MicroRNA Biogenesis Pathway Genes Are Deregulated in Colorectal Cancer

. 2019 Sep 10 ; 20 (18) : . [epub] 20190910

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31510013

Grantová podpora
16-31765A Ministerstvo Zdravotnictví Ceské Republiky

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Each step of their production and maturation has to be strictly regulated, as any disruption of control mechanisms may lead to cancer. Thus, we have measured the expression of 19 genes involved in miRNAs biogenesis pathway in tumor tissues of 239 colorectal cancer (CRC) patients, 17 CRC patients with liver metastases and 239 adjacent tissues using real-time PCR. Subsequently, the expression of analyzed genes was correlated with the clinical-pathological features as well as with the survival of patients. In total, significant over-expression of all analyzed genes was observed in tumor tissues as well as in liver metastases except for LIN28A/B. Furthermore, it was shown that the deregulated levels of some of the analyzed genes significantly correlate with tumor stage, grade, location, size and lymph node positivity. Finally, high levels of DROSHA and TARBP2 were associated with shorter disease-free survival, while the over-expression of XPO5, TNRC6A and DDX17 was detected in tissues of patients with shorter overall survival and poor prognosis. Our data indicate that changed levels of miRNA biogenesis genes may contribute to origin as well as progression of CRC; thus, these molecules could serve as potential therapeutic targets.

Zobrazit více v PubMed

Lee R.C., Feinbaum R.L., Ambros V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI

Friedman R.C., Farh K.K.-H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108. PubMed DOI PMC

Forman J.J., Legesse-Miller A., Coller H.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci. USA. 2008;105:14879–14884. doi: 10.1073/pnas.0803230105. PubMed DOI PMC

Bartel D.P. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC

Lytle J.R., Yario T.A., Steitz J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc. Natl. Acad. Sci. USA. 2007;104:9667–9672. doi: 10.1073/pnas.0703820104. PubMed DOI PMC

Van Roosbroeck K., Calin G.A. Cancer Hallmarks and MicroRNAs: The Therapeutic Connection. Adv. Cancer Res. 2017;135:119–149. PubMed

Rodriguez A., Griffiths-Jones S., Ashurst J.L., Bradley A. Identification of Mammalian microRNA Host Genes and Transcription Units. Genome Res. 2004;14:1902–1910. doi: 10.1101/gr.2722704. PubMed DOI PMC

Lee Y., Kim M., Han J., Yeom K.-H., Lee S., Baek S.H., Kim V.N. MicroRNA genes are transcribed by RNA polymerase II. Embo J. 2004;23:4051–4060. doi: 10.1038/sj.emboj.7600385. PubMed DOI PMC

Borchert G.M., Lanier W., Davidson B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 2006;13:1097–1101. doi: 10.1038/nsmb1167. PubMed DOI

Gregory R.I., Yan K.-P., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–240. doi: 10.1038/nature03120. PubMed DOI

Fareh M., Yeom K.-H., Haagsma A.C., Chauhan S., Heo I., Joo C. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat. Commun. 2016;7:13694. doi: 10.1038/ncomms13694. PubMed DOI PMC

Lee Y., Hur I., Park S.-Y., Kim Y.-K., Suh M.R., Kim V.N. The role of PACT in the RNA silencing pathway. Embo J. 2006;25:522–532. doi: 10.1038/sj.emboj.7600942. PubMed DOI PMC

Noland C.L., Doudna J.A. Multiple sensors ensure guide strand selection in human RNAi pathways. RNA. 2013;19:639–648. doi: 10.1261/rna.037424.112. PubMed DOI PMC

Khvorova A., Reynolds A., Jayasena S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–216. doi: 10.1016/S0092-8674(03)00801-8. PubMed DOI

Lizarbe M.A., Calle-Espinosa J., Fernández-Lizarbe E., Fernández-Lizarbe S., Robles M.Á, Olmo N., Turnay J. Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. Biomed. Res. Int. 2017;2017 doi: 10.1155/2017/7354260. PubMed DOI PMC

Yang J.-S., Maurin T., Robine N., Rasmussen K.D., Jeffrey K.L., Chandwani R., Papapetrou E.P., Sadelain M., O’Carroll D., Lai E.C. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA. 2010;107:15163–15168. doi: 10.1073/pnas.1006432107. PubMed DOI PMC

Ruby J.G., Jan C.H., Bartel D.P. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448:83–86. doi: 10.1038/nature05983. PubMed DOI PMC

Okamura K., Lai E.C. Endogenous small interfering RNAs in animals. Nat. Rev. Mol. Cell Biol. 2008;9:673–678. doi: 10.1038/nrm2479. PubMed DOI PMC

Scott M.S., Ono M. From snoRNA to miRNA: Dual function regulatory non-coding RNAs. Biochimie. 2011;93:1987–1992. doi: 10.1016/j.biochi.2011.05.026. PubMed DOI PMC

Li L., Song Y., Shi X., Liu J., Xiong S., Chen W., Fu Q., Huang Z., Gu N., Zhang R. The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting. Genome Res. 2018;28:132–143. doi: 10.1101/gr.224386.117. PubMed DOI PMC

Kawai S., Amano A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J. Cell Biol. 2012;197:201–208. doi: 10.1083/jcb.201110008. PubMed DOI PMC

Piskounova E., Polytarchou C., Thornton J.E., Hagan J.P., LaPierre R.J., Pothoulakis C., Iliopoulos D., Gregory R.I. Oncogenic Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 2011;147:1066–1079. doi: 10.1016/j.cell.2011.10.039. PubMed DOI PMC

Garibaldi F., Falcone E., Trisciuoglio D., Colombo T., Lisek K., Walerych D., Del Sal G., Paci P., Bossi G., Piaggio G., et al. Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex. Oncogene. 2016;35:3760–3770. doi: 10.1038/onc.2016.51. PubMed DOI

Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2017. CA Cancer J. Clin. 2017;67:7–30. doi: 10.3322/caac.21387. PubMed DOI

Fearon E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 2011;6:479–507. doi: 10.1146/annurev-pathol-011110-130235. PubMed DOI

Faber C., Horst D., Hlubek F., Kirchner T. Overexpression of Dicer predicts poor survival in colorectal cancer. Eur. J. Cancer. 2011;47:1414–1419. doi: 10.1016/j.ejca.2011.01.006. PubMed DOI

Kim S., Song M.L., Min H., Hwang I., Baek S.K., Kwon T.K., Park J.-W. miRNA biogenesis-associated RNase III nucleases Drosha and Dicer are upregulated in colorectal adenocarcinoma. Oncol. Lett. 2017;14:4379–4383. doi: 10.3892/ol.2017.6674. PubMed DOI PMC

Papachristou D.J., Korpetinou A., Giannopoulou E., Antonacopoulou A.G., Papadaki H., Grivas P., Scopa C.D., Kalofonos H.P. Expression of the ribonucleases Drosha, Dicer, and Ago2 in colorectal carcinomas. Virchows Arch. 2011;459:431. doi: 10.1007/s00428-011-1119-5. PubMed DOI

Lai H.-H., Lin L.-J., Hung L.-Y., Chen P.-S. Role of Dicer in regulating oxaliplatin resistance of colon cancer cells. Biochem. Biophys. Res. Commun. 2018;506:87–93. doi: 10.1016/j.bbrc.2018.10.071. PubMed DOI

Iliou M.S., da Silva-Diz V., Carmona F.J., Ramalho-Carvalho J., Heyn H., Villanueva A., Muñoz P., Esteller M. Impaired DICER1 function promotes stemness and metastasis in colon cancer. Oncogene. 2014;33:4003–4015. doi: 10.1038/onc.2013.398. PubMed DOI PMC

Shigeyasu K., Okugawa Y., Toden S., Boland C.R., Goel A. Exportin-5 functions as an oncogene and a potential therapeutic target in colorectal cancer. Clin. Cancer Res. 2017;23:1312–1322. doi: 10.1158/1078-0432.CCR-16-1023. PubMed DOI PMC

Mullany L.E., Herrick J.S., Wolff R.K., Slattery M.L. Single Nucleotide Polymorphisms within MicroRNAs, MicroRNA Targets, and MicroRNA Biogenesis Genes and Their Impact on Colorectal Cancer Survival. Genes Chromosomes Cancer. 2017;56:285–295. doi: 10.1002/gcc.22434. PubMed DOI PMC

Ramassone A., Pagotto S., Veronese A., Visone R. Epigenetics and MicroRNAs in Cancer. Int. J. Mol. Sci. 2018;19 doi: 10.3390/ijms19020459. PubMed DOI PMC

Ratnadiwakara M., Mohenska M., Änkö M.-L. Splicing factors as regulators of miRNA biogenesis—links to human disease. Semin. Cell Dev. Biol. 2018;79:113–122. doi: 10.1016/j.semcdb.2017.10.008. PubMed DOI

Lin S., Gregory R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer. 2015;15:321–333. doi: 10.1038/nrc3932. PubMed DOI PMC

King C.E., Cuatrecasas M., Castells A., Sepulveda A.R., Lee J.S., Rustgi A.K. LIN28B promotes colon cancer progression and metastasis. Cancer Res. 2011;71:4260–4268. doi: 10.1158/0008-5472.CAN-10-4637. PubMed DOI PMC

Dai L., Pan G., Liu X., Huang J., Jiang Z., Zhu X., Gan X., Xu Q., Tan N. High expression of ALDOA and DDX5 are associated with poor prognosis in human colorectal cancer. Cancer Manag. Res. 2018;10:1799–1806. doi: 10.2147/CMAR.S157925. PubMed DOI PMC

Shin S., Rossow K.L., Grande J.P., Janknecht R. Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res. 2007;67:7572–7578. doi: 10.1158/0008-5472.CAN-06-4652. PubMed DOI

Wu N., Jiang M., Han Y., Liu H., Chu Y., Liu H., Cao J., Hou Q., Zhao Y., Xu B., et al. O-GlcNAcylation promotes colorectal cancer progression by regulating protein stability and potential catcinogenic function of DDX5. J. Cell. Mol. Med. 2019;23:1354–1362. doi: 10.1111/jcmm.14038. PubMed DOI PMC

Causevic M., Hislop R.G., Kernohan N.M., Carey F.A., Kay R.A., Steele R.J., Fuller-Pace F.V. Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene. 2001;20:7734–7743. doi: 10.1038/sj.onc.1204976. PubMed DOI

Kim B., Lee J.-H., Park J.W., Kwon T.K., Baek S.K., Hwang I., Kim S. An essential microRNA maturing microprocessor complex component DGCR8 is up-regulated in colorectal carcinomas. Clin. Exp. Med. 2014;14:331–336. doi: 10.1007/s10238-013-0243-8. PubMed DOI PMC

Vincenzi B., Zoccoli A., Schiavon G., Iuliani M., Pantano F., Dell’aquila E., Ratta R., Muda A.O., Perrone G., Brunelli C., et al. Dicer and Drosha expression and response to Bevacizumab-based therapy in advanced colorectal cancer patients. Eur. J. Cancer. 2013;49:1501–1508. doi: 10.1016/j.ejca.2012.11.014. PubMed DOI

Li L., Yu C., Gao H., Li Y. Argonaute proteins: Potential biomarkers for human colon cancer. Bmc Cancer. 2010;10:38. doi: 10.1186/1471-2407-10-38. PubMed DOI PMC

Wang Y.-X., Zhang X.-Y., Zhang B.-F., Yang C.-Q., Gao H.-J. Study on the clinical significance of Argonaute2 expression in colonic carcinoma by tissue microarray. Int. J. Clin. Exp. Pathol. 2013;6:476–484. PubMed PMC

Faggad A., Kasajima A., Weichert W., Stenzinger A., Elwali N.E., Dietel M., Denkert C. Down-regulation of the microRNA processing enzyme Dicer is a prognostic factor in human colorectal cancer. Histopathology. 2012;61:552–561. doi: 10.1111/j.1365-2559.2011.04110.x. PubMed DOI

Wang T., Han P., He Y., Zhao C., Wang G., Yang W., Shan M., Zhu Y., Yang C., Weng M., et al. Lin28A enhances chemosensitivity of colon cancer cells to 5-FU by promoting apoptosis in a let-7 independent manner. Tumour Biol. 2016;37:7657–7665. doi: 10.1007/s13277-015-4559-8. PubMed DOI

King C.E., Wang L., Winograd R., Madison B.B., Mongroo P.S., Johnstone C.N., Rustgi A.K. LIN28B fosters colon cancer migration, invasion and transformation through let-7-dependent and -independent mechanisms. Oncogene. 2011;30:4185–4193. doi: 10.1038/onc.2011.131. PubMed DOI PMC

Pang M., Wu G., Hou X., Hou N., Liang L., Jia G., Shuai P., Luo B., Wang K., Li G. LIN28B promotes colon cancer migration and recurrence. PLoS ONE. 2014;9:e109169. doi: 10.1371/journal.pone.0109169. PubMed DOI PMC

Liu Y.H., Li Y., Liu X.H., Sui H.M., Liu Y.X., Xiao Z.Q., Zheng P., Chen L., Yao S., Xing C., et al. A signature for induced pluripotent stem cell-associated genes in colorectal cancer. Med. Oncol. 2013;30:426. doi: 10.1007/s12032-012-0426-2. PubMed DOI

Yuan L., Tian J. LIN28B promotes the progression of colon cancer by increasing B-cell lymphoma 2 expression. Biomed. Pharm. 2018;103:355–361. doi: 10.1016/j.biopha.2018.04.002. PubMed DOI

Michlewski G., Cáceres J.F. Post-transcriptional control of miRNA biogenesis. RNA. 2019;25:1–16. doi: 10.1261/rna.068692.118. PubMed DOI PMC

Zhang M., Weng W., Zhang Q., Wu Y., Ni S., Tan C., Xu M., Sun H., Liu C., Wei P., et al. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J. Hematol. Oncol. 2018;11:113. doi: 10.1186/s13045-018-0656-7. PubMed DOI PMC

Pong S.K., Gullerova M. Noncanonical functions of microRNA pathway enzymes – Drosha, DGCR8, Dicer and Ago proteins. Febs Lett. 2018;592:2973–2986. doi: 10.1002/1873-3468.13196. PubMed DOI

Khan M., Khan Z., Uddin Y., Mustafa S., Shaukat I., Pan J., Höti N. Evaluating the Oncogenic and Tumor Suppressor Role of XPO5 in Different Tissue Tumor Types. Asian Pac. J. Cancer Prev. 2018;19:1119–1125. PubMed PMC

Swahari V., Nakamura A., Deshmukh M. The paradox of dicer in cancer. Mol Cell Oncol. 2016;3 doi: 10.1080/23723556.2016.1155006. PubMed DOI PMC

Chen X., Li W.-F., Wu X., Zhang H.-C., Chen L., Zhang P.-Y., Liu L.-Y., Ma D., Chen T., Zhou L., et al. Dicer regulates non-homologous end joining and is associated with chemosensitivity in colon cancer patients. Carcinogenesis. 2017;38:873–882. doi: 10.1093/carcin/bgx059. PubMed DOI

Yang W.J., Yang D.D., Na S., Sandusky G.E., Zhang Q., Zhao G. Dicer Is Required for Embryonic Angiogenesis during Mouse Development. J. Biol. Chem. 2005;280:9330–9335. doi: 10.1074/jbc.M413394200. PubMed DOI

Kuehbacher A., Urbich C., Zeiher A.M., Dimmeler S. Role of Dicer and Drosha for Endothelial MicroRNA Expression and Angiogenesis. Circ. Res. 2007;101:59–68. doi: 10.1161/CIRCRESAHA.107.153916. PubMed DOI

Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI

Williams M., Cheng Y.Y., Blenkiron C., Reid G. Exploring Mechanisms of MicroRNA Downregulation in Cancer. MicroRNA. 2017;6:2–16. doi: 10.2174/2211536605666161208154633. PubMed DOI

Volinia S., Calin G.A., Liu C.-G., Ambs S., Cimmino A., Petrocca F., Visone R., Iorio M., Roldo C., Ferracin M., et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA. 2006;103:2257–2261. doi: 10.1073/pnas.0510565103. PubMed DOI PMC

Israel A., Sharan R., Ruppin E., Galun E. Increased MicroRNA Activity in Human Cancers. PLoS ONE. 2009;4:e6045. doi: 10.1371/journal.pone.0006045. PubMed DOI PMC

Song M.-S., Rossi J.J. Molecular mechanisms of Dicer: Endonuclease and enzymatic activity. Biochem. J. 2017;474:1603–1618. doi: 10.1042/BCJ20160759. PubMed DOI PMC

Berdiel-Acer M., Berenguer A., Sanz-Pamplona R., Cuadras D., Sanjuan X., Paules M.J., Santos C., Salazar R., Moreno V., Capella G., et al. A 5-gene classifier from the carcinoma-associated fibroblast transcriptomic profile and clinical outcome in colorectal cancer. Oncotarget. 2014;5:6437–6452. doi: 10.18632/oncotarget.2237. PubMed DOI PMC

Vychytilova-Faltejskova P., Merhautova J., Machackova T., Gutierrez-Garcia I., Garcia-Solano J., Radova L., Brchnelova D., Slaba K., Svoboda M., Halamkova J., et al. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis. 2017;6 doi: 10.1038/s41389-017-0006-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...