Functionalized Silver and Gold Nanomaterials with Diagnostic and Therapeutic Applications

. 2022 Oct 13 ; 14 (10) : . [epub] 20221013

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36297620
Odkazy

PubMed 36297620
PubMed Central PMC9609291
DOI 10.3390/pharmaceutics14102182
PII: pharmaceutics14102182
Knihovny.cz E-zdroje

The functionalization of nanomaterials with suitable capping ligands or bioactive agents is an interesting strategy in designing nanosystems with suitable applicability and biocompatibility; the physicochemical and biological properties of these nanomaterials can be highly improved for biomedical applications. In this context, numerous explorations have been conducted in the functionalization of silver (Ag) and gold (Au) nanomaterials using suitable functional groups or agents to design nanosystems with unique physicochemical properties such as excellent biosensing capabilities, biocompatibility, targeting features, and multifunctionality for biomedical purposes. Future studies should be undertaken for designing novel functionalization tactics to improve the properties of Au- and Ag-based nanosystems and reduce their toxicity. The possible release of cytotoxic radicals or ions, the internalization of nanomaterials, the alteration of cellular signaling pathways, the translocation of these nanomaterials across the cell membranes into mitochondria, DNA damages, and the damage of cell membranes are the main causes of their toxicity, which ought to be comprehensively explored. In this study, recent advancements in diagnostic and therapeutic applications of functionalized Au and Ag nanomaterials are deliberated, focusing on important challenges and future directions.

Zobrazit více v PubMed

Iravani S. Core-shell hybrid nanoparticles: Production and application in agriculture and the environment. In: Abd-Elsalam K.A., editor. Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems: Micro and Nano Technologies. Elsevier; Amsterdam, The Netherlands: 2020. pp. 21–32.

Iravani S., Jamalipour Soufi G. Gold Nanostructures in Medicine and Biology. In: Shukla A.K., editor. Nanoparticles in Medicine. Springer Nature; Singapore: 2019.

Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Trimetallic Nanoparticles: Greener Synthesis and Their Applications. Nanomaterials. 2020;10:1784. doi: 10.3390/nano10091784. PubMed DOI PMC

Nasrollahzadeh M., Sajjadi M., Iravani S., Varma R.S. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J. Hazard. Mater. 2021;401:123401. doi: 10.1016/j.jhazmat.2020.123401. PubMed DOI PMC

Huang X., Jain P., El-Sayed I., El-Sayed M. Special Focus: Nanoparticles for Cancer Diagnosis & Therapeutics-Review; Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine. 2007;2:681–693. PubMed

Luo D., Wang X., Zeng S., Ramamurthy G., Burda C., Basilion J.P. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small. 2019;15:1900968. doi: 10.1002/smll.201900968. PubMed DOI PMC

Pyo K., Ly N.H., Yoon S.Y., Shen Y., Choi S.Y., Lee S.Y., Joo S.W., Lee D. Highly luminescent folate-functionalized Au22 nanoclusters for bioimaging. Adv. Healthc. Mater. 2017;6:1700203. doi: 10.1002/adhm.201700203. PubMed DOI

Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012;41:2256–2282. doi: 10.1039/C1CS15166E. PubMed DOI

Samadian H., Hosseini-Nami S., Kamrava S.K., Ghaznavi H., Shakeri-Zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J. Cancer Res. Clin. Oncol. 2016;42:2217–2229. doi: 10.1007/s00432-016-2179-3. PubMed DOI PMC

Turcheniuk K., Dumych T., Bilyy R., Turcheniuk V., Bouckaert J., Vovk V., Chopyak V., Zaitsev V., Mariot P., Prevarskaya N., et al. Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv. 2016;6:1600–1610. doi: 10.1039/C5RA24662H. DOI

Dai X., Zhao X., Liu Y., Chen B., Ding X., Zhao N., Xu F.-J. Controlled Synthesis and Surface Engineering of Janus Chitosan-Gold Nanoparticles for Photoacoustic Imaging-Guided Synergistic Gene/Photothermal Therapy. Small. 2021;17:2006004. doi: 10.1002/smll.202006004. PubMed DOI

Chatterjee S., Lou X.-Y., Liang F., Yang Y.-W. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coord. Chem. Rev. 2022;459:214461. doi: 10.1016/j.ccr.2022.214461. DOI

Ielo I., Rando G., Giacobello F., Sfameni S., Castellano A., Galletta M., Drommi D., Rosace G., Plutino M.R. Synthesis, Chemical–Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules. 2021;26:5823. doi: 10.3390/molecules26195823. PubMed DOI PMC

Ojea-Jiménez I., Capomaccio R., Osório I., Mehn D., Ceccone G., Hussain R., Siligardi G., Colpo P., Rossi F., Gilliland D., et al. Rational design of multi-functional gold nanoparticles with controlled biomolecule adsorption: A multi-method approach for in-depth characterization. Nanoscale. 2018;10:10173–10181. doi: 10.1039/C8NR00973B. PubMed DOI

Khutale G.V., Casey A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur. J. Pharm. Biopharm. 2017;119:372–380. doi: 10.1016/j.ejpb.2017.07.009. PubMed DOI

Iravani S., Soufi G.J. Algae-derived materials for tissue engineering and regenerative medicine applications: Current trends and future perspectives. Emergent Mater. 2021;5:631–652. doi: 10.1007/s42247-021-00283-6. DOI

Iravani S., Varma R.S. Plant-derived Edible Nanoparticles and miRNAs: Emerging Frontier for Therapeutics and Targeted Drug-delivery. ACS Sustain. Chem. Eng. 2019;7:8055–8069. doi: 10.1021/acssuschemeng.9b00954. DOI

Luo D., Wang X., Burda C., Basilion J.P. Recent Development of Gold Nanoparticles as Contrast Agents for Cancer Diagnosis. Cancers. 2021;13:1825. doi: 10.3390/cancers13081825. PubMed DOI PMC

Tabish T.A., Dey P., Mosca S., Salimi M., Palombo F., Matousek P., Stone N. Smart gold nanostructures for light mediated cancer theranostics: Combining optical diagnostics with photothermal therapy. Adv. Sci. 2020;7:1903441. doi: 10.1002/advs.201903441. PubMed DOI PMC

Mishra S., Teotia A.K., Kumar A., Kannan S. Mechanically tuned nanocomposite coating on titanium metal with integrated properties of biofilm inhibition, cell proliferation, and sustained drug delivery. Nanomedicine. 2017;13:23–35. doi: 10.1016/j.nano.2016.08.010. PubMed DOI

Nguyen N., Le C.H. Synthesis of PVA encapsulated silver nanoparticles as a drug delivery system for doxorubicin and curcumin. Int. J. High Sch. Res. 2021;3:41–47. doi: 10.36838/v3i3.9. DOI

Sakr T.M., Khowessah O.M., Motaleb M.A., Abd El-Bary A., El-Kolaly M.T., Swidan M.M. I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. Eur. J. Pharm. Sci. 2018;122:239–245. doi: 10.1016/j.ejps.2018.06.029. PubMed DOI

Alipour R., Khorshidi A., Shojaei A.F., Mashayekhi F., Moghaddam M.J.M. Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers. Polym. Test. 2019;79:106022. doi: 10.1016/j.polymertesting.2019.106022. DOI

Oryan A., Alemzadeh E., Tashkhourian J., Ana S.F.N. Topical delivery of chitosan-capped silver nanoparticles speeds up healing in burn wounds: A preclinical study. Carbohydr. Polym. 2018;200:82–92. doi: 10.1016/j.carbpol.2018.07.077. PubMed DOI

Kup F.O., Coskuncay S., Duman F. Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Mater. Sci. Eng. C. 2020;107:110207. doi: 10.1016/j.msec.2019.110207. PubMed DOI

Datta L.P., Chatterjee A., Acharya K., De P., Das M. Enzyme responsive nucleotide functionalized silver nanoparticles with effective antimicrobial and anticancer activity. New J. Chem. 2017;41:1538–1548. doi: 10.1039/C6NJ02955H. DOI

Murawala P., Tirmale A., Shiras A., Prasad B.L.V. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug methotrexate to MCF-7 breast cancer cells. Mater. Sci. Eng. C. 2014;34:158–167. doi: 10.1016/j.msec.2013.09.004. PubMed DOI

Ganeshkumar M., Ponrasu T., Raja D.M., Subamekala M.K., Suguna L. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2014;130:64–71. doi: 10.1016/j.saa.2014.03.097. PubMed DOI

Seo J.M., Kim E.B., Hyun M.S., Kim B.B., Park T.J. Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids Surf. B Biointerfaces. 2015;135:27–34. doi: 10.1016/j.colsurfb.2015.07.022. PubMed DOI

Rahme K., Guo J., Holmes J.D., O’Driscoll C.M. Evaluation of the physicochemical properties and the biocompatibility of polyethylene glycol-conjugated gold nanoparticles: A formulation strategy for siRNA delivery. Colloids Surf. B Biointerfaces. 2015;135:604–612. doi: 10.1016/j.colsurfb.2015.08.032. PubMed DOI

Jabir M., Sahib U.I., Taqi Z., Taha A., Sulaiman G., Albukhaty S., Al-Shammari A., Alwahibi M., Soliman D., Dewir Y.H., et al. Linalool-loaded glutathione-modified gold nanoparticles conjugated with CALNN peptide as apoptosis inducer and NF-κB translocation inhibitor in SKOV-3 cell line. Int. J. Nanomed. 2020;15:9025. doi: 10.2147/IJN.S276714. PubMed DOI PMC

Zhang L., Jean S.R., Li X., Sack T., Wang Z., Ahmed S., Chan G., Das J., Zaragoza A., Sargent E.H., et al. Programmable Metal/Semiconductor Nanostructures for mRNA-Modulated Molecular Delivery. Nano Lett. 2018;18:6222–6228. doi: 10.1021/acs.nanolett.8b02263. PubMed DOI

Abdel-Rashid R.S., Omar S.M., Teiama M.S., Khairy A., Magdy M., Anis B. Fabrication of gold nanoparticles in absence of surfactant as in vitro carrier of plasmid DNA. Int. J. Nanomed. 2019;14:8399. doi: 10.2147/IJN.S226498. PubMed DOI PMC

Cheheltani R., Ezzibdeh R.M., Chhour P., Pulaparthi K., Kim J., Jurcova M., Hsu J.C., Blundell C., Litt H.I., Ferrari V.A., et al. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials. 2016;102:87–97. doi: 10.1016/j.biomaterials.2016.06.015. PubMed DOI PMC

Aguilar L.E., Chalony C., Kumar D., Park C.H., Kim C.S. Phenol-Boronic surface functionalization of gold nanoparticles; to induce ROS damage while inhibiting the survival mechanisms of cancer cells. Int. J. Pharm. 2021;596:120267. doi: 10.1016/j.ijpharm.2021.120267. PubMed DOI

Patra S., Mukherjee S., Barui A.K., Ganguly A., Sreedhar B., Patra C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C. 2015;53:298–309. doi: 10.1016/j.msec.2015.04.048. PubMed DOI

Liu H., Shen M., Zhao J., Zhu J., Xiao T., Cao X., Zhang G., Shi X. Facile formation of folic acid-modified dendrimer-stabilized gold-silver alloy nanoparticles for potential cellular computed tomography imaging applications. Analyst. 2013;138:1979–1987. doi: 10.1039/c3an36649a. PubMed DOI

Liu L., Jiang H., Wang X. Functionalized gold nanomaterials as biomimetic nanozymes and biosensing actuators. TrAC Trends Anal. Chem. 2021;143:116376. doi: 10.1016/j.trac.2021.116376. DOI

Murali K., Neelakandan M.S., Thomas S. Biomedical applications of gold nanoparticles. JSM Nanotechnol. Nanomed. 2018;6:1064.

Lew T.T.S., Aung K.M.M., Ow S.Y., Amrun S.N., Sutarlie L., Ng L.F.P., Su X. Epitope-Functionalized Gold Nanoparticles for Rapid and Selective Detection of SARS-CoV-2 IgG Antibodies. ACS Nano. 2021;15:12286–12297. doi: 10.1021/acsnano.1c04091. PubMed DOI

Aithal S., Mishriki S., Gupta R., Sahu R.P., Botos G., Tanvir S., Hanson R.W., Puri I.K. SARS-CoV-2 detection with aptamer-functionalized gold nanoparticles. Talanta. 2022;236:122841. doi: 10.1016/j.talanta.2021.122841. PubMed DOI PMC

Xie Y., Huang Y., Li J., Wu J. A trigger-based aggregation of aptamer-functionalized gold nanoparticles for colorimetry: An example on detection of Escherichia coli O157:H7. Sens. Actuators B Chem. 2021;339:129865. doi: 10.1016/j.snb.2021.129865. DOI

Muhammad M., Shao C.-S., Huang Q. Aptamer-functionalized Au nanoparticles array as the effective SERS biosensor for label-free detection of interleukin-6 in serum. Sens. Actuators B Chem. 2021;334:129607. doi: 10.1016/j.snb.2021.129607. DOI

Retout M., Blond P., Jabin I., Bruylants G. Ultrastable PEGylated Calixarene-Coated Gold Nanoparticles with a Tunable Bioconjugation Density for Biosensing Applications. Bioconjug. Chem. 2021;32:290–300. doi: 10.1021/acs.bioconjchem.0c00669. PubMed DOI

Khalkho B.R., Kurrey R., Deb M.K., Karbhal I., Sahu B., Sinha S., Sahu Y.K., Jain V.K. A simple and convenient dry-state SEIRS method for glutathione detection based on citrate functionalized silver nanoparticles in human biological fluids. New J. Chem. 2021;45:1339–1354. doi: 10.1039/D0NJ04065G. DOI

Yazdanparast S., Benvidi A., Banaei M., Nikukar H., Tezerjani M.D., Azimzadeh M. Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite. Microchim. Acta. 2018;185:405. doi: 10.1007/s00604-018-2918-z. PubMed DOI

Choi J.H., El-Said W.A., Choi J.-W. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platform using core/double shell (Ag/polymer/Ag) nanohorn for proteolytic biosensor. Appl. Surf. Sci. 2020;506:144669. doi: 10.1016/j.apsusc.2019.144669. DOI

Sun I.C., Ahn C.H., Kim K., Emelianov S. Photoacoustic imaging of cancer cells with glycol-chitosan-coated gold nanoparticles as contrast agents. J. Biomed. Opt. 2019;24:121903. doi: 10.1117/1.JBO.24.12.121903. PubMed DOI PMC

Yang Z., Song J., Dai Y., Chen J., Wang F., Lin L., Liu Y., Zhang F., Yu G., Zhou Z., et al. Self-assembly of semiconducting-plasmonic gold nanoparticles with enhanced optical property for photoacoustic imaging and photothermal therapy. Theranostics. 2017;7:2177. doi: 10.7150/thno.20545. PubMed DOI PMC

Yaraki M.T., Pan Y., Hu F., Yu Y., Liu B., Tan Y.N. Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater. Chem. Front. 2020;4:3074–3085. doi: 10.1039/D0QM00469C. DOI

Ganie S.A., Rather L.J., Li Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. Carbohydr. Polym. Technol. Appl. 2021;2:100115. doi: 10.1016/j.carpta.2021.100115. DOI

Giljohann D.A., Seferos D.S., Prigodich A.E., Patel P.C., Mirkin C.A. Gene regulation with polyvalent siRNA− nanoparticle conjugates. J. Am. Chem. Soc. 2009;131:2072–2073. doi: 10.1021/ja808719p. PubMed DOI PMC

Lee C.-S., Kim H., Yu J., Yu S.H., Ban S., Oh S., Jeong D., Im J., Baek M.J., Kim T.H. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. Eur. J. Med. Chem. 2017;142:416–423. doi: 10.1016/j.ejmech.2017.08.063. PubMed DOI

Medici S., Peana M., Coradduzza D., Zoroddu M.A. Gold nanoparticles and cancer: Detection, diagnosis and therapy. Semin. Cancer Biol. 2021;76:27–37. doi: 10.1016/j.semcancer.2021.06.017. PubMed DOI

Xie S., Ai L., Cui C., Fu T., Cheng X., Qu F., Tan W. Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics. ACS Appl. Mater. Interfaces. 2021;13:9542–9560. doi: 10.1021/acsami.0c19562. PubMed DOI

Abadeer N.S., Murphy C.J. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. J. Phys. Chem. C. 2016;120:4691–4716. doi: 10.1021/acs.jpcc.5b11232. DOI

Zhang Y., Zhan X., Xiong J., Peng S., Huang W., Joshi R., Cai Y., Liu Y., Li R., Yuan K., et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci. Rep. 2018;8:8720. doi: 10.1038/s41598-018-26978-1. PubMed DOI PMC

Saravanakumar K., Sathiyaseelan A., Mariadoss A.V.A., Hu X., Venkatachalam K., Wang M.-H. Nucleolin targeted delivery of aptamer tagged Trichoderma derived crude protein coated gold nanoparticles for improved cytotoxicity in cancer cells. Process Biochem. 2021;102:325–332. doi: 10.1016/j.procbio.2021.01.022. DOI

Shahdeo D., Kesarwani V., Suhag D., Ahmed J., Alshehri S.M., Gandhi S. Self-assembled chitosan polymer intercalating peptide functionalized gold nanoparticles as nanoprobe for efficient imaging of urokinase plasminogen activator receptor in cancer diagnostics. Carbohydr. Polym. 2021;266:118138. doi: 10.1016/j.carbpol.2021.118138. PubMed DOI

Luo D., Johnson A., Wang X., Li H., Erokwu B.O., Springer S., Lou J., Ramamurthy G., Flask C.A., Burda C., et al. Targeted Radiosensitizers for MR-Guided Radiation Therapy of Prostate Cancer. Nano Lett. 2020;20:7159–7167. doi: 10.1021/acs.nanolett.0c02487. PubMed DOI PMC

Rotz M.W., Holbrook R.J., MacRenaris K.W., Meade T.J. A markedly improved synthetic approach for the preparation of multifunctional Au-DNA nanoparticle conjugates modified with optical and mr imaging probes. Bioconjug. Chem. 2018;29:3544–3549. doi: 10.1021/acs.bioconjchem.8b00504. PubMed DOI PMC

Luo D., Wang X., Zeng S., Ramamurthy G., Burda C., Basilion J.P. Prostate-specific membrane antigen targeted gold nanoparticles for prostate cancer radiotherapy: Does size matter for targeted particles? Chem. Sci. 2019;10:8119–8128. doi: 10.1039/C9SC02290B. PubMed DOI PMC

Yang J., Wang T., Zhao L., Rajasekhar V.K., Joshi S., Andreou C., Pal S., Hsu H.-t., Zhang H., Cohen I.J., et al. Gold/alpha-lactalbumin nanoprobes for the imaging and treatment of breast cancer. Nat. Biomed. Eng. 2020;4:686–703. doi: 10.1038/s41551-020-0584-z. PubMed DOI PMC

Abrahamse H., Hamblin M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016;473:347–364. doi: 10.1042/BJ20150942. PubMed DOI PMC

Correia J.H., Rodrigues J.A., Pimenta S., Dong T., Yang Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics. 2021;13:1332. doi: 10.3390/pharmaceutics13091332. PubMed DOI PMC

Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., Hazle J.D., Halas N.J., West J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA. 2003;100:13549–13554. doi: 10.1073/pnas.2232479100. PubMed DOI PMC

Kondo Y., Tagami T., Ozeki T. Fabrication of photosensitizer-polyethylene glycol-conjugated gold nanostars for simultaneous photothermal and photodynamic cancer therapy under near-infrared laser irradiation. J. Drug Deliv. Sci. Technol. 2021;66:102892. doi: 10.1016/j.jddst.2021.102892. DOI

Kayani Z., Vais R.D., Soratijahromi E., Mohammadi S., Sattarahmady N. Curcumin-gold-polyethylene glycol nanoparticles as a nanosensitizer for photothermal and sonodynamic therapies: In vitro and animal model studies. Photodiagn. Photodyn. Ther. 2021;33:102139. doi: 10.1016/j.pdpdt.2020.102139. PubMed DOI

Mahmoudpour M., Ding S., Lyu Z., Ebrahimi G., Du D., Dolatabadi J.E.N., Torbati M., Lin Y. Aptamer functionalized nanomaterials for biomedical applications: Recent advances and new horizons. Nano Today. 2021;39:101177. doi: 10.1016/j.nantod.2021.101177. DOI

Wang J., You M., Zhu G., Shukoor M.I., Chen Z., Zhao Z., Altman M.B., Yuan Q., Zhu Z., Chen Y., et al. Photosensitizer–gold nanorod composite for targeted multimodal therapy. Small. 2013;9:3678–3684. doi: 10.1002/smll.201202155. PubMed DOI PMC

Shipunova V.O., Belova M.M., Kotelnikova P.A., Shilova O.N., Mirkasymov A.B., Danilova N.V., Komedchikova E.N., Popovtzer R., Deyev S.M., Nikitin M.P. Photothermal Therapy with HER2-Targeted Silver Nanoparticles Leading to Cancer Remission. Pharmaceutics. 2022;14:1013. doi: 10.3390/pharmaceutics14051013. PubMed DOI PMC

Boca S.C., Potara M., Gabudean A.-M., Juhem A., Baldeck P.L., Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 2011;311:131–140. doi: 10.1016/j.canlet.2011.06.022. PubMed DOI

Thompson E.A., Graham E., MacNeill C.M., Young M., Donati G., Wailes E.M., Jones B.T., Levi-Polyachenko N.H. Differential response of MCF7, MDA-MB-231, and MCF 10A cells to hyperthermia, silver nanoparticles and silver nanoparticle-induced photothermal therapy. Int. J. Hyperth. 2014;30:312–323. doi: 10.3109/02656736.2014.936051. PubMed DOI

Prateeksha P., Bajpai R., Rao C.V., Upreti D.K., Barik S.K., Singh B.N. Chrysophanol-Functionalized Silver Nanoparticles for Anti-Adhesive and Anti-Biofouling Coatings to Prevent Urinary Catheter-Associated Infections. ACS Appl. Nano Mater. 2021;4:1512–1528. doi: 10.1021/acsanm.0c03029. DOI

Ansari M.A., Kalam A., Al-Sehemi A.G., Alomary M.N., AlYahya S., Aziz M.K., Srivastava S., Alghamdi S., Akhtar S., Almalki H.D., et al. Counteraction of Biofilm Formation and Antimicrobial Potential of Terminalia catappa Functionalized Silver Nanoparticles against Candida albicans and Multidrug-Resistant Gram-Negative and Gram-Positive Bacteria. Antibiotics. 2021;10:725. doi: 10.3390/antibiotics10060725. PubMed DOI PMC

Khan B., Nawaz M., Hussain R., Price G.J., Farooq Warsi M., Waseem M. Enhanced antibacterial activity of size-controlled silver and polyethylene glycol functionalized silver nanoparticles. Chem. Pap. 2021;75:743–752. doi: 10.1007/s11696-020-01335-7. DOI

Wei S.-C., Chang L., Huang C.-C., Chang H.-T. Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice. Biomater. Sci. 2019;7:4482–4490. doi: 10.1039/C9BM00772E. PubMed DOI

Vial S., Reis R.L., Oliveira J.M. Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Curr. Opin. Solid State Mater. Sci. 2017;21:92–112. doi: 10.1016/j.cossms.2016.03.006. DOI

Zhang D., Liu D., Zhang J., Fong C., Yang M. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;42:70–77. doi: 10.1016/j.msec.2014.04.042. PubMed DOI

Heo D.N., Ko W.-K., Bae M.S., Lee J.B., Lee D.-W., Byun W., Lee C.H., Kim E.-C., Jung B.-Y., Kwon I.K. Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J. Mater. Chem. B. 2014;2:1584–1593. doi: 10.1039/C3TB21246G. PubMed DOI

Choi S.Y., Song M.S., Ryu P.D., Lam A.T., Joo S.W., Lee S.Y. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway. Int. J. Nanomed. 2015;10:4383–4392. doi: 10.2147/ijn.s78775. PubMed DOI PMC

Zhang Y., Wang P., Mao H., Zhang Y., Zheng L., Yu P., Guo Z., Li L., Jiang Q. PEGylated gold nanoparticles promote osteogenic differentiation in in vitro and in vivo systems. Mater. Des. 2021;197:109231. doi: 10.1016/j.matdes.2020.109231. DOI

Yang E.-J., Lee J., Lee S.-Y., Kim E.-K., Moon Y.-M., Jung Y.O., Park S.-H., Cho M.-L. EGCG attenuates autoimmune arthritis by inhibition of STAT3 and HIF-1α with Th17/Treg control. PLoS ONE. 2014;9:e86062. doi: 10.1371/journal.pone.0086062. PubMed DOI PMC

Zhu S., Zhu L., Yu J., Wang Y., Peng B. Anti-osteoclastogenic effect of epigallocatechin gallate-functionalized gold nanoparticles in vitro and in vivo. Int. J. Nanomed. 2019;14:5017–5032. doi: 10.2147/IJN.S204628. PubMed DOI PMC

Alshamrani M. Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers. 2022;14:1221. doi: 10.3390/polym14061221. PubMed DOI PMC

Báez D.F., Gallardo-Toledo E., Oyarzún M.P., Araya E., Kogan M.J. The Influence of Size and Chemical Composition of Silver and Gold Nanoparticles on in vivo Toxicity with Potential Applications to Central Nervous System Diseases. Int. J. Nanomed. 2021;16:2187–2201. doi: 10.2147/IJN.S260375. PubMed DOI PMC

Lee J.W., Choi S.-R., Heo J.H. Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS Appl. Mater. Interfaces. 2021;13:42311–42328. doi: 10.1021/acsami.1c10436. PubMed DOI

Barbir R., Jiménez R.R., Martín-Rapún R., Strasser V., Jurašin D.D., Dabelić S., de la Fuente J.M., Vrček I.V. Interaction of Differently Sized, Shaped, and Functionalized Silver and Gold Nanoparticles with Glycosylated versus Nonglycosylated Transferrin. ACS Appl. Mater. Interfaces. 2021;13:27533–27547. doi: 10.1021/acsami.1c04063. PubMed DOI

Foroozandeh P., Aziz A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018;13:339. doi: 10.1186/s11671-018-2728-6. PubMed DOI PMC

Sani A., Cao C., Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021;26:100991. doi: 10.1016/j.bbrep.2021.100991. PubMed DOI PMC

Ko W.-C., Wang S.-J., Hsiao C.-Y., Hung C.-T., Hsu Y.-J., Chang D.-C., Hung C.-F. Pharmacological Role of Functionalized Gold Nanoparticles in Disease Applications. Molecules. 2022;27:1551. doi: 10.3390/molecules27051551. PubMed DOI PMC

Ozcicek I., Aysit N., Cakici C., Aydeger A. The effects of surface functionality and size of gold nanoparticles on neuronal toxicity, apoptosis, ROS production and cellular/suborgan biodistribution. Mater. Sci. Eng. C. 2021;128:112308. doi: 10.1016/j.msec.2021.112308. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...