Trimetallic Nanoparticles: Greener Synthesis and Their Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32916829
PubMed Central
PMC7559138
DOI
10.3390/nano10091784
PII: nano10091784
Knihovny.cz E-zdroje
- Klíčová slova
- catalytic activities, eco-friendly methods, green chemistry, nanoparticle synthesis, sustainable synthesis, trimetallic nanoparticles,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanoparticles (NPs) and multifunctional nano-sized materials have significant applications in diverse fields, namely catalysis, sensors, optics, solar energy conversion, cancer therapy/diagnosis, and bioimaging. Trimetallic NPs have found unique catalytic, active food packaging, biomedical, antimicrobial, and sensing applications; they preserve an ever-superior level of catalytic activities and selectivity compared to monometallic and bimetallic nanomaterials. Due to these important applications, a variety of preparation routes, including hydrothermal, microemulsion, selective catalytic reduction, co-precipitation, and microwave-assisted methodologies have been reported for the syntheses of these nanomaterials. As the fabrication of nanomaterials using physicochemical methods often have hazardous and toxic impacts on the environment, there is a vital need to design innovative and well-organized eco-friendly, sustainable, and greener synthetic protocols for their assembly, by applying safer, renewable, and inexpensive materials. In this review, noteworthy recent advancements relating to the applications of trimetallic NPs and nanocomposites comprising these NPs are underscored as well as their eco-friendly and sustainable synthetic preparative options.
Zobrazit více v PubMed
Mohammadinejad R., Karimi S., Iravani S., Varma R.S. Plant-derived nanostructures: Types and applications. Green Chem. 2016;18:20–52. doi: 10.1039/C5GC01403D. DOI
Mohammadinejad R., Shavandi A., Raie D.S., Sangeetha J., Soleimani M., Hajibehzad S.S., Thangadurai D., Hospet R., Popoola J.O., Arzani A., et al. Plant molecular farming: Production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem. 2019;21:1845–1865. doi: 10.1039/C9GC00335E. DOI
Nasrollahzadeh M., Sajjadi M., Dadashi J., Ghafuri H. Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv. Colloid Interface Sci. 2020;276:102103. doi: 10.1016/j.cis.2020.102103. PubMed DOI
Vajtai R. Springer Handbook of Nanomaterials. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013.
Nadagouda M.N., Varma R.S. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: Density-assisted self-assembly of nanospheres, wires and rods. Green Chem. 2006;8:516–518. doi: 10.1039/b601271j. DOI
Nasrollahzadeh M., Sajadi M.S., Atarod M., Sajjadi M., Isaabadi Z. An Introduction to Green Nanotechnology. Academic Press; Cambridge, MA, USA: 2019.
Iravani S., Varma R.S. Bacteria in Heavy Metal Remediation and Nanoparticle Biosynthesis. ACS Sustain. Chem. Eng. 2020;8:5395–5409. doi: 10.1021/acssuschemeng.0c00292. DOI
Okuda M., Kobayashi Y., Suzuki K., Sonoda K., Kondoh T., Wagawa A., Kondo A., Yoshimura H. Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett. 2005;5:991–993. doi: 10.1021/nl050556q. PubMed DOI
Antolini E. Palladium in fuel cell catalysis. Energy Environ. Sci. 2009;2:915–931. doi: 10.1039/b820837a. DOI
Zaheer Z. Silver nanoparticles formation using tyrosine in presence cetyltrimethylammonium bromide. Colloids Surf. B Biointerfaces. 2012;89:211–215. doi: 10.1016/j.colsurfb.2011.09.013. PubMed DOI
Arico A.S., Bruce P., Scrosati B., Tarascon J.M., Schalkwijk W.V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005;4:366–377. doi: 10.1038/nmat1368. PubMed DOI
Skrabalak S.E., Au L., Lu X., Li X., Xia Y. Gold nanocages for cancer detection and treatment. Nanomedicine. 2007;2:657–668. doi: 10.2217/17435889.2.5.657. PubMed DOI
West J.L., Halas N.J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 2003;5:285–292. doi: 10.1146/annurev.bioeng.5.011303.120723. PubMed DOI
Nasrollahzadeh M., Motahharifar N., Sajjadi M., Aghbolagh A.M., Shokouhimehr M., Varma R.S. Recent advances in N-formylation of amines and nitroarenes using efficient (nano) catalysts in eco-friendly media. Green Chem. 2019;21:5144–5167. doi: 10.1039/C9GC01822K. DOI
Nasrollahzadeh M., Sajadi S.M., Sajjadi M., Issaabadi Z. Interface Science and Technology. Volume 28. Elsevier; Amsterdam, The Netherlands: 2019. Applications of nanotechnology in daily life; pp. 113–143.
Vashist A., Kaushik A., Vashist A., Sagar V., Ghosal A., Gupta Y.K., Ahmad S., Nair M. Advances in carbon nanotubes–hydrogel hybrids in nanomedicine for therapeutics. Adv. Healthc. Mater. 2018;7:1701213. doi: 10.1002/adhm.201701213. PubMed DOI PMC
Ghosal A., Ahmad S. High performance anti-corrosive epoxy–titania hybrid nanocomposite coatings. New J. Chem. 2017;41:4599–4610. doi: 10.1039/C6NJ03906E. DOI
Ghosal A., Rahman O.U., Ahmad S. High-performance soya polyurethane networked silica hybrid nanocomposite coatings. Ind. Eng. Chem. Res. 2015;54:12770–12787. doi: 10.1021/acs.iecr.5b02098. DOI
Sajjadi M., Nasrollahzadeh M., Tahsili M.R. Catalytic and antimicrobial activities of magnetic nanoparticles supported N-heterocyclic palladium (II) complex: A magnetically recyclable catalyst for the treatment of environmental contaminants in aqueous media. Ind. Eng. Chem. Res. 2019;227:115716. doi: 10.1016/j.seppur.2019.115716. DOI
Siddiqui S.I., Chaudhry S.A. Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Saf. Environ. Prot. 2017;111:592–626. doi: 10.1016/j.psep.2017.08.009. DOI
Dalvand A., Nabizadeh R., Ganjali M.R., Khoobi M., Nazmara S., Mahvi A.H. Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: Optimization, reusability, kinetic and equilibrium studies. J. Magn. Magn. Mater. 2016;404:179–189. doi: 10.1016/j.jmmm.2015.12.040. DOI
Gómez-Pastora J., Bringas E., Ortiz I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 2014;256:187–204. doi: 10.1016/j.cej.2014.06.119. DOI
Toshima N. Macromolecular Symposia. WILEY-VCH Verlag; Weinheim, Germany: 2008. Capped bimetallic and trimetallic nanoparticles for catalysis and information technology; pp. 27–39.
Venkatesan P., Santhanalakshmi J. Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. Langmuir. 2010;26:12225–12229. doi: 10.1021/la101088d. PubMed DOI
Ferrando R., Jellinek J., Johnston R.L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008;108:845–910. doi: 10.1021/cr040090g. PubMed DOI
Yu W., Porosoff M.D., Chen J.G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012;112:5780–5817. doi: 10.1021/cr300096b. PubMed DOI
Basavegowda N., Mishra K., Lee Y.R. Trimetallic FeAgPt alloy as a nanocatalyst for the reduction of 4-nitroaniline and decolorization of rhodamine B: A comparative study. J. Alloys Compd. 2017;701:456–464. doi: 10.1016/j.jallcom.2017.01.122. DOI
Gu H., Yang Z., Gao J., Chang C.K., Xu B. Heterodimers of nanoparticles: Formation at a liquid− liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 2005;127:34–35. doi: 10.1021/ja045220h. PubMed DOI
Liu X., Liu X. Bimetallic nanoparticles: Kinetic control matters. Angew. Chem. Int. Ed. 2012;51:3311–3313. doi: 10.1002/anie.201108661. PubMed DOI
Mattei J.-G., Grammatikopoulos P., Zhao J., Singh V., Vernieres J., Steinhauer S., Porkovich A., Danielson E., Nordlund K., Djurabekova F. Gas-Phase synthesis of trimetallic Nanoparticles. Chem. Mater. 2019;31:2151–2163. doi: 10.1021/acs.chemmater.9b00129. DOI
Park J.H., Ahn H.S. Electrochemical synthesis of multimetallic nanoparticles and their application in alkaline oxygen reduction catalysis. Appl. Surf. Sci. 2020;504:144517. doi: 10.1016/j.apsusc.2019.144517. DOI
Chen P.-C., Liu G., Zhou Y., Brown K.A., Chernyak N., Hedrick J.L., He S., Xie Z., Lin Q.-Y., Dravid V.P. Tip-directed synthesis of multimetallic nanoparticles. J. Am. Chem. Soc. 2015;137:9167–9173. doi: 10.1021/jacs.5b05139. PubMed DOI
Franger S., Berthet P., Berthon J. Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. J. Solid State Electrochem. 2004;8:218–223. doi: 10.1007/s10008-003-0469-6. DOI
Sharma G., Kumar D., Kumar A., Ala’a H., Pathania D., Naushad M., Mola G.T. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Mater. Sci. Eng. C. 2017;71:1216–1230. doi: 10.1016/j.msec.2016.11.002. PubMed DOI
Gun’ko Y.K., Pillai S.C., McInerney D. Magnetic nanoparticles and nanoparticle assemblies from metallorganic precursors. J. Mater. Sci. Mater. Electron. 2001;12:299–302. doi: 10.1023/A:1011284009174. DOI
Mondal B.N., Basumallick A., Chattopadhyay P.P. Magnetic behavior of nanocrystalline Cu–Ni–Co alloys prepared by mechanical alloying and isothermal annealing. J. Alloys Compd. 2008;457:10–14. doi: 10.1016/j.jallcom.2007.02.139. DOI
Roshanghias A., Bernardi J., Ipser H. An attempt to synthesize Sn-Zn-Cu alloy nanoparticles. Mater. Lett. 2016;178:10–14. doi: 10.1016/j.matlet.2016.04.192. DOI
Lan J., Li C., Liu T., Yuan Q. One-step synthesis of porous PtNiCu trimetallic nanoalloy with enhanced electrocatalytic performance toward methanol oxidation. J. Saudi Chem. Soc. 2019;23:43–51. doi: 10.1016/j.jscs.2018.04.002. DOI
Dong W., Ren Y., Bai Z., Yang Y., Wang Z., Zhang C., Chen Q. Trimetallic AuPtPd nanocomposites platform on graphene: Applied to electrochemical detection and breast cancer diagnosis. Talanta. 2018;189:79–85. doi: 10.1016/j.talanta.2018.06.067. PubMed DOI
Yadav N., Jaiswal A.K., Dey K.K., Yadav V.B., Nath G., Srivastava A.K., Yadav R.R. Trimetallic Au/Pt/Ag based nanofluid for enhanced antibacterial response. Mater. Chem. Phys. 2018;218:10–17. doi: 10.1016/j.matchemphys.2018.07.016. DOI
Wang L., Yamauchi Y. Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core−Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. J. Am. Chem. Soc. 2010;132:13636–13638. doi: 10.1021/ja105640p. PubMed DOI
Wang L., Yamauchi Y. Strategic synthesis of trimetallic Au@Pd@Pt core-shell nanoparticles from poly(vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts. Chem. Mater. 2011;23:2457–2465. doi: 10.1021/cm200382s. DOI
Nasrollahzadeh M., Mahmoudi-Gom Yek S., Motahharifar N., Ghafori Gorab M. Recent Developments in the Plant-Mediated Green Synthesis of Ag-Based Nanoparticles for Environmental and Catalytic Applications. Chem. Rec. 2019;19:2436–2479. doi: 10.1002/tcr.201800202. PubMed DOI
Duan H., Wang D., Li Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015;44:5778–5792. doi: 10.1039/C4CS00363B. PubMed DOI
Iravani S., Varma R. Plant-derived Edible Nanoparticles and miRNAs: Emerging Frontier for Therapeutics and Targeted Drug-delivery. ACS Sustain. Chem. Eng. 2019;7:8055–8069. doi: 10.1021/acssuschemeng.9b00954. DOI
Iravani S., Varma R.S. Biofactories: Engineered nanoparticles via genetically engineered organisms. Green Chem. 2019;21:4583–4603. doi: 10.1039/C9GC01759C. DOI
Iravani S., Varma R.S. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019;21:4839–4867. doi: 10.1039/C9GC02391G. DOI
Iravani S., Varma R.S. Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chem. 2020 doi: 10.1039/D0GC00885K. DOI
Iravani S., Varma R.S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020;22:612–636. doi: 10.1039/C9GC02835H. DOI
Mizukoshi Y., Fujimoto T., Nagata Y., Oshima R., Maeda Y. Characterization and catalytic activity of core−shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J. Phys. Chem. B. 2000;104:6028–6032. doi: 10.1021/jp994255e. DOI
Joshi S.S., Patil S.F., Iyer V., Mahumuni S. Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct. Mater. 1998;10:1135–1144. doi: 10.1016/S0965-9773(98)00153-6. DOI
Gour A., Jain N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019;47:844–851. doi: 10.1080/21691401.2019.1577878. PubMed DOI
Zhang H., Lu L., Cao Y., Du S., Cheng Z., Zhang S. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4. Mater. Res. Bull. 2014;49:393–398. doi: 10.1016/j.materresbull.2013.09.025. DOI
Wen Y., Ren F., Bai T., Xu H., Du Y. Facile construction of trimetallic PtAuRu nanostructures with highly porous features and perpendicular pore channels as enhanced formic acid catalysts. Colloids Surf. A Physicochem. Eng. Asp. 2018;537:418–424. doi: 10.1016/j.colsurfa.2017.10.049. DOI
Dutta S., Ray C., Sasmal A.K., Negishi Y., Pal T. Fabrication of Dog-Bone Shaped Au NR Core–Pt/Pd Shell Trimetallic Nanoparticle-Decorated Reduced Graphene Oxide Nanosheets for Excellent Electrocatalysis. J. Mater. Chem. A. 2016;4:3765–3776. doi: 10.1039/C6TA00379F. DOI
Zhou Y., Shen Y., Xi J. Seed-Mediated Synthesis of PtxAuy@Ag Electrocatalysts for the Selective Oxidation of Glycerol. Appl. Catal. B Environ. 2019;245:604–612. doi: 10.1016/j.apcatb.2019.01.009. DOI
Yang H., He L.-Q., Wang Z.-H., Zheng Y.-Y., Lu X., Li G.-R., Fang P.-P., Chen J., Tong Y. Surface Plasmon Resonance Promoted Photoelectrocatalyst by Visible Light from Au Core Pd Shell Pt Cluster Nanoparticles. Electrochim. Acta. 2016;209:591–598. doi: 10.1016/j.electacta.2016.05.120. DOI
Weiner R.G., Skrabalak S.E. Seed-Mediated Co-Reduction as a Route to Shape-Controlled Trimetallic Nanocrystals. Hem. Mater. 2016;28:4139–4142. doi: 10.1021/acs.chemmater.6b01715. DOI
Sahoo A., Tripathy S.K., Dehury N., Patra S. A Porous Trimetallic Au@Pd@Ru Nanoparticle System: Synthesis, Characterisation and Efficient Dye Degradation and Removal. J. Mater. Chem. A. 2015;3:19376–19383. doi: 10.1039/C5TA03959B. DOI
Quyen T.T.B., Su W.-N., Chen C.-H., Rick J., Liu J.-Y., Hwang B.-J. Novel Ag/Au/Pt Trimetallic Nanocages Used with Surface-Enhanced Raman Scattering for Trace Fluorescent Dye Detection. J. Mater. Chem. B. 2014;2:5550–5557. doi: 10.1039/C4TB00569D. PubMed DOI
Sharmaa G., Bhogal S., Naushad M., Inamuddine I., Kumara A., Stadler F.J. Microwave assisted fabrication of La/Cu/Zr/Carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants. J. Photochem. Photobiol. A Chem. 2017;347:235–243. doi: 10.1016/j.jphotochem.2017.07.001. DOI
Tang Z., Jung E., Jang Y., Bhang S.H., Kim J., Kim W.-S., Yu T. Facile Aqueous-Phase Synthesis of Bimetallic (AgPt, AgPd, and CuPt) and Trimetallic (AgCuPt) Nanoparticles. Materials. 2020;13:254. doi: 10.3390/ma13020254. PubMed DOI PMC
Khan Z. Trimetallic nanoparticles: Synthesis, characterization and catalytic degradation of formic acid for hydrogen generation. Int. J. Hydrogen Energy. 2019;44:11503–11513. doi: 10.1016/j.ijhydene.2019.03.122. DOI
Zeynizadeh B., Gilanizadeh M. Green and highly efficient approach for the reductive coupling of nitroarenes to azoxyarenes using the new mesoporous Fe3O4@SiO2@Co–Zr–Sb catalyst. Res. Chem. Intermed. 2020;46:2969–2984. doi: 10.1007/s11164-020-04126-7. DOI
Varma R.S. Greener approach to nanomaterials and their sustainable applications. Curr. Opin. Chem. Eng. 2012;1:123–128. doi: 10.1016/j.coche.2011.12.002. DOI
Varma R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014;16:2027–2041. doi: 10.1039/c3gc42640h. DOI
Varma R.S. Greener and sustainable chemistry. Appl. Sci. 2014;4:493–497. doi: 10.3390/app4040493. DOI
Varma R.S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustain. Chem. Eng. 2016;4:5866–5878. doi: 10.1021/acssuschemeng.6b01623. PubMed DOI PMC
Varma R.S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustain. Chem. Eng. 2019;7:6458–6470. doi: 10.1021/acssuschemeng.8b06550. DOI
Rahman O.u., Shi S., Ding J., Donglin W., Ahmad S., Yu H. Lignin nanoparticles: Synthesis, characterization and their corrosion protection performance. New J. Chem. 2018;42:3415–3425. doi: 10.1039/C7NJ04103A. DOI
Lievonen M., Valle-Delgado J.J., Mattinen M.-L., Hult E.-L., Lintinen K., Kostiainen M.A., Paananen A., Szilvay G.R., Setälä H., Österberg M. A simple process for lignin nanoparticle preparation. Green Chem. 2016;18:1416–1422. doi: 10.1039/C5GC01436K. DOI
Myint A.A., Lee H.W., Seo B., Son W.-S., Yoon J., Yoon T.J., Park H.J., Yu J., Yoon J., Lee Y.-W. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent. Green Chem. 2016;18:2129–2146. doi: 10.1039/C5GC02398J. DOI
Vaidya M.Y., McBain A.J., Butler J.A., Banks C.E., Whitehead K.A. Antimicrobial efficacy and synergy of metal ions against Enterococcus faecium, Klebsiella pneumoniae and Acinetobacter baumannii in planktonic and biofilm phenotypes. Sci. Rep. 2017;7:1–9. doi: 10.1038/s41598-017-05976-9. PubMed DOI PMC
Nazari Z.E., Banoee M., Sepahi A.A., Rafii F., Shahverdi A.R. The combination effects of trivalent gold ions and gold nanoparticles with different antibiotics against resistant Pseudomonas aeruginosa. Gold Bull. 2012;45:53–59. doi: 10.1007/s13404-012-0048-7. DOI
Dizaji B.F., Khoshbakht S., Farboudi A., Azarbaijan M.H., Irani M. Far-reaching advances in the role of carbon nanotubes in cancer therapy. Life Sci. 2020;257:118059. doi: 10.1016/j.lfs.2020.118059. PubMed DOI
Cai X.-L., Liu C.-H., Liu J., Lu Y., Zhong Y.-N., Nie K.-Q., Xu J.-L., Gao X., Sun X.-H., Wang S.-D. Synergistic effects in CNTs-PdAu/Pt trimetallic nanoparticles with high electrocatalytic activity and stability. Nano Micro. Lett. 2017;9:48. PubMed PMC
Mao H., Guo X., Fu Y., Yang H., Zhang Y., Zhang R., Song X.-M. Enhanced electrolytic oxygen evolution by the synergistic effects of trimetallic FeCoNi boride oxides immobilized on polypyrrole/reduced graphene oxide. J. Mater. Chem. A. 2020;8:1821–1828. doi: 10.1039/C9TA10756H. DOI
Sharifuzzaman M., Barman S.C., Rahman M.T., Zahed M.A., Xuan X., Parkz J.Y. Green synthesis and layer-by-layer assembly of amino-functionalized graphene oxide/carboxylic surface modified trimetallic nanoparticles nanocomposite for label-free electrochemical biosensing. J. Electrochem. Soc. 2019;166:B983–B993. doi: 10.1149/2.0821912jes. DOI
Nasrollahzadeh M., Atarod M., Sajjadi M., Sajadi S.M., Issaabadi Z. Interface Science and Technology. Volume 28. Elsevier; Amsterdam, The Netherlands: 2019. Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications; pp. 199–322.
Singh P., Kim Y.-J., Zhang D., Yang D.-C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34:588–599. doi: 10.1016/j.tibtech.2016.02.006. PubMed DOI
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650. doi: 10.1039/c1gc15386b. DOI
Iravani S., Soufi G.J. Gold Nanostructures in Medicine and Biology. In: Shukla A.K., editor. Nanoparticles in Medicine. Springer Nature; Singapore: 2019.
Iravani S., Varma R.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett. 2020:1–25. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC
Haverkamp R.G., Marshall A.T., van Agterveld D. Pick your carats: Nanoparticles of gold–silver–copper alloy produced in vivo. J. Nanopart. Res. 2007;9:697–700. doi: 10.1007/s11051-006-9198-y. DOI
Dlugaszewska J., Dobrucka R. Effectiveness of Biosynthesized Trimetallic Au/Pt/Ag Nanoparticles on Planktonic and Biofilm Enterococcus faecalis and Enterococcus faecium Forms. J. Clust. Sci. 2019;30:1091–1101. doi: 10.1007/s10876-019-01570-3. DOI
Dobrucka R. Biogenic synthesis of trimetallic nanoparticles Au/ZnO/Ag using Meliloti officinalis extract. Int. J. Environ. Anal. Chem. 2019;100:1–11. doi: 10.1080/03067319.2019.1691543. DOI
Vaseghi Z., Tavakoli O., Nematollahzadeh A. Rapid biosynthesis of novel Cu/Cr/Ni trimetallic oxide nanoparticles with antimicrobial activity. J. Environ. Chem. Eng. 2018;6:1898–1911. doi: 10.1016/j.jece.2018.02.038. DOI
Rao K.J., Paria S. Mixed phytochemicals mediated synthesis of multifunctional Ag–Au–Pd nanoparticles for glucose oxidation and antimicrobial applications. ACS Appl. Mater. Interfaces. 2015;7:14018–14025. doi: 10.1021/acsami.5b03089. PubMed DOI
Nüchter M., Ondruschka B., Bonrathb W., Gum A. Microwave assisted synthesis—A critical technology overview. Green Chem. 2004;6:128–141. doi: 10.1039/B310502D. DOI
Karthikeyan B., Loganathan B. Rapid Green Synthetic Protocol for Novel Trimetallic Nanoparticles. J. Nanopart. 2013;2013:168916. doi: 10.1155/2013/168916. DOI
Karthikeyan B., Loganathan B. Strategic green synthesis and characterization of Au/Pt/Ag trimetallic nanocomposites. Mater. Lett. 2012;85:53–56. doi: 10.1016/j.matlet.2012.06.070. DOI
Ji Y., Yang S., Guo S., Song X., Ding B., Yang Z. Bimetallic Ag/Au nanoparticles: A low temperature ripening strategy in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2010;372:204–209. doi: 10.1016/j.colsurfa.2010.10.028. DOI
Sharma G., Gupta V.K., Agarwal S., Bhogal S., Naushad M., Kumar A., Stadler F.J. Fabrication and characterization of trimetallic nano-photocatalyst for remediation of ampicillin antibiotic. J. Mol. Liq. 2018;260:342–350. doi: 10.1016/j.molliq.2018.03.059. DOI
Sharma G., Bhogal S., Gupta V.K., Agarwal S., Kumar A., Pathania D., Mola G.T., Stadler F.J. Algal biochar reinforced trimetallic nanocomposite as adsorptional/photocatalyst for remediation of malachite green from aqueous medium. J. Mol. Liq. 2019;275:499–509. doi: 10.1016/j.molliq.2018.11.070. DOI
Sen B., Demirkan B., Şavk A., Gülbay S.K., Sen F. Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy. 2018;43:17984–17992. doi: 10.1016/j.ijhydene.2018.07.122. DOI
Yan Z., Chrisey D.B. Pulsed laser ablation in liquid for micro-/nanostructure generation. J. Photochem. Photobiol. C Photochem. Rev. 2012;13:204–223. doi: 10.1016/j.jphotochemrev.2012.04.004. DOI
Semaltianos N.G. Nanoparticles by Laser Ablation. Crit. Rev. Solid State Mater. Sci. 2010;35:105–124. doi: 10.1080/10408431003788233. DOI
Amendola V., Meneghetti M. What controls the composition and the structure of nano-materials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013;15:3027. doi: 10.1039/C2CP42895D. PubMed DOI
Singh R., Soni R.K. Improved catalytic activity of laser generated bimetallic and trimetallic nanoparticles. J. Nanosci. Nanotechnol. 2014;14:6872–6879. doi: 10.1166/jnn.2014.9267. PubMed DOI
Singh R., Soni R.K. Plasmonics properties of trimetallic Al@Al2O3@Ag@Au and Al@Al2O3@AuAg nanostructures. Appl. Phys. A. 2014;116:955–967. doi: 10.1007/s00339-014-8455-7. DOI
Ghosal A., Shah J., Kotnala R.K., Ahmad S. Facile green synthesis of nickel nanostructures using natural polyol and morphology dependent dye adsorption properties. J. Mater. Chem. A. 2013;1:12868–12878. doi: 10.1039/c3ta12716h. DOI
Ravi R., Iqbal S., Ghosal A., Ahmad S. Novel mesoporous trimetallic strontium magnesium ferrite (Sr0.3Mg0.7Fe2O4) nanocubes: A selective and recoverable magnetic nanoadsorbent for Congo red. J. Alloys Compd. 2019;791:336–347. doi: 10.1016/j.jallcom.2019.03.305. DOI
Khan Z. Chitosan Capped Au@Pd@Ag Trimetallic Nanoparticles: Synthesis, Stability, Capping Action and Adsorbing Activities. Int. J. Biol. Macromol. 2020;153:545–560. doi: 10.1016/j.ijbiomac.2020.02.304. PubMed DOI
Jilani S.Z., Cohen C.P., Iyanobor E.E., Zager D., Zheng R., Frankenfield K.M., Tong Y.Y.J. Surfactant-Free One-Pot Synthesis of Homogeneous Trimetallic PtNiCu Nanoparticles With Size Control by Using Glycine. Langmuir. 2020;36:5902–5907. doi: 10.1021/acs.langmuir.0c00665. PubMed DOI
Cheng Y., Su H., Koop T., Mikhailov E., Pöschl U. Size dependence of phase transitions in aerosol nanoparticles. Nat. Commun. 2015;6:1–7. doi: 10.1038/ncomms6923. PubMed DOI PMC
Binod A., Ganachari S.V., Yaradoddi J.S., Tapaskar R.P., Banapurmath N.R., Shettar A.S. Biological synthesis and characterization of tri-metallic alloy (Au Ag, Sr) nanoparticles and its sensing studies. IOP Conf. Ser. Mater. Sci. Eng. 2018;376:1–6. doi: 10.1088/1757-899X/376/1/012054. DOI
Dobrucka R. Facile synthesis of trimetallic nanoparticles Au/CuO/ZnO using Vitex agnus-castus extract and their activity in degradation of organic dyes. Int. J. Environ. Anal. Chem. 2019:1–12. doi: 10.1080/03067319.2019.1691543. DOI
Mishra K., Basavegowda N., Lee Y.R. AuFeAg hybrid nanoparticles as an efficient recyclable catalyst for the synthesis of α, β-and β, β-dichloroenones. Appl. Catal. A Gen. 2015;506:180–187. doi: 10.1016/j.apcata.2015.09.014. DOI
Wang J., Yin G., Liu H., Li R., Flemming R.L., Sun X. Carbon nanotubes supported Pt–Au catalysts for methanol-tolerant oxygen reduction reaction: A comparison between Pt/Au and PtAu nanoparticles. J. Power Sources. 2009;194:668–673. doi: 10.1016/j.jpowsour.2009.06.040. DOI
Wang X., Liu D., Song S., Zhang H. Pt@CeO2 multicore@ shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013;135:15864–15872. doi: 10.1021/ja4069134. PubMed DOI
Xie J., Lee J.Y., Wang D.I.C. Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution. Chem. Mater. 2007;19:2823–2830. doi: 10.1021/cm0700100. DOI
Zheng J.-N., Li S.-S., Ma X., Chen F.-Y., Wang A.-J., Chen J.-R., Feng J.-J. Green synthesis of core–shell gold–palladium@ palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media. J. Power Sources. 2014;262:270–278. doi: 10.1016/j.jpowsour.2014.03.131. DOI
Zhang Z., Cong L., Yu Z., Qu L., Qian M., Huang W. FeNiMo trimetallic nanoparticles encapsulated in carbon cages as efficient hydrogen evolution reaction electrocatalysts. Mater. Adv. 2020;1:54–60. doi: 10.1039/D0MA00065E. DOI
Zhang J., Jang H., Chen L., Jiang X., Kim M.G., Wu Z., Liu X., Cho J. In-situ formed N doped bamboo-like carbon nanotube decorated with Fe–Ni–Cr nanoparticles as efficient electrocatalysts for overall water-splitting. Mater. Chem. Phys. 2020;241:122375. doi: 10.1016/j.matchemphys.2019.122375. DOI
Fu L.-L., Zhang D.-F., Yang Z., Chen T.-W., Zhai J. PtAuCo Trimetallic Nanoalloys as Highly Efficient Catalysts toward Dehydrogenation of Ammonia Borane. ACS Sustain. Chem. Eng. 2020;8:3734–3742. doi: 10.1021/acssuschemeng.9b06865. DOI
Marmisollé W.A., Azzaroni O. Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization. Nanoscale. 2016;8:9890–9918. doi: 10.1039/C5NR08326E. PubMed DOI
Jiang C., Markutsya S., Tsukruk V.V. Compliant, robust, and truly nanoscale free-standing multilayer films fabricated using spin-assisted layer-by-layer assembly. Adv. Mater. 2004;16:157–161. doi: 10.1002/adma.200306010. DOI
Reta N., Saint C.P., Michelmore A., Prieto-Simon B., Voelcker N.H. Nanostructured electrochemical biosensors for label-free detection of water- and food-borne pathogens. ACS Appl. Mater. Interfaces. 2018;10:6055–6072. doi: 10.1021/acsami.7b13943. PubMed DOI
Barman S.C., Hossain M.F., Yoon H., Park J.Y. Trimetallic Pd@Au@Pt nanocomposites platform on-COOH terminated reduced graphene oxide for highly sensitive CEA and PSA biomarkers detection. Biosens. Bioelectron. 2018;100:16–22. doi: 10.1016/j.bios.2017.08.045. PubMed DOI
Ye X., He X., Lei Y., Tang J., Yu Y., Shi H., Wang K. One-pot synthesized Cu/Au/Pt trimetallic nanoparticles with enhanced catalytic and plasmonic properties as a universal platform for biosensing and cancer theranostics. Chem. Commun. 2019;55:2321–2324. doi: 10.1039/C8CC10127B. PubMed DOI
Abdelwahab A.A., Elseman A.M., Alotaibi N.F., Nassar A.M. Simultaneous voltammetric determination of ascorbic acid, dopamine, acetaminophen and tryptophan based on hybrid trimetallic nanoparticles-capped electropretreated graphene. Microchem. J. 2020;156:104927. doi: 10.1016/j.microc.2020.104927. DOI
Nie F., Ga L., Ai J., Wang Y. Trimetallic PdCuAu Nanoparticles for Temperature Sensing and Fluorescence Detection of H2O2 and Glucose. Front. Chem. 2020;8:244. doi: 10.3389/fchem.2020.00244. PubMed DOI PMC
Ma H., Zhang X., Li X., Li R., Du B., Wei Q. Electrochemical immunosensor for detecting typical bladder cancer biomarker based on reduced graphene oxide–tetraethylene pentamine and trimetallic AuPdPt nanoparticles. Talanta. 2015;143:77–82. doi: 10.1016/j.talanta.2015.05.029. PubMed DOI
Dou B., Yang J., Yuan R., Xiang Y. Trimetallic Hybrid Nanoflower-Decorated MoS2 Nanosheet Sensor for Direct in Situ Monitoring of H2O2 Secreted from Live Cancer Cells. Anal. Chem. 2018;90:5945–5950. doi: 10.1021/acs.analchem.8b00894. PubMed DOI
Ge S., Zhang Y., Zhang L., Liang L., Liu H., Yan M., Huang J., Yu J. Ultrasensitive electrochemical cancer cells sensor based on trimetallic dendritic Au@PtPd nanoparticles for signal amplification on lab-on-paper device. Sens. Actuators B Chem. 2015;220:665–672. doi: 10.1016/j.snb.2015.06.009. DOI
Tian L., Liu L., Li Y., Wei Q., Cao W. Ultrasensitive sandwich-type electrochemical immunosensor based on trimetallic nanocomposite signal amplification strategy for the ultrasensitive detection of CEA. Sci. Rep. 2016;6:30849. doi: 10.1038/srep30849. PubMed DOI PMC
Paul D., Mangla S., Neogi S. Antibacterial study of CuO-NiO-ZnO trimetallic oxide nanoparticle. Mater. Lett. 2020;271:127740. doi: 10.1016/j.matlet.2020.127740. DOI
El-Naggar M.E., Shaarawy S., Hebeish A.A. Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohydr. Polym. 2018;181:307–316. doi: 10.1016/j.carbpol.2017.10.074. PubMed DOI
Shaheen T.I., El-Naggar M.E., Abdelgawad A.M., Hebeish A. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. Int. J. Biol. Macromol. 2016;83:426–432. doi: 10.1016/j.ijbiomac.2015.11.003. PubMed DOI
Khandual A., Luximon A., Sachdeva A., Rout N., Sahoo P.K. Enhancement of functional properties of cotton by conventional dyeing with TiO2 nanoparticles. Mater. Today Proc. 2015;2:3674–3683. doi: 10.1016/j.matpr.2015.07.128. DOI
El-Naggar M.E., Shaarawy S., Hebeish A.A. Bactericidal finishing of loomstate, scoured and bleached cotton fibres via sustainable in-situ synthesis of silver nanoparticles. Int. J. Biol. Macromol. 2018;106:1192–1202. doi: 10.1016/j.ijbiomac.2017.08.127. PubMed DOI
Hassabo A.G., El-Naggar M.E., Mohamed A.L., Hebeish A.A. Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohydr. Polym. 2019;210:144–156. doi: 10.1016/j.carbpol.2019.01.066. PubMed DOI
Basavegowda N., Mandal T.K., Baek K. Bimetallic and Trimetallic Nanoparticles for Active Food Packaging Applications: A Review. Food Bioprocess Technol. 2020;13:30–44. doi: 10.1007/s11947-019-02370-3. DOI
Basavegowda N., Patra J.K., Baek K.H. Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules. 2020;25:1058. doi: 10.3390/molecules25051058. PubMed DOI PMC
Zhou H.C., Long J.R., Yaghi O.M. Introduction to metal–organic frameworks. Chem. Rev. 2012;112:673–674. doi: 10.1021/cr300014x. PubMed DOI
Chen L., Luque R., Li Y. Controllable design of tunable nanostructures inside metal–organic frameworks. Chem. Soc. Rev. 2017;46:4614–4630. doi: 10.1039/C6CS00537C. PubMed DOI
Xiao R., Abdu H.I., Wei L., Wang T., Huo S., Chen J., Lu X. Fabrication of magnetic trimetallic metal–organic frameworks for the rapid removal of tetracycline from water. Analyst. 2020;145:2398–2404. doi: 10.1039/C9AN02481F. PubMed DOI
Sharma G., García-Peñas A., Kumar A., Naushad M., Mola G.T., Alshehri S.M., Ahmed J., Alhokbany N., Stadler F.J. Fe/La/Zn nanocomposite with graphene oxide for photodegradation of phenylhydrazine. J. Mol. Liq. 2019;285:362–374. doi: 10.1016/j.molliq.2019.04.036. DOI
Functionalized Silver and Gold Nanomaterials with Diagnostic and Therapeutic Applications
MXenes in Cancer Nanotheranostics
Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications
Graphene and graphene oxide with anticancer applications: Challenges and future perspectives