. 2011;23:577–585. doi: 10.1002/ajhb.21202. PubMed DOI PMC
Dimitri P, Bishop N, Walsh JS, Eastell R. Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone. 2012;50:457–466. doi: 10.1016/j.bone.2011.05.011. PubMed DOI
Ofir N, Mizrakli Y, Greenshpan Y, Gepner Y, Sharabi O, Tsaban G, Zelicha H, et al. Vertebrae but not femur marrow fat transiently decreases in response to body weight loss in an 18-month randomized control trial. Bone. 2023;171:116727. doi: 10.1016/j.bone.2023.116727. PubMed DOI
Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex differences in human adipose tissues - the biology of pear shape. Biol Sex Differ. 2012;3:13. doi: 10.1186/2042-6410-3-13. PubMed DOI PMC
Liu AG, Ford NA, Hu FB, Zelman KM, Mozaffarian D, Kris-Etherton PM. A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion. Nutr J. 2017;16:53. doi: 10.1186/s12937-017-0271-4. PubMed DOI PMC
Swinburn BA, Caterson I, Seidell JC, James WP. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr. 2004;7:123–146. doi: 10.1079/PHN2003585. PubMed DOI
Kruger MC, Coetzee M, Haag M, Weiler H. Long-chain polyunsaturated fatty acids: selected mechanisms of action on bone. Prog Lipid Res. 2010;49:438–449. doi: 10.1016/j.plipres.2010.06.002. PubMed DOI
Wang D, Haile A, Jones LC. Dexamethasone-induced lipolysis increases the adverse effect of adipocytes on osteoblasts using cells derived from human mesenchymal stem cells. Bone. 2013;53:520–530. doi: 10.1016/j.bone.2013.01.009. PubMed DOI
Lecka-Czernik B, Stechschulte LA, Czernik PJ, Dowling AR. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol. 2015;410:35–41. doi: 10.1016/j.mce.2015.01.001. PubMed DOI
Wang T, Zhu X, Dai F, Li C, Huang D, Fang Z, Zhang Q, Lu Y. Effects of a standard high-fat diet with or without multiple deficiencies on bone parameters in ovariectomized mature rat. PLoS One. 2017;12:e0184983. doi: 10.1371/journal.pone.0184983. PubMed DOI PMC
Scheller EL, Khoury B, Moller KL, Wee NK, Khandaker S, Kozloff KM, Abrishami SH, Zamarron BF, Singer K. Changes in skeletal integrity and marrow adiposity during high-fat diet and after weight loss. Front Endocrinol (Lausanne) 2016;7:102. doi: 10.3389/fendo.2016.00102. PubMed DOI PMC
Gautam J, Choudhary D, Khedgikar V, Kushwaha P, Singh RS, Singh D, Tiwari S, Trivedi R. Micro-architectural changes in cancellous bone differ in female and male C57BL/6 mice with high-fat diet-induced low bone mineral density. Br J Nutr. 2014;111:1811–1821. doi: 10.1017/S0007114514000051. PubMed DOI
Silva MJ, Eekhoff JD, Patel T, Kenney-Hunt JP, Brodt MD, Steger-May K, Scheller EL, Cheverud JM. Effects of high-fat diet and body mass on bone morphology and mechanical properties in 1100 advanced intercross mice. J Bone Miner Res. 2019;34:711–725. doi: 10.1002/jbmr.3648. PubMed DOI PMC
Sistilli G, Kalendova V, Cajka T, Irodenko I, Bardova K, Oseeva M, Zacek P, Kroupova P, Horakova O, Lackner K, Gastaldelli A, Kuda O, Kopecky J, Rossmeisl M. Krill oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. Nutrients. 2021;13:437. doi: 10.3390/nu13020437. PubMed DOI PMC
van Schothorst EM, Flachs P, Franssen-van Hal NL, Kuda O, Bunschoten A, Molthoff J, Vink C, et al. Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet. BMC Genomics. 2009;10:110. doi: 10.1186/1471-2164-10-110. PubMed DOI PMC
Shen CL, Yeh JK, Rasty J, Li Y, Watkins BA. Protective effect of dietary long-chain n-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats. Br J Nutr. 2006;95:462–468. doi: 10.1079/BJN20051664. PubMed DOI
Bani Hassan E, Alderghaffar M, Wauquier F, Coxam V, Demontiero O, Vogrin S, Wittrant Y, Duque G. The effects of dietary fatty acids on bone, hematopoietic marrow and marrow adipose tissue in a murine model of senile osteoporosis. Aging (Albany NY) 2019;11:7938–7947. doi: 10.18632/aging.102299. PubMed DOI PMC
Benova A, Ferencakova M, Bardova K, Funda J, Prochazka J, Spoutil F, Cajka T, et al. Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity. Commun Biol. 2023;6:1043. doi: 10.1038/s42003-023-05407-8. PubMed DOI PMC
Cao JJ, Gregoire BR, Michelsen KG, Picklo MJ. Increasing dietary fish oil reduces adiposity and mitigates bone deterioration in growing C57BL/6 mice fed a high-fat diet. J Nutr. 2020;150:99–107. doi: 10.1093/jn/nxz215. PubMed DOI
Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL. Dietary intakes of arachidonic acid and alpha-linolenic acid are associated with reduced risk of hip fracture in older adults. J Nutr. 2011;141:1146–1153. doi: 10.3945/jn.110.133728. PubMed DOI PMC
Virtanen JK, Mozaffarian D, Cauley JA, Mukamal KJ, Robbins J, Siscovick DS. Fish consumption, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study. J Bone Miner Res. 2010;25:1972–1979. doi: 10.1002/jbmr.87. PubMed DOI PMC
Kruger MC, Coetzer H, de Winter R, Gericke G, van Papendorp DH. Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging (Milano) 1998;10:385–394. doi: 10.1007/BF03339885. PubMed DOI
Thompson M, Hein N, Hanson C, Smith LM, Anderson-Berry A, Richter CK, Stessy Bisselou K, et al. Omega-3 fatty acid intake by age, gender, and pregnancy status in the United States: National Health and Nutrition Examination Survey 2003–2014. Nutrients. 2019;11:177. doi: 10.3390/nu11010177. PubMed DOI PMC
Cunha MC, Lima Fda S, Vinolo MA, Hastreiter A, Curi R, Borelli P, Fock RA. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure. PLoS One. 2013;8:e58872. doi: 10.1371/journal.pone.0058872. PubMed DOI PMC
Hastreiter AA, Dos Santos GG, Makiyama EN, Santos EWC, Borelli P, Fock RA. Effects of protein malnutrition on hematopoietic regulatory activity of bone marrow mesenchymal stem cells. J Nutr Biochem. 2021;93:108626. doi: 10.1016/j.jnutbio.2021.108626. PubMed DOI
Takeda S, Kobayashi Y, Park JH, Ezawa I, Omi N. Effect of different intake levels of dietary protein and physical exercise on bone mineral density and bone strength in growing male rats. J Nutr Sci Vitaminol (Tokyo) 2012;58:240–246. doi: 10.3177/jnsv.58.240. PubMed DOI
Dubois-Ferriere V, Rizzoli R, Ammann P. A low protein diet alters bone material level properties and the response to in vitro repeated mechanical loading. Biomed Res Int. 2014;2014:185075. doi: 10.1155/2014/185075. PubMed DOI PMC
Ammann P, Bourrin S, Bonjour JP, Meyer JM, Rizzoli R. Protein undernutrition-induced bone loss is associated with decreased IGF-I levels and estrogen deficiency. J Bone Miner Res. 2000;15:683–690. doi: 10.1359/jbmr.2000.15.4.683. PubMed DOI
Fournier C, Rizzoli R, Ammann P. Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats. Endocrinology. 2014;155:4305–4315. doi: 10.1210/en.2014-1308. PubMed DOI
Wright CS, Hill ER, Reyes Fernandez PC, Thompson WR, Gallant MA, Campbell WW, Main RP. Effects of dietary protein source and quantity on bone morphology and body composition following a high-protein weight-loss diet in a rat model for postmenopausal obesity. Nutrients. 2022;14:2262. doi: 10.3390/nu14112262. PubMed DOI PMC
Duque G, Al Saedi A, Rivas D, Miard S, Ferland G, Picard F, Gaudreau P. Differential effects of long-term caloric restriction and dietary protein source on bone and marrow fat of the aging rat. J Gerontol A Biol Sci Med Sci. 2020;75:2031–2036. doi: 10.1093/gerona/glaa093. PubMed DOI PMC
Trudel G, Melkus G, Sheikh A, Ramsay T, Laneuville O. Marrow adipose tissue gradient is preserved through high protein diet and bed rest. A randomized crossover study. Bone Rep. 2019;11:100229. doi: 10.1016/j.bonr.2019.100229. PubMed DOI PMC
Trudel G, Payne M, Madler B, Ramachandran N, Lecompte M, Wade C, Biolo G, et al. Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: the Women International Space Simulation for Exploration study. J Appl Physiol. 2009;107:540–548. doi: 10.1152/japplphysiol.91530.2008. PubMed DOI
Kerstetter JE, Bihuniak JD, Brindisi J, Sullivan RR, Mangano KM, Larocque S, Kotler BM, et al. The effect of a whey protein supplement on bone mass in older caucasian adults. J Clin Endocrinol Metab. 2015;100:2214–2222. doi: 10.1210/jc.2014-3792. PubMed DOI PMC
Cao JJ, Pasiakos SM, Margolis LM, Sauter ER, Whigham LD, McClung JP, Young AJ, Combs GF., Jr Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized controlled trial. Am J Clin Nutr. 2014;99:400–407. doi: 10.3945/ajcn.113.073809. PubMed DOI
Arjmandi BH, Lucas EA, Khalil DA, Devareddy L, Smith BJ, McDonald J, Arquitt AB, Payton ME, Mason C. One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women. Nutr J. 2005;4:8. doi: 10.1186/1475-2891-4-8. PubMed DOI PMC
Holm L, Olesen JL, Matsumoto K, Doi T, Mizuno M, Alsted TJ, Mackey AL, Schwarz P, Kjaer M. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women. J Appl Physiol. 2008;105:274–281. doi: 10.1152/japplphysiol.00935.2007. PubMed DOI
Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ, Simpson SJ. Branched chain amino acids, aging and age-related health. Ageing Res Rev. 2020;64:101198. doi: 10.1016/j.arr.2020.101198. PubMed DOI
Sartori T, Santos ACA, Oliveira da Silva R, Kodja G, Rogero MM, Borelli P, Fock RA. Branched chain amino acids improve mesenchymal stem cell proliferation, reducing nuclear factor kappa B expression and modulating some inflammatory properties. Nutrition. 2020;78:110935. doi: 10.1016/j.nut.2020.110935. PubMed DOI
Mu WC, VanHoosier E, Elks CM, Grant RW. Long-term effects of dietary protein and branched-chain amino acids on metabolism and inflammation in mice. Nutrients. 2018;10:918. doi: 10.3390/nu10070918. PubMed DOI PMC
Cao JJ, Picklo MJ. N-acetylcysteine supplementation decreases osteoclast differentiation and increases bone mass in mice fed a high-fat diet. J Nutr. 2014;144:289–296. doi: 10.3945/jn.113.185397. PubMed DOI
Herrmann M, Wildemann B, Claes L, Klohs S, Ohnmacht M, Taban-Shomal O, Hubner U, Pexa A, Umanskaya N, Herrmann W. Experimental hyperhomocysteinemia reduces bone quality in rats. Clin Chem. 2007;53:1455–1461. doi: 10.1373/clinchem.2007.086272. PubMed DOI
Ouattara A, Cooke D, Gopalakrishnan R, Huang TH, Ables GP. Methionine restriction alters bone morphology and affects osteoblast differentiation. Bone Rep. 2016;5:33–42. doi: 10.1016/j.bonr.2016.02.002. PubMed DOI PMC
Ables GP, Johnson JE. Pleiotropic responses to methionine restriction. Exp Gerontol. 2017;94:83–88. doi: 10.1016/j.exger.2017.01.012. PubMed DOI
Plummer J, Park M, Perodin F, Horowitz MC, Hens JR. Methionine-restricted diet increases miRNAs that can target RUNX2 expression and alters bone structure in young mice. J Cell Biochem. 2017;118:31–42. doi: 10.1002/jcb.25604. PubMed DOI PMC
Kim H, Lee K, Kim JM, Kim MY, Kim JR, Lee HW, Chung YW, et al. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat Commun. 2021;12:2258. doi: 10.1038/s41467-021-22565-7. PubMed DOI PMC
Lai J, Zhou J, Yin S. Effect of selenium and zinc level in diet on bone development in rats exposed to lead (Article in Chinese) Wei Sheng Yan Jiu. 2004;33:584–586. PubMed
Ding KH, Cain M, Davis M, Bergson C, McGee-Lawrence M, Perkins C, Hardigan T, et al. Amino acids as signaling molecules modulating bone turnover. Bone. 2018;115:15–24. doi: 10.1016/j.bone.2018.02.028. PubMed DOI PMC
Hill TR, Verlaan S, Biesheuvel E, Eastell R, Bauer JM, Bautmans I, Brandt K, et al. A vitamin D, calcium and leucine-enriched whey protein nutritional supplement improves measures of bone health in sarcopenic non-malnourished older adults: The PROVIDE Study. Calcif Tissue Int. 2019;105:383–391. doi: 10.1007/s00223-019-00581-6. PubMed DOI
Palacios-Gonzalez B, Ramirez-Salazar EG, Rivera-Paredez B, Quiterio M, Flores YN, Macias-Kauffer L, Moran-Ramos S, et al. A multi-omic analysis for low bone mineral density in postmenopausal women suggests a relationship between diet, metabolites, and microbiota. Microorganisms. 2020;8:1630. doi: 10.3390/microorganisms8111630. PubMed DOI PMC
Mendes AB, Martins FF, Cruz WM, da Silva LE, Abadesso CB, Boaventura GT. Bone development in children and adolescents with PKU. J Inherit Metab Dis. 2012;35:425–430. doi: 10.1007/s10545-011-9412-7. PubMed DOI
Michalowska M, Znorko B, Kaminski T, Oksztulska-Kolanek E, Pawlak D. New insights into tryptophan and its metabolites in the regulation of bone metabolism. J Physiol Pharmacol. 2015;66:779–791. PubMed
Lv Z, Shi W, Zhang Q. Role of essential amino acids in age-induced bone loss. Int J Mol Sci. 2022;23:11281. doi: 10.3390/ijms231911281. PubMed DOI PMC
Cleminson JR, Stuart AL, Pasco JA, Hodge JM, Berk M, Samarasinghe RM, Williams LJ. Dietary tryptophan and bone health: a cross-sectional, population-based study. Arch Osteoporos. 2020;15:167. doi: 10.1007/s11657-020-00838-w. PubMed DOI
Cruzat VF, Rogero MM, Tirapegui J. Effects of supplementation with free glutamine and the dipeptide alanyl-glutamine on parameters of muscle damage and inflammation in rats submitted to prolonged exercise. Cell Biochem Funct. 2010;28:24–30. doi: 10.1002/cbf.1611. PubMed DOI
Yu Y, Newman H, Shen L, Sharma D, Hu G, Mirando AJ, Zhang H, Knudsen E, Zhang GF, Hilton MJ, Karner CM. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 2019;29:966–978e964. doi: 10.1016/j.cmet.2019.01.016. PubMed DOI PMC
Blais A, Rochefort GY, Moreau M, Calvez J, Wu X, Matsumoto H, Blachier F. Monosodium glutamate supplementation improves bone status in mice under moderate protein restriction. JBMR Plus. 2019;3:e10224. doi: 10.1002/jbm4.10224. PubMed DOI PMC
Tapiero H, Mathe G, Couvreur P, Tew KD. II. Glutamine and glutamate. Biomed Pharmacother. 2002;56:446–457. doi: 10.1016/S0753-3322(02)00285-8. PubMed DOI
Ahmed HH, Hamza AH. Potential role of arginine, glutamine and taurine in ameliorating osteoporotic biomarkers in ovariectomized rats. Rep Opin. 2009;1:24–35.
Bass EF, Baile CA, Lewis RD, Giraudo SQ. Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr Res. 2013;33:1063–1071. doi: 10.1016/j.nutres.2013.08.006. PubMed DOI
Cugno C, Kizhakayil D, Calzone R, Rahman SM, Halade GV, Rahman MM. Omega-3 fatty acid-rich fish oil supplementation prevents rosiglitazone-induced osteopenia in aging C57BL/6 mice and in vitro studies. Sci Rep. 2021;11:10364. doi: 10.1038/s41598-021-89827-8. PubMed DOI PMC
Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res. 2003;18:1206–1216. doi: 10.1359/jbmr.2003.18.7.1206. PubMed DOI
Bonnet N, Somm E, Rosen CJ. Diet and gene interactions influence the skeletal response to polyunsaturated fatty acids. Bone. 2014;68:100–107. doi: 10.1016/j.bone.2014.07.024. PubMed DOI PMC
Wang Y, Dellatore P, Douard V, Qin L, Watford M, Ferraris RP, Lin T, Shapses SA. High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice. Nutr Res. 2016;36:742–750. doi: 10.1016/j.nutres.2016.03.002. PubMed DOI PMC
Lau BY, Ward WE, Kang JX, Ma DW. Femur EPA and DHA are correlated with femur biomechanical strength in young fat-1 mice. J Nutr Biochem. 2009;20:453–461. doi: 10.1016/j.jnutbio.2008.05.004. PubMed DOI
Kioka K, Aikawa Y, Wakasugi Y, Narukawa T, Fukuyasu T, Ohtsuki M, Yamashita T, Sasai N, Omi N. Soy protein intake increased bone mineral density under nonenergy-deficiency conditions but decreased it under energy-deficiency conditions in young female rats. Nutr Res. 2022;106:1–11. doi: 10.1016/j.nutres.2022.08.001. PubMed DOI
Hogstrom M, Nordstrom P, Nordstrom A. n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr. 2007;85:803–807. doi: 10.1093/ajcn/85.3.803. PubMed DOI
Bassey EJ, Littlewood JJ, Rothwell MC, Pye DW. Lack of effect of supplementation with essential fatty acids on bone mineral density in healthy pre- and postmenopausal women: two randomized controlled trials of Efacal v. calcium alone. Br J Nutr. 2000;83:629–635. doi: 10.1017/S0007114500000805. PubMed DOI
Dodin S, Lemay A, Jacques H, Legare F, Forest JC, Masse B. The effects of flaxseed dietary supplement on lipid profile, bone mineral density, and symptoms in menopausal women: a randomized, double-blind, wheat germ placebo-controlled clinical trial. J Clin Endocrinol Metab. 2005;90:1390–1397. doi: 10.1210/jc.2004-1148. PubMed DOI
Appleton KM, Fraser WD, Rogers PJ, Ness AR, Tobias JH. Supplementation with a low-moderate dose of n-3 long-chain PUFA has no short-term effect on bone resorption in human adults. Br J Nutr. 2011;105:1145–1149. doi: 10.1017/S0007114510004861. PubMed DOI
Dawczynski C, Schubert R, Hein G, Muller A, Eidner T, Vogelsang H, Basu S, Jahreis G. Long-term moderate intervention with n-3 long-chain PUFA-supplemented dairy products: effects on pathophysiological biomarkers in patients with rheumatoid arthritis. Br J Nutr. 2009;101:1517–1526. doi: 10.1017/S0007114508076216. PubMed DOI
Griel AE, Kris-Etherton PM, Hilpert KF, Zhao G, West SG, Corwin RL. An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutr J. 2007;6:2. doi: 10.1186/1475-2891-6-2. PubMed DOI PMC