MicroRNA Biogenesis Pathway Genes Are Deregulated in Colorectal Cancer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-31765A
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
31510013
PubMed Central
PMC6770105
DOI
10.3390/ijms20184460
PII: ijms20184460
Knihovny.cz E-zdroje
- Klíčová slova
- RT-qPCR, biogenesis, colorectal cancer, disease-free survival, microRNA, overall survival,
- MeSH
- biosyntetické dráhy genetika MeSH
- dospělí MeSH
- Kaplanův-Meierův odhad MeSH
- karyoferiny genetika MeSH
- kolorektální nádory genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- nádory jater genetika sekundární MeSH
- prognóza MeSH
- regulace genové exprese u nádorů * MeSH
- ribonukleasa III genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DROSHA protein, human MeSH Prohlížeč
- karyoferiny MeSH
- mikro RNA MeSH
- ribonukleasa III MeSH
- XPO5 protein, human MeSH Prohlížeč
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Each step of their production and maturation has to be strictly regulated, as any disruption of control mechanisms may lead to cancer. Thus, we have measured the expression of 19 genes involved in miRNAs biogenesis pathway in tumor tissues of 239 colorectal cancer (CRC) patients, 17 CRC patients with liver metastases and 239 adjacent tissues using real-time PCR. Subsequently, the expression of analyzed genes was correlated with the clinical-pathological features as well as with the survival of patients. In total, significant over-expression of all analyzed genes was observed in tumor tissues as well as in liver metastases except for LIN28A/B. Furthermore, it was shown that the deregulated levels of some of the analyzed genes significantly correlate with tumor stage, grade, location, size and lymph node positivity. Finally, high levels of DROSHA and TARBP2 were associated with shorter disease-free survival, while the over-expression of XPO5, TNRC6A and DDX17 was detected in tissues of patients with shorter overall survival and poor prognosis. Our data indicate that changed levels of miRNA biogenesis genes may contribute to origin as well as progression of CRC; thus, these molecules could serve as potential therapeutic targets.
Central European Institute of Technology Masaryk University Kamenice 753 5 62500 Brno Czech Republic
Department of Pathology University Hospital Brno Jihlavska 340 20 62500 Brno Czech Republic
Department of Surgery University Hospital Brno Jihlavska 340 20 62500 Brno Czech Republic
Faculty of Medicine Masaryk University Kamenice 5 62500 Brno Czech Republic
Zobrazit více v PubMed
Lee R.C., Feinbaum R.L., Ambros V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI
Friedman R.C., Farh K.K.-H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108. PubMed DOI PMC
Forman J.J., Legesse-Miller A., Coller H.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci. USA. 2008;105:14879–14884. doi: 10.1073/pnas.0803230105. PubMed DOI PMC
Bartel D.P. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC
Lytle J.R., Yario T.A., Steitz J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc. Natl. Acad. Sci. USA. 2007;104:9667–9672. doi: 10.1073/pnas.0703820104. PubMed DOI PMC
Van Roosbroeck K., Calin G.A. Cancer Hallmarks and MicroRNAs: The Therapeutic Connection. Adv. Cancer Res. 2017;135:119–149. PubMed
Rodriguez A., Griffiths-Jones S., Ashurst J.L., Bradley A. Identification of Mammalian microRNA Host Genes and Transcription Units. Genome Res. 2004;14:1902–1910. doi: 10.1101/gr.2722704. PubMed DOI PMC
Lee Y., Kim M., Han J., Yeom K.-H., Lee S., Baek S.H., Kim V.N. MicroRNA genes are transcribed by RNA polymerase II. Embo J. 2004;23:4051–4060. doi: 10.1038/sj.emboj.7600385. PubMed DOI PMC
Borchert G.M., Lanier W., Davidson B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 2006;13:1097–1101. doi: 10.1038/nsmb1167. PubMed DOI
Gregory R.I., Yan K.-P., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–240. doi: 10.1038/nature03120. PubMed DOI
Fareh M., Yeom K.-H., Haagsma A.C., Chauhan S., Heo I., Joo C. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat. Commun. 2016;7:13694. doi: 10.1038/ncomms13694. PubMed DOI PMC
Lee Y., Hur I., Park S.-Y., Kim Y.-K., Suh M.R., Kim V.N. The role of PACT in the RNA silencing pathway. Embo J. 2006;25:522–532. doi: 10.1038/sj.emboj.7600942. PubMed DOI PMC
Noland C.L., Doudna J.A. Multiple sensors ensure guide strand selection in human RNAi pathways. RNA. 2013;19:639–648. doi: 10.1261/rna.037424.112. PubMed DOI PMC
Khvorova A., Reynolds A., Jayasena S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–216. doi: 10.1016/S0092-8674(03)00801-8. PubMed DOI
Lizarbe M.A., Calle-Espinosa J., Fernández-Lizarbe E., Fernández-Lizarbe S., Robles M.Á, Olmo N., Turnay J. Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. Biomed. Res. Int. 2017;2017 doi: 10.1155/2017/7354260. PubMed DOI PMC
Yang J.-S., Maurin T., Robine N., Rasmussen K.D., Jeffrey K.L., Chandwani R., Papapetrou E.P., Sadelain M., O’Carroll D., Lai E.C. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA. 2010;107:15163–15168. doi: 10.1073/pnas.1006432107. PubMed DOI PMC
Ruby J.G., Jan C.H., Bartel D.P. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448:83–86. doi: 10.1038/nature05983. PubMed DOI PMC
Okamura K., Lai E.C. Endogenous small interfering RNAs in animals. Nat. Rev. Mol. Cell Biol. 2008;9:673–678. doi: 10.1038/nrm2479. PubMed DOI PMC
Scott M.S., Ono M. From snoRNA to miRNA: Dual function regulatory non-coding RNAs. Biochimie. 2011;93:1987–1992. doi: 10.1016/j.biochi.2011.05.026. PubMed DOI PMC
Li L., Song Y., Shi X., Liu J., Xiong S., Chen W., Fu Q., Huang Z., Gu N., Zhang R. The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting. Genome Res. 2018;28:132–143. doi: 10.1101/gr.224386.117. PubMed DOI PMC
Kawai S., Amano A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J. Cell Biol. 2012;197:201–208. doi: 10.1083/jcb.201110008. PubMed DOI PMC
Piskounova E., Polytarchou C., Thornton J.E., Hagan J.P., LaPierre R.J., Pothoulakis C., Iliopoulos D., Gregory R.I. Oncogenic Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 2011;147:1066–1079. doi: 10.1016/j.cell.2011.10.039. PubMed DOI PMC
Garibaldi F., Falcone E., Trisciuoglio D., Colombo T., Lisek K., Walerych D., Del Sal G., Paci P., Bossi G., Piaggio G., et al. Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex. Oncogene. 2016;35:3760–3770. doi: 10.1038/onc.2016.51. PubMed DOI
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2017. CA Cancer J. Clin. 2017;67:7–30. doi: 10.3322/caac.21387. PubMed DOI
Fearon E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 2011;6:479–507. doi: 10.1146/annurev-pathol-011110-130235. PubMed DOI
Faber C., Horst D., Hlubek F., Kirchner T. Overexpression of Dicer predicts poor survival in colorectal cancer. Eur. J. Cancer. 2011;47:1414–1419. doi: 10.1016/j.ejca.2011.01.006. PubMed DOI
Kim S., Song M.L., Min H., Hwang I., Baek S.K., Kwon T.K., Park J.-W. miRNA biogenesis-associated RNase III nucleases Drosha and Dicer are upregulated in colorectal adenocarcinoma. Oncol. Lett. 2017;14:4379–4383. doi: 10.3892/ol.2017.6674. PubMed DOI PMC
Papachristou D.J., Korpetinou A., Giannopoulou E., Antonacopoulou A.G., Papadaki H., Grivas P., Scopa C.D., Kalofonos H.P. Expression of the ribonucleases Drosha, Dicer, and Ago2 in colorectal carcinomas. Virchows Arch. 2011;459:431. doi: 10.1007/s00428-011-1119-5. PubMed DOI
Lai H.-H., Lin L.-J., Hung L.-Y., Chen P.-S. Role of Dicer in regulating oxaliplatin resistance of colon cancer cells. Biochem. Biophys. Res. Commun. 2018;506:87–93. doi: 10.1016/j.bbrc.2018.10.071. PubMed DOI
Iliou M.S., da Silva-Diz V., Carmona F.J., Ramalho-Carvalho J., Heyn H., Villanueva A., Muñoz P., Esteller M. Impaired DICER1 function promotes stemness and metastasis in colon cancer. Oncogene. 2014;33:4003–4015. doi: 10.1038/onc.2013.398. PubMed DOI PMC
Shigeyasu K., Okugawa Y., Toden S., Boland C.R., Goel A. Exportin-5 functions as an oncogene and a potential therapeutic target in colorectal cancer. Clin. Cancer Res. 2017;23:1312–1322. doi: 10.1158/1078-0432.CCR-16-1023. PubMed DOI PMC
Mullany L.E., Herrick J.S., Wolff R.K., Slattery M.L. Single Nucleotide Polymorphisms within MicroRNAs, MicroRNA Targets, and MicroRNA Biogenesis Genes and Their Impact on Colorectal Cancer Survival. Genes Chromosomes Cancer. 2017;56:285–295. doi: 10.1002/gcc.22434. PubMed DOI PMC
Ramassone A., Pagotto S., Veronese A., Visone R. Epigenetics and MicroRNAs in Cancer. Int. J. Mol. Sci. 2018;19 doi: 10.3390/ijms19020459. PubMed DOI PMC
Ratnadiwakara M., Mohenska M., Änkö M.-L. Splicing factors as regulators of miRNA biogenesis—links to human disease. Semin. Cell Dev. Biol. 2018;79:113–122. doi: 10.1016/j.semcdb.2017.10.008. PubMed DOI
Lin S., Gregory R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer. 2015;15:321–333. doi: 10.1038/nrc3932. PubMed DOI PMC
King C.E., Cuatrecasas M., Castells A., Sepulveda A.R., Lee J.S., Rustgi A.K. LIN28B promotes colon cancer progression and metastasis. Cancer Res. 2011;71:4260–4268. doi: 10.1158/0008-5472.CAN-10-4637. PubMed DOI PMC
Dai L., Pan G., Liu X., Huang J., Jiang Z., Zhu X., Gan X., Xu Q., Tan N. High expression of ALDOA and DDX5 are associated with poor prognosis in human colorectal cancer. Cancer Manag. Res. 2018;10:1799–1806. doi: 10.2147/CMAR.S157925. PubMed DOI PMC
Shin S., Rossow K.L., Grande J.P., Janknecht R. Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res. 2007;67:7572–7578. doi: 10.1158/0008-5472.CAN-06-4652. PubMed DOI
Wu N., Jiang M., Han Y., Liu H., Chu Y., Liu H., Cao J., Hou Q., Zhao Y., Xu B., et al. O-GlcNAcylation promotes colorectal cancer progression by regulating protein stability and potential catcinogenic function of DDX5. J. Cell. Mol. Med. 2019;23:1354–1362. doi: 10.1111/jcmm.14038. PubMed DOI PMC
Causevic M., Hislop R.G., Kernohan N.M., Carey F.A., Kay R.A., Steele R.J., Fuller-Pace F.V. Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene. 2001;20:7734–7743. doi: 10.1038/sj.onc.1204976. PubMed DOI
Kim B., Lee J.-H., Park J.W., Kwon T.K., Baek S.K., Hwang I., Kim S. An essential microRNA maturing microprocessor complex component DGCR8 is up-regulated in colorectal carcinomas. Clin. Exp. Med. 2014;14:331–336. doi: 10.1007/s10238-013-0243-8. PubMed DOI PMC
Vincenzi B., Zoccoli A., Schiavon G., Iuliani M., Pantano F., Dell’aquila E., Ratta R., Muda A.O., Perrone G., Brunelli C., et al. Dicer and Drosha expression and response to Bevacizumab-based therapy in advanced colorectal cancer patients. Eur. J. Cancer. 2013;49:1501–1508. doi: 10.1016/j.ejca.2012.11.014. PubMed DOI
Li L., Yu C., Gao H., Li Y. Argonaute proteins: Potential biomarkers for human colon cancer. Bmc Cancer. 2010;10:38. doi: 10.1186/1471-2407-10-38. PubMed DOI PMC
Wang Y.-X., Zhang X.-Y., Zhang B.-F., Yang C.-Q., Gao H.-J. Study on the clinical significance of Argonaute2 expression in colonic carcinoma by tissue microarray. Int. J. Clin. Exp. Pathol. 2013;6:476–484. PubMed PMC
Faggad A., Kasajima A., Weichert W., Stenzinger A., Elwali N.E., Dietel M., Denkert C. Down-regulation of the microRNA processing enzyme Dicer is a prognostic factor in human colorectal cancer. Histopathology. 2012;61:552–561. doi: 10.1111/j.1365-2559.2011.04110.x. PubMed DOI
Wang T., Han P., He Y., Zhao C., Wang G., Yang W., Shan M., Zhu Y., Yang C., Weng M., et al. Lin28A enhances chemosensitivity of colon cancer cells to 5-FU by promoting apoptosis in a let-7 independent manner. Tumour Biol. 2016;37:7657–7665. doi: 10.1007/s13277-015-4559-8. PubMed DOI
King C.E., Wang L., Winograd R., Madison B.B., Mongroo P.S., Johnstone C.N., Rustgi A.K. LIN28B fosters colon cancer migration, invasion and transformation through let-7-dependent and -independent mechanisms. Oncogene. 2011;30:4185–4193. doi: 10.1038/onc.2011.131. PubMed DOI PMC
Pang M., Wu G., Hou X., Hou N., Liang L., Jia G., Shuai P., Luo B., Wang K., Li G. LIN28B promotes colon cancer migration and recurrence. PLoS ONE. 2014;9:e109169. doi: 10.1371/journal.pone.0109169. PubMed DOI PMC
Liu Y.H., Li Y., Liu X.H., Sui H.M., Liu Y.X., Xiao Z.Q., Zheng P., Chen L., Yao S., Xing C., et al. A signature for induced pluripotent stem cell-associated genes in colorectal cancer. Med. Oncol. 2013;30:426. doi: 10.1007/s12032-012-0426-2. PubMed DOI
Yuan L., Tian J. LIN28B promotes the progression of colon cancer by increasing B-cell lymphoma 2 expression. Biomed. Pharm. 2018;103:355–361. doi: 10.1016/j.biopha.2018.04.002. PubMed DOI
Michlewski G., Cáceres J.F. Post-transcriptional control of miRNA biogenesis. RNA. 2019;25:1–16. doi: 10.1261/rna.068692.118. PubMed DOI PMC
Zhang M., Weng W., Zhang Q., Wu Y., Ni S., Tan C., Xu M., Sun H., Liu C., Wei P., et al. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J. Hematol. Oncol. 2018;11:113. doi: 10.1186/s13045-018-0656-7. PubMed DOI PMC
Pong S.K., Gullerova M. Noncanonical functions of microRNA pathway enzymes – Drosha, DGCR8, Dicer and Ago proteins. Febs Lett. 2018;592:2973–2986. doi: 10.1002/1873-3468.13196. PubMed DOI
Khan M., Khan Z., Uddin Y., Mustafa S., Shaukat I., Pan J., Höti N. Evaluating the Oncogenic and Tumor Suppressor Role of XPO5 in Different Tissue Tumor Types. Asian Pac. J. Cancer Prev. 2018;19:1119–1125. PubMed PMC
Swahari V., Nakamura A., Deshmukh M. The paradox of dicer in cancer. Mol Cell Oncol. 2016;3 doi: 10.1080/23723556.2016.1155006. PubMed DOI PMC
Chen X., Li W.-F., Wu X., Zhang H.-C., Chen L., Zhang P.-Y., Liu L.-Y., Ma D., Chen T., Zhou L., et al. Dicer regulates non-homologous end joining and is associated with chemosensitivity in colon cancer patients. Carcinogenesis. 2017;38:873–882. doi: 10.1093/carcin/bgx059. PubMed DOI
Yang W.J., Yang D.D., Na S., Sandusky G.E., Zhang Q., Zhao G. Dicer Is Required for Embryonic Angiogenesis during Mouse Development. J. Biol. Chem. 2005;280:9330–9335. doi: 10.1074/jbc.M413394200. PubMed DOI
Kuehbacher A., Urbich C., Zeiher A.M., Dimmeler S. Role of Dicer and Drosha for Endothelial MicroRNA Expression and Angiogenesis. Circ. Res. 2007;101:59–68. doi: 10.1161/CIRCRESAHA.107.153916. PubMed DOI
Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI
Williams M., Cheng Y.Y., Blenkiron C., Reid G. Exploring Mechanisms of MicroRNA Downregulation in Cancer. MicroRNA. 2017;6:2–16. doi: 10.2174/2211536605666161208154633. PubMed DOI
Volinia S., Calin G.A., Liu C.-G., Ambs S., Cimmino A., Petrocca F., Visone R., Iorio M., Roldo C., Ferracin M., et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA. 2006;103:2257–2261. doi: 10.1073/pnas.0510565103. PubMed DOI PMC
Israel A., Sharan R., Ruppin E., Galun E. Increased MicroRNA Activity in Human Cancers. PLoS ONE. 2009;4:e6045. doi: 10.1371/journal.pone.0006045. PubMed DOI PMC
Song M.-S., Rossi J.J. Molecular mechanisms of Dicer: Endonuclease and enzymatic activity. Biochem. J. 2017;474:1603–1618. doi: 10.1042/BCJ20160759. PubMed DOI PMC
Berdiel-Acer M., Berenguer A., Sanz-Pamplona R., Cuadras D., Sanjuan X., Paules M.J., Santos C., Salazar R., Moreno V., Capella G., et al. A 5-gene classifier from the carcinoma-associated fibroblast transcriptomic profile and clinical outcome in colorectal cancer. Oncotarget. 2014;5:6437–6452. doi: 10.18632/oncotarget.2237. PubMed DOI PMC
Vychytilova-Faltejskova P., Merhautova J., Machackova T., Gutierrez-Garcia I., Garcia-Solano J., Radova L., Brchnelova D., Slaba K., Svoboda M., Halamkova J., et al. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis. 2017;6 doi: 10.1038/s41389-017-0006-6. PubMed DOI PMC