Chemical Composition and Determination of the Antibacterial Activity of Essential Oils in Liquid and Vapor Phases Extracted from Two Different Southeast Asian Herbs-Houttuynia cordata (Saururaceae) and Persicaria odorata (Polygonaceae)

. 2020 May 22 ; 25 (10) : . [epub] 20200522

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32456033

Essential oils obtained via the hydrodistillation of two Asian herbs (Houttuynia cordata and Persicaria odorata) were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Additionally, both the liquid and vapor phase of essential oil were tested on antimicrobial activity using the broth microdilution volatilization method. Antimicrobial activity was tested on Gram-negative and Gram-positive bacteria-Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Streptococcus pyogenes, Klebsiella pneumoniae, Seratia marcescense and Bacillus subtilis. Hydrodistillation produced a yield of 0.34% (Houttuynia cordata) and 0.40% (Persicaria odorata). 41 compounds were identified in both essential oils. Essential oils contained monoterpenes and their oxidized forms, sesquiterpenes and their oxidized forms, oxidized diterpenes, derivates of phenylpropene and other groups, such as, for example, aldehydes, alcohols or fatty acids. Both essential oils were antimicrobial active in both vapor and liquid phases at least in case of one bacterium. They expressed various antimicrobial activity in the range of 128-1024 μg∙mL-1, 512-1024 μg∙mL-1 in broth and 1024 μg∙mL-1, 512-1024 μg∙mL-1 in agar, respectively. Research showed new interesting information about P. odorata and H. cordata essential oils and demonstrated that both essential oils could be possibly used in the field of natural medicine or natural food preservation.

Zobrazit více v PubMed

Caputo L., Nazzaro F., Souza L.F., Aliberti L., De Martino L., Fratianni F., Coppola R., De Feo V. Laurus nobilis: Composition of Essential Oil and Its Biological Activities. Molecules. 2017;22:930. doi: 10.3390/molecules22060930. PubMed DOI PMC

Merghni A., Marzouki H., Hentati H., Aouni M., Mastouri M. Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Curr. Res. Transl. Med. 2016;64:29–34. doi: 10.1016/j.patbio.2015.10.003. PubMed DOI

Rafiq R., Hayek S.A., Anyanwu U., Hardy B.I., Giddings V.L., Ibrahim S.A., Tahergorabi R., Kang H.W. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum x radens and Laurus nobilis L. Foods. 2016;5:28. doi: 10.3390/foods5020028. PubMed DOI PMC

Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013;6:1451–1474. doi: 10.3390/ph6121451. PubMed DOI PMC

Kon K.V., Rai M.K. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev. Anti-Infect. Ther. 2012;10:775–790. doi: 10.1586/eri.12.57. PubMed DOI

Feyaerts A.F., Mathe L., Luyten W., Tournu H., Van Dyck K., Broekx L., Van Dijck P. Assay and recommendations for the detection of vapour-phase-mediated antimicrobial activities. Flavour Frag. J. 2017;32:347–353. doi: 10.1002/ffj.3400. DOI

Houdkova M., Doskocil I., Urbanova K., Tulin E., Rondevaldova J., Tulin A.B., Kudera T., Tulin E.E., Zeleny V., Kokoska L. Evaluation of antipneumonic effect of Philippine essential oils using broth microdilution volatilization method and their lung fibroblasts toxicity. Nat. Prod. Commun. 2018;13:1059–1066. doi: 10.1177/1934578X1801300834. DOI

Acs K., Bencsik T., Boszormenyi A., Kocsis B., Horvath G. Essential oils and their vapors as potential antibacterial agents against respiratory tract pathogens. Nat. Prod. Commun. 2016;11:1709–1712. PubMed

Amat S., Baines D., Alexander T.W. A vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens. Lett. Appl. Microbiol. 2017;65:489–495. doi: 10.1111/lam.12804. PubMed DOI

Reyes-Jurado F., Cervantes-Rincon T., Bach H., Lopez-Malo A., Palou E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crops Prod. 2019;131:90–95. doi: 10.1016/j.indcrop.2019.01.036. DOI

Santomauro F., Donato R., Pini G., Sacco C., Ascrizzi R., Bilia A.R. Liquid and vapor-phase activity of Artemisia annua essential oil against pathogenic Malassezia spp. Planta Med. 2018;84:160–167. doi: 10.1055/s-0043-118912. PubMed DOI

Torpol K., Wiriyacharee P., Sriwattana S., Sangsuwan J., Prinyawiwatkul W. Antimicrobia activity of garlic (Allium sativum L.) and holy basil (Ocimum sanctum L.) essential oils applied by liquid vs. vapour phases. Int. J. Food Sci. Technol. 2018;53:2119–2128. doi: 10.1111/ijfs.13799. DOI

Azadbakht E., Maghsoudlou Y., Khomiri M., Kashiri M. Development and structural characterization of chitosan films containing Eucalyptus globulus essential oil: Potential as an antimicrobial carrier for packaging of sliced sausage. Food Packag. Shelf Life. 2018;17:65–72. doi: 10.1016/j.fpsl.2018.03.007. DOI

Chen C.W., Xu Z.W., Ma Y.R., Liu J.L., Zhang Q.J., Tang Z.P., Fu K.J., Yang F.X., Xie J. Properties, vapour-phase antimicrobial and antioxidant activities of active poly(vinyl alcohol) packaging films incorporated with clove oil. Food Control. 2018;88:105–112. doi: 10.1016/j.foodcont.2017.12.039. DOI

Silva F., Domingues F.C. Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit. Rev. Food Sci. Nutr. 2017;57:35–47. doi: 10.1080/10408398.2013.847818. PubMed DOI

Laird K., Phillips C. Vapour phase: A potential future use for essential oils as antimicrobials? Lett. Appl. Microbiol. 2012;54:169–174. doi: 10.1111/j.1472-765X.2011.03190.x. PubMed DOI

Ji H., Kim H., Beuchat L.R., Ryu J.H. Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky. Int. J. Food Microbiol. 2019;291:104–110. doi: 10.1016/j.ijfoodmicro.2018.11.023. PubMed DOI

Doran A.L., Morden W.E., Dunn K., Edwards-Jones V. Vapour-phase activities of essential oils against antibiotic sensitive and resistant bacteria including MRSA. Lett. Appl. Microbiol. 2009;48:387–392. doi: 10.1111/j.1472-765X.2009.02552.x. PubMed DOI

Asakawa Y., Tomiyama K., Sakurai K., Kawakami Y., Yaguchi Y. Volatile compounds from the different organs of Houttuynia cordata and Litsea cubeba (L. citriodora) J. Oleo Sci. 2017;66:889–895. doi: 10.5650/jos.ess17049. PubMed DOI

Ji Y.B., Yang J.J., Yu M., Cao Y., Guo S.Z., Qiao A.N. Study on medicinal plant active substances extraction and antibacterial activity of Houttuynia cordata; Proceedings of the 1st International Global on Renewable Energy and Development; Singapore. 22–25 December 2017; Bristol, UK: IOP Publishing Ltd; 2017.

Kwon H.-D., Cha I.-H., Lee W.-K., Song J.-H., Park I.-H. Antibacterial activity of volatile flavor components from Houttuynia cordata Thunb. Prev. Nutr. Food Sci. 1996;1:208–213.

Lu H., Wu X., Liang Y., Zhang J. Variation in chemical composition and antibacterial activities of essential oils from two species of Houttuynia THUNB. Chem. Pharm. Bull. 2006;54:936–940. doi: 10.1248/cpb.54.936. PubMed DOI

Pang J., Dong W., Li Y., Xia X., Liu Z., Hao H., Jiang L., Liu Y. Purification of Houttuynia cordata Thunb. essential oil using macroporous resin followed by microemulsion encapsulation to improve its safety and antiviral activity. Molecules. 2017;22:293. doi: 10.3390/molecules22020293. PubMed DOI PMC

Verma R.S., Joshi N., Padalia R.C., Singh V.R., Goswami P., Kumar A., Iqbal H., Verma R.K., Chanda D., Chauhan A. Chemical composition and allelopathic, antibacterial, antifungal, and antiacetylcholinesterase activity of fish-mint (Houttuynia cordataThunb.) from India. Chem. Biodivers. 2017;14:e1700189. doi: 10.1002/cbdv.201700189. PubMed DOI

Shavandi M.A., Haddadian Z., Ismail M.H.S. Eryngium foetidum L. Coriandrum sativum and Persicaria odorata L.: A review. J. Asian Sci. Res. 2012;2:410.

Starkenmann C., Luca L., Niclass Y., Praz E., Roguet D. Comparison of volatile constituents of Persicaria odorata (Lour.) Sojak (Polygonum odoratum Lour.) and Persicaria hydropiper L. Spach (Polygonum hydropiper L.) J. Agric. Food Chem. 2006;54:3067–3071. doi: 10.1021/jf0531611. PubMed DOI

Dai D.N., Thang T.D., Ogunmoye A., Eresanya O.I., Ogunwande I.A. Chemical constituents of essential oils from the leaves of Tithonia diversifolia, Houttuynia cordata and Asarum glabrum grown in Vietnam. Am. J. Essent. Oil. 2015;2:17–21.

Oh S. An effective quality control of pharmacologically active volatiles of Houttuynia cordata Thunb by fast gas chromatography-surface acoustic wave sensor. Molecules. 2015;20:10298–10312. doi: 10.3390/molecules200610298. PubMed DOI PMC

Zhang W., Lu F., Pan S., Li S. Extraction of volatile oil from Houttuynia cordata and its anti-biotic and anti-virus activities. Pract. Prev. Med. 2008;15:312–316.

Jiangang F., Ling D., Zhang L., Hongmei L. Houttuynia cordata Thunb: A review of phytochemistry and pharmacology and quality control. Chin. Med. 2013;4:101–123.

Fujita K., Chavasiri W., Kubo I. Anti-salmonella activity of volatile compounds of Vietnam coriander. Phytother. Res. 2015;29:1081–1087. doi: 10.1002/ptr.5351. PubMed DOI

Chansiw N., Paradee N., Chotinantakul K., Srichairattanakool S. Anti-hemolytic, antibacterial and anti-cancer activities of methanolic extracts from leaves and stems of Polyg. odoratum. Asian Pac. J. Trop. Biomed. 2018;8:580–585. doi: 10.4103/2221-1691.248094. DOI

Almarie A., Mamat A., Wahab Z., Rukunudin I. Chemical composition and phytotoxicity of essential oils isolated from Malaysian plants. Allelopath. J. 2016;37:55–69.

Murray A.F., Satooka H., Shimizu K., Chavasiri W., Kubo I. Polygonum odoratum essential oil inhibits the activity of mushroom derived tyrosinase. Heliyon. 2019;5:e02817. doi: 10.1016/j.heliyon.2019.e02817. PubMed DOI PMC

Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI

Linstrom P.J., Mallard W. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. [(accessed on 30 April 2020)]; Available online: https://webbook.nist.gov/chemistry/

Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing Corporation; Carol Stream, IL, USA: 2007.

Dũng N.X., Van Hac L., Leclercq P.A. Volatile constituents of the aerial parts of Vietnamese Polygonum odoratum L. J. Essent. Oil Res. 1995;7:339–340. doi: 10.1080/10412905.1995.9698534. DOI

Hunter M.V., Brophy J.J., Ralph B.J., Bienvenu F.E. Composition of Polygonum odoratum Lour. from Southern Australia. J. Essent. Oil Res. 1997;9:603–604. doi: 10.1080/10412905.1997.9700789. DOI

Trombetta D., Castelli F., Sarpietro M.G., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G., Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005;49:2474–2478. doi: 10.1128/AAC.49.6.2474-2478.2005. PubMed DOI PMC

Sieniawska E., Swatko-Ossor M., Sawicki R., Skalicka-Woźniak K., Ginalska G. Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Med. Princ. Pract. 2017;26:108–112. doi: 10.1159/000454680. PubMed DOI PMC

Lis A., Banaszczak P. Chemical composition of the essential oils from flowers and leaves of Phellodendron chinense CK Schneid. J. Essent. Oil-Bear. Plants. 2010;13:52–58. doi: 10.1080/0972060X.2010.10643790. DOI

Arnal-Schnebelen B., Hadji-Minaglou F., Peroteau J., Ribeyre F., De Billerbeck V. Essential oils in infectious gynaecological disease: A statistical study of 658 cases. Int. J. Aromather. 2004;14:192–197. doi: 10.1016/j.ijat.2004.09.003. DOI

Fernandes E.S., Passos G.F., Medeiros R., da Cunha F.M., Ferreira J., Campos M.M., Pianowski L.F., Calixto J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007;569:228–236. doi: 10.1016/j.ejphar.2007.04.059. PubMed DOI

Jang H.-I., Rhee K.-J., Eom Y.-B. Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Can. J. Microbiol. 2020;66:1–11. doi: 10.1139/cjm-2020-0004. PubMed DOI

Pichette A., Larouche P.L., Lebrun M., Legault J. Composition and antibacterial activity of Abies balsamea essential oil. Phytother. Res. 2006;20:371–373. doi: 10.1002/ptr.1863. PubMed DOI

PubChem Database; [(accessed on 28 April 2020)]. National Center for Biotechnology Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Caryophyllene.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...