Chemical Composition and Determination of the Antibacterial Activity of Essential Oils in Liquid and Vapor Phases Extracted from Two Different Southeast Asian Herbs-Houttuynia cordata (Saururaceae) and Persicaria odorata (Polygonaceae)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32456033
PubMed Central
PMC7287994
DOI
10.3390/molecules25102432
PII: molecules25102432
Knihovny.cz E-zdroje
- Klíčová slova
- Houttuynia cordata, Persicaria odorata, antimicrobial activity, distillation, essential oil, gas chromatography., vapor phase, volatile compounds,
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- bakteriální infekce farmakoterapie mikrobiologie MeSH
- extrakce kapalina-kapalina MeSH
- grampozitivní bakterie účinky léků MeSH
- Houttuynia chemie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- oleje prchavé chemie farmakologie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- Polygonaceae chemie MeSH
- rostlinné extrakty chemie farmakologie MeSH
- Staphylococcus aureus účinky léků patogenita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- oleje prchavé MeSH
- rostlinné extrakty MeSH
Essential oils obtained via the hydrodistillation of two Asian herbs (Houttuynia cordata and Persicaria odorata) were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Additionally, both the liquid and vapor phase of essential oil were tested on antimicrobial activity using the broth microdilution volatilization method. Antimicrobial activity was tested on Gram-negative and Gram-positive bacteria-Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Streptococcus pyogenes, Klebsiella pneumoniae, Seratia marcescense and Bacillus subtilis. Hydrodistillation produced a yield of 0.34% (Houttuynia cordata) and 0.40% (Persicaria odorata). 41 compounds were identified in both essential oils. Essential oils contained monoterpenes and their oxidized forms, sesquiterpenes and their oxidized forms, oxidized diterpenes, derivates of phenylpropene and other groups, such as, for example, aldehydes, alcohols or fatty acids. Both essential oils were antimicrobial active in both vapor and liquid phases at least in case of one bacterium. They expressed various antimicrobial activity in the range of 128-1024 μg∙mL-1, 512-1024 μg∙mL-1 in broth and 1024 μg∙mL-1, 512-1024 μg∙mL-1 in agar, respectively. Research showed new interesting information about P. odorata and H. cordata essential oils and demonstrated that both essential oils could be possibly used in the field of natural medicine or natural food preservation.
Zobrazit více v PubMed
Caputo L., Nazzaro F., Souza L.F., Aliberti L., De Martino L., Fratianni F., Coppola R., De Feo V. Laurus nobilis: Composition of Essential Oil and Its Biological Activities. Molecules. 2017;22:930. doi: 10.3390/molecules22060930. PubMed DOI PMC
Merghni A., Marzouki H., Hentati H., Aouni M., Mastouri M. Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Curr. Res. Transl. Med. 2016;64:29–34. doi: 10.1016/j.patbio.2015.10.003. PubMed DOI
Rafiq R., Hayek S.A., Anyanwu U., Hardy B.I., Giddings V.L., Ibrahim S.A., Tahergorabi R., Kang H.W. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum x radens and Laurus nobilis L. Foods. 2016;5:28. doi: 10.3390/foods5020028. PubMed DOI PMC
Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013;6:1451–1474. doi: 10.3390/ph6121451. PubMed DOI PMC
Kon K.V., Rai M.K. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev. Anti-Infect. Ther. 2012;10:775–790. doi: 10.1586/eri.12.57. PubMed DOI
Feyaerts A.F., Mathe L., Luyten W., Tournu H., Van Dyck K., Broekx L., Van Dijck P. Assay and recommendations for the detection of vapour-phase-mediated antimicrobial activities. Flavour Frag. J. 2017;32:347–353. doi: 10.1002/ffj.3400. DOI
Houdkova M., Doskocil I., Urbanova K., Tulin E., Rondevaldova J., Tulin A.B., Kudera T., Tulin E.E., Zeleny V., Kokoska L. Evaluation of antipneumonic effect of Philippine essential oils using broth microdilution volatilization method and their lung fibroblasts toxicity. Nat. Prod. Commun. 2018;13:1059–1066. doi: 10.1177/1934578X1801300834. DOI
Acs K., Bencsik T., Boszormenyi A., Kocsis B., Horvath G. Essential oils and their vapors as potential antibacterial agents against respiratory tract pathogens. Nat. Prod. Commun. 2016;11:1709–1712. PubMed
Amat S., Baines D., Alexander T.W. A vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens. Lett. Appl. Microbiol. 2017;65:489–495. doi: 10.1111/lam.12804. PubMed DOI
Reyes-Jurado F., Cervantes-Rincon T., Bach H., Lopez-Malo A., Palou E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crops Prod. 2019;131:90–95. doi: 10.1016/j.indcrop.2019.01.036. DOI
Santomauro F., Donato R., Pini G., Sacco C., Ascrizzi R., Bilia A.R. Liquid and vapor-phase activity of Artemisia annua essential oil against pathogenic Malassezia spp. Planta Med. 2018;84:160–167. doi: 10.1055/s-0043-118912. PubMed DOI
Torpol K., Wiriyacharee P., Sriwattana S., Sangsuwan J., Prinyawiwatkul W. Antimicrobia activity of garlic (Allium sativum L.) and holy basil (Ocimum sanctum L.) essential oils applied by liquid vs. vapour phases. Int. J. Food Sci. Technol. 2018;53:2119–2128. doi: 10.1111/ijfs.13799. DOI
Azadbakht E., Maghsoudlou Y., Khomiri M., Kashiri M. Development and structural characterization of chitosan films containing Eucalyptus globulus essential oil: Potential as an antimicrobial carrier for packaging of sliced sausage. Food Packag. Shelf Life. 2018;17:65–72. doi: 10.1016/j.fpsl.2018.03.007. DOI
Chen C.W., Xu Z.W., Ma Y.R., Liu J.L., Zhang Q.J., Tang Z.P., Fu K.J., Yang F.X., Xie J. Properties, vapour-phase antimicrobial and antioxidant activities of active poly(vinyl alcohol) packaging films incorporated with clove oil. Food Control. 2018;88:105–112. doi: 10.1016/j.foodcont.2017.12.039. DOI
Silva F., Domingues F.C. Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit. Rev. Food Sci. Nutr. 2017;57:35–47. doi: 10.1080/10408398.2013.847818. PubMed DOI
Laird K., Phillips C. Vapour phase: A potential future use for essential oils as antimicrobials? Lett. Appl. Microbiol. 2012;54:169–174. doi: 10.1111/j.1472-765X.2011.03190.x. PubMed DOI
Ji H., Kim H., Beuchat L.R., Ryu J.H. Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky. Int. J. Food Microbiol. 2019;291:104–110. doi: 10.1016/j.ijfoodmicro.2018.11.023. PubMed DOI
Doran A.L., Morden W.E., Dunn K., Edwards-Jones V. Vapour-phase activities of essential oils against antibiotic sensitive and resistant bacteria including MRSA. Lett. Appl. Microbiol. 2009;48:387–392. doi: 10.1111/j.1472-765X.2009.02552.x. PubMed DOI
Asakawa Y., Tomiyama K., Sakurai K., Kawakami Y., Yaguchi Y. Volatile compounds from the different organs of Houttuynia cordata and Litsea cubeba (L. citriodora) J. Oleo Sci. 2017;66:889–895. doi: 10.5650/jos.ess17049. PubMed DOI
Ji Y.B., Yang J.J., Yu M., Cao Y., Guo S.Z., Qiao A.N. Study on medicinal plant active substances extraction and antibacterial activity of Houttuynia cordata; Proceedings of the 1st International Global on Renewable Energy and Development; Singapore. 22–25 December 2017; Bristol, UK: IOP Publishing Ltd; 2017.
Kwon H.-D., Cha I.-H., Lee W.-K., Song J.-H., Park I.-H. Antibacterial activity of volatile flavor components from Houttuynia cordata Thunb. Prev. Nutr. Food Sci. 1996;1:208–213.
Lu H., Wu X., Liang Y., Zhang J. Variation in chemical composition and antibacterial activities of essential oils from two species of Houttuynia THUNB. Chem. Pharm. Bull. 2006;54:936–940. doi: 10.1248/cpb.54.936. PubMed DOI
Pang J., Dong W., Li Y., Xia X., Liu Z., Hao H., Jiang L., Liu Y. Purification of Houttuynia cordata Thunb. essential oil using macroporous resin followed by microemulsion encapsulation to improve its safety and antiviral activity. Molecules. 2017;22:293. doi: 10.3390/molecules22020293. PubMed DOI PMC
Verma R.S., Joshi N., Padalia R.C., Singh V.R., Goswami P., Kumar A., Iqbal H., Verma R.K., Chanda D., Chauhan A. Chemical composition and allelopathic, antibacterial, antifungal, and antiacetylcholinesterase activity of fish-mint (Houttuynia cordataThunb.) from India. Chem. Biodivers. 2017;14:e1700189. doi: 10.1002/cbdv.201700189. PubMed DOI
Shavandi M.A., Haddadian Z., Ismail M.H.S. Eryngium foetidum L. Coriandrum sativum and Persicaria odorata L.: A review. J. Asian Sci. Res. 2012;2:410.
Starkenmann C., Luca L., Niclass Y., Praz E., Roguet D. Comparison of volatile constituents of Persicaria odorata (Lour.) Sojak (Polygonum odoratum Lour.) and Persicaria hydropiper L. Spach (Polygonum hydropiper L.) J. Agric. Food Chem. 2006;54:3067–3071. doi: 10.1021/jf0531611. PubMed DOI
Dai D.N., Thang T.D., Ogunmoye A., Eresanya O.I., Ogunwande I.A. Chemical constituents of essential oils from the leaves of Tithonia diversifolia, Houttuynia cordata and Asarum glabrum grown in Vietnam. Am. J. Essent. Oil. 2015;2:17–21.
Oh S. An effective quality control of pharmacologically active volatiles of Houttuynia cordata Thunb by fast gas chromatography-surface acoustic wave sensor. Molecules. 2015;20:10298–10312. doi: 10.3390/molecules200610298. PubMed DOI PMC
Zhang W., Lu F., Pan S., Li S. Extraction of volatile oil from Houttuynia cordata and its anti-biotic and anti-virus activities. Pract. Prev. Med. 2008;15:312–316.
Jiangang F., Ling D., Zhang L., Hongmei L. Houttuynia cordata Thunb: A review of phytochemistry and pharmacology and quality control. Chin. Med. 2013;4:101–123.
Fujita K., Chavasiri W., Kubo I. Anti-salmonella activity of volatile compounds of Vietnam coriander. Phytother. Res. 2015;29:1081–1087. doi: 10.1002/ptr.5351. PubMed DOI
Chansiw N., Paradee N., Chotinantakul K., Srichairattanakool S. Anti-hemolytic, antibacterial and anti-cancer activities of methanolic extracts from leaves and stems of Polyg. odoratum. Asian Pac. J. Trop. Biomed. 2018;8:580–585. doi: 10.4103/2221-1691.248094. DOI
Almarie A., Mamat A., Wahab Z., Rukunudin I. Chemical composition and phytotoxicity of essential oils isolated from Malaysian plants. Allelopath. J. 2016;37:55–69.
Murray A.F., Satooka H., Shimizu K., Chavasiri W., Kubo I. Polygonum odoratum essential oil inhibits the activity of mushroom derived tyrosinase. Heliyon. 2019;5:e02817. doi: 10.1016/j.heliyon.2019.e02817. PubMed DOI PMC
Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI
Linstrom P.J., Mallard W. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. [(accessed on 30 April 2020)]; Available online: https://webbook.nist.gov/chemistry/
Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing Corporation; Carol Stream, IL, USA: 2007.
Dũng N.X., Van Hac L., Leclercq P.A. Volatile constituents of the aerial parts of Vietnamese Polygonum odoratum L. J. Essent. Oil Res. 1995;7:339–340. doi: 10.1080/10412905.1995.9698534. DOI
Hunter M.V., Brophy J.J., Ralph B.J., Bienvenu F.E. Composition of Polygonum odoratum Lour. from Southern Australia. J. Essent. Oil Res. 1997;9:603–604. doi: 10.1080/10412905.1997.9700789. DOI
Trombetta D., Castelli F., Sarpietro M.G., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G., Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005;49:2474–2478. doi: 10.1128/AAC.49.6.2474-2478.2005. PubMed DOI PMC
Sieniawska E., Swatko-Ossor M., Sawicki R., Skalicka-Woźniak K., Ginalska G. Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Med. Princ. Pract. 2017;26:108–112. doi: 10.1159/000454680. PubMed DOI PMC
Lis A., Banaszczak P. Chemical composition of the essential oils from flowers and leaves of Phellodendron chinense CK Schneid. J. Essent. Oil-Bear. Plants. 2010;13:52–58. doi: 10.1080/0972060X.2010.10643790. DOI
Arnal-Schnebelen B., Hadji-Minaglou F., Peroteau J., Ribeyre F., De Billerbeck V. Essential oils in infectious gynaecological disease: A statistical study of 658 cases. Int. J. Aromather. 2004;14:192–197. doi: 10.1016/j.ijat.2004.09.003. DOI
Fernandes E.S., Passos G.F., Medeiros R., da Cunha F.M., Ferreira J., Campos M.M., Pianowski L.F., Calixto J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007;569:228–236. doi: 10.1016/j.ejphar.2007.04.059. PubMed DOI
Jang H.-I., Rhee K.-J., Eom Y.-B. Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Can. J. Microbiol. 2020;66:1–11. doi: 10.1139/cjm-2020-0004. PubMed DOI
Pichette A., Larouche P.L., Lebrun M., Legault J. Composition and antibacterial activity of Abies balsamea essential oil. Phytother. Res. 2006;20:371–373. doi: 10.1002/ptr.1863. PubMed DOI
PubChem Database; [(accessed on 28 April 2020)]. National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Caryophyllene.