Ancient Plasmodium genomes shed light on the history of human malaria
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Historical Article
PubMed
38867050
PubMed Central
PMC11222158
DOI
10.1038/s41586-024-07546-2
PII: 10.1038/s41586-024-07546-2
Knihovny.cz E-resources
- MeSH
- Biological Evolution MeSH
- History, Ancient MeSH
- Genome, Mitochondrial * genetics MeSH
- Genome, Protozoan * genetics MeSH
- Humans MeSH
- Malaria, Vivax epidemiology history parasitology transmission MeSH
- Malaria * parasitology history transmission epidemiology MeSH
- Altitude MeSH
- Disease Resistance genetics MeSH
- Plasmodium falciparum genetics isolation & purification MeSH
- Plasmodium malariae genetics isolation & purification MeSH
- Plasmodium vivax genetics isolation & purification MeSH
- Plasmodium * genetics classification MeSH
- DNA, Ancient * analysis MeSH
- Malaria, Falciparum epidemiology history parasitology transmission MeSH
- Check Tag
- History, Ancient MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Geographicals
- Americas epidemiology MeSH
- Asia epidemiology MeSH
- Europe epidemiology MeSH
- Names of Substances
- DNA, Ancient * MeSH
Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia BCE, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.
Adelaide Data Science Centre University of Adelaide Adelaide Australia
Anatomy Institute University of Leipzig Leipzig Germany
Anthropological Center Croatian Academy of Sciences and Arts Zagreb Croatia
Austrian Archaeological Institute Austrian Academy of Sciences Vienna Austria
BioArch South Waitati New Zealand
Center for Archaeological Sciences University of Leuven Leuven Belgium
Centre of Archaeological and Ethnographical Investigation Mari State University Yoshkar Ola Russia
Centro Studi sulla Civiltà del Mare Stintino Italy
Departament de Prehistòria Arqueologia i Història Antiga Universitat de València Valencia Spain
Departamento de Biotecnología Universidad de Alicante San Vicente del Raspeig Spain
Departamento de Humanidades Historia Geografía y Arte Universidad Carlos 3 de Madrid Getafe Spain
Department of Anthropology and Heritage Studies University of California Merced Merced CA USA
Department of Anthropology Harvard University Cambridge MA USA
Department of Anthropology Lakehead University Thunder Bay Ontario Canada
Department of Anthropology Natural History Museum Vienna Vienna Austria
Department of Anthropology University of Arkansas Fayetteville AR USA
Department of Anthropology University of North Carolina at Charlotte Charlotte NC USA
Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Department of Biology University of Turku Turku Finland
Department of Biomedical Sciences University of Sassari Sassari Italy
Department of Environmental Sciences University of Basel Basel Switzerland
Department of Evolutionary Anthropology University of Vienna Vienna Austria
Department of Forensic Medicine University of Helsinki Helsinki Finland
Department of Geological Sciences University of Cape Town Cape Town South Africa
Department of History Human Sciences and Education University of Sassari Sassari Italy
Department of History University of Alcalá Alcalá de Henares Spain
Department of Human Evolutionary Biology Harvard University Cambridge MA USA
Department of Medical Engineering and Biotechnology University of Applied Sciences Jena Jena Germany
Department of Microbiology and Immunology Dalhousie University Halifax Nova Scotia Canada
Department of Social and Cultural Anthropology University of Vienna Vienna Austria
Dienst Archeologie Stad Mechelen Mechelen Belgium
Division of Ancient Pathogens BioForge Canada Limited Halifax Nove Scotia Canada
Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
Faculty of History Termez State University Termez Uzbekistan
Forensic Medicine Unit Finnish Institute for Health and Welfare Helsinki Finland
Griffith Centre for Social and Cultural Studies Griffith University Nathan Queensland Australia
Helsinki Collegium for Advanced Studies University of Helsinki Helsinki Finland
Heritage Department National Parks of Antigua and Barbuda St Paul's Parish Antigua and Barbuda
Human Evolution and Archaeological Sciences University of Vienna Vienna Austria
Independent consultant Cagliari Sardinia Italy
Inrap Institut national de recherches archéologiques préventives Paris France
Institut für Prähistorische Archäologie Freie Universität Berlin Berlin Germany
Institut für Ur und Frühgeschichte Heidelberg University Heidelberg Germany
Institut für Urgeschichte und Historische Archäologie University of Vienna Vienna Austria
Institute of Anthropology National Tsing Hua University Hsinchu Taiwan
Institute of Classical Archaeology Faculty of Arts Charles University Prague Czech Republic
Institute of Heritage Sciences Santiago de Compostela Spain
Instituto Internacional de Investigaciones Prehistóricas Universidad de Cantabria Santander Spain
Landesamt für Denkmalpflege und Archäologie Sachsen Anhalt Halle Germany
Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
Microbial Palaeogenomics Unit Department of Genomes and Genetics Institut Pasteur Paris France
Mureș County Museum Târgu Mureş Romania
National Museum of Unification Alba Iulia Alba Iulia Romania
Royal Belgian Institute of Natural Sciences Brussels Belgium
Samara State University of Social Sciences and Education Samara Russia
School of Computer and Mathematical Sciences University of Adelaide Adelaide Australia
Sección de Antropología Sociedad de Ciencias Aranzadi Donostia San Sebastián Spain
Senckenberg Centre for Human Evolution and Palaeoenvironment University of Tübingen Tübingen Germany
Service d'archéologie préventive Bourges plus Bourges France
Servicio de Obstetricia Hospital Virgen de los Lirios Fisabio Alcoi Spain
Silva Nortica Archäologische Dienstleistungen Thunau am Kamp Austria
Sociology and Anthropology Department Farmingdale State College Farmingdale NY USA
Thuringian State Office for Heritage Management and Archaeology Weimar Germany
See more in PubMed
Carter R, Mendis KN. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 2002;15:564–594. PubMed PMC
Gelabert P, Olalde I, de-Dios T, Civit S, Lalueza-Fox C. Malaria was a weak selective force in ancient Europeans. Sci. Rep. 2017;7:1377. PubMed PMC
Sallares R, Bouwman A, Anderung C. The spread of malaria to southern europe in antiquity: new approaches to old problems. Med. Hist. 2004;48:311–328. PubMed PMC
Ashley EA, Pyae Phyo A, Woodrow CJ. Malaria. Lancet. 2018;391:1608–1621. PubMed
World Health Organization. World Malaria Report 2021 (World Health Organization, 2021).
Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 2005;77:171–192. PubMed PMC
Liu W, et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature. 2010;467:420–425. PubMed PMC
Sundararaman SA, et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat. Commun. 2016;7:11078. PubMed PMC
Neafsey DE, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat. Genet. 2012;44:1046–1050. PubMed PMC
Loy DE, et al. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int. J. Parasitol. 2017;47:87–97. PubMed PMC
Mu J, et al. Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol. Biol. Evol. 2005;22:1686–1693. PubMed
Jongwutiwes S, et al. Mitochondrial genome sequences support ancient population expansion in Plasmodium vivax. Mol. Biol. Evol. 2005;22:1733–1739. PubMed PMC
Daron J, et al. Population genomic evidence of Plasmodium vivax Southeast Asian origin. Sci. Adv. 2021;7:eabc3713. PubMed PMC
Loy DE, et al. Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites. Proc. Natl Acad. Sci. USA. 2018;115:E8450–E8459. PubMed PMC
Liu W, et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 2014;5:3346. PubMed PMC
Twohig KA, et al. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl. Trop. Dis. 2019;13:e0007140. PubMed PMC
Zimmerman PA, et al. Emergence of FY*Anull in a Plasmodium vivax-endemic region of Papua New Guinea. Proc. Natl Acad. Sci. USA. 1999;96:13973–13977. PubMed PMC
Gething PW, et al. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit. Vectors. 2011;4:92. PubMed PMC
Mordecai EA, et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 2013;16:22–30. PubMed
Grauer, A. L. & Roberts, C. A. in Ortner’s Identification of Pathological Conditions in Human Skeletal Remains 3rd edn (ed. Buikstra, J. E.) 441–478 (Academic Press, 2019).
Wang T, et al. Paleoepidemiology of cribra orbitalia: insights from early seventh millennium BP Con Co Ngua, Vietnam. Am. J. Biol. Anthropol. 2023;181:250–261. PubMed
Smith-Guzmán NE. The skeletal manifestation of malaria: an epidemiological approach using documented skeletal collections. Am. J. Phys. Anthropol. 2015;158:624–635. PubMed
Marciniak S, Herring DA, Sperduti A, Poinar HN, Prowse TL. A multi-faceted anthropological and genomic approach to framing Plasmodium falciparum malaria in Imperial period central-southern Italy (1st–4th c. CE) J. Anthropol. Archaeol. 2018;49:210–224.
Rivera F, Mirazón Lahr M. New evidence suggesting a dissociated etiology for cribra orbitalia and porotic hyperostosis. Am. J. Phys. Anthropol. 2017;164:76–96. PubMed
Walker PL, Bathurst RR, Richman R, Gjerdrum T, Andrushko VA. The causes of porotic hyperostosis and cribra orbitalia: a reappraisal of the iron-deficiency-anemia hypothesis. Am. J. Phys. Anthropol. 2009;139:109–125. PubMed
Newfield TP. Malaria and malaria-like disease in the early Middle Ages. Early Mediev. Eur. 2017;25:251–300.
Rodrigues PT, et al. Human migration and the spread of malaria parasites to the New World. Sci. Rep. 2018;8:1993. PubMed PMC
Taylor JE, et al. The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas. Mol. Biol. Evol. 2013;30:2050–2064. PubMed PMC
Culleton R, et al. The origins of African Plasmodium vivax; insights from mitochondrial genome sequencing. PLoS One. 2011;6:e29137. PubMed PMC
van Dorp L, et al. Plasmodium vivax malaria viewed through the lens of an eradicated European strain. Mol. Biol. Evol. 2020;37:773–785. PubMed PMC
Hedrick PW. Population genetics of malaria resistance in humans. Heredity. 2011;107:283–304. PubMed PMC
Spyrou MA, Bos KI, Herbig A, Krause J. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 2019;20:323–340. PubMed PMC
Schats R. Developing an archaeology of malaria. A critical review of current approaches and a discussion on ways forward. Int. J. Paleopathol. 2023;41:32–42. PubMed
de-Dios T, et al. Genetic affinities of an eradicated European Plasmodium falciparum strain. Microb. Genom. 2019;5:e000289. PubMed PMC
Gelabert P, et al. Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. Proc. Natl Acad. Sci. USA. 2016;113:11495–11500. PubMed PMC
Marciniak S, et al. Plasmodium falciparum malaria in 1st –2nd century CE southern Italy. Curr. Biol. 2016;26:R1220–R1222. PubMed
MalariaGEN et al. An open dataset of Plasmodium vivax genome variation in 1,895 worldwide samples [version 1; peer review: 2 approved] Wellcome Open Res. 2022;7:136. PubMed PMC
MalariaGEN et al. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples [version 2; peer review: 2 approved] Wellcome Open Res. 2021;6:42. PubMed PMC
Simons A, Schön W, Shrestha SS. Preliminary report on the 1992 campaign of the team of the Institute of Prehistory, University of Cologne. Ancient Nepal. 1994;136:51–75.
Ramsl, P. C. in Iron Age Connectivity in the Carpathian Basin. Proc. Int. Colloquium from Târgu Mureș (eds Berecki, S. et al.) 39–50 (MEGA, 2018).
Collis, J. in The European Iron Age Ch. 5 (Routledge, 1997).
Villalba-Mouco V, et al. Genomic transformation and social organization during the Copper Age–Bronze Age transition in southern Iberia. Sci. Adv. 2021;7:eabi7038. PubMed PMC
Овчинникова НВ, Хохлов АА. Исследование грунтового могильника у с. Гундоровка в лесостепном Поволжье. Тверской археологический сборник. 1998;3:288–299.
Price RN, et al. Vivax malaria: neglected and not benign. Am. J. Trop. Med. Hyg. 2007;77:79–87. PubMed PMC
Kumar S, et al. Distinct genomic architecture of Plasmodium falciparum populations from South Asia. Mol. Biochem. Parasitol. 2016;210:1–4. PubMed PMC
Yalcindag E, et al. Multiple independent introductions of Plasmodium falciparum in South America. Proc. Natl Acad. Sci. USA. 2012;109:511–516. PubMed PMC
Siraj AS, et al. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science. 2014;343:1154–1158. PubMed
Aldenderfer M. Variation in mortuary practice on the early Tibetan plateau and the high Himalayas. J. Int. Ass. Bon Res. 2013;1:293–318.
Tiwari, D. N. Cave burials from western Nepal, Mustang. Ancient Nepal85, 1–12 (1984–1985).
Liu C-C, et al. Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nat. Commun. 2022;13:1203. PubMed PMC
Dhimal M, et al. Spatio-temporal distribution of malaria and its association with climatic factors and vector-control interventions in two high-risk districts of Nepal. Malar. J. 2014;13:457. PubMed PMC
Church, W. B. & von Hagen, A. C. in Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 903–926 (Springer, 2008).
Koch A, Brierley C, Maslin MM, Lewis SL. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quat. Sci. Rev. 2019;207:13–36.
Alchon, S. A. C. in A Pest in the Land: New World Epidemics in a Global Perspective 60–82 (Univ. New Mexico Press, 2003).
Guevara EK, et al. Genetic assessment reveals no population substructure and divergent regional and sex-specific histories in the Chachapoyas from northeast Peru. PLoS One. 2020;15:e0244497. PubMed PMC
Van de Vijver K. Past life and death in a Flemish town. An archaeo-anthropological study of burials from the medieval and post-medieval St. Rombout’s cemetery in Mechelen, Belgium (10th–18th centuries CE) J. Archaeol. Sci. Reports. 2018;20:524–555.
Van de Vijver, K., Kinnaer, F. & Depuydt, S. in The Urban Graveyard: Archaeological Perspectives (eds van Oosten, R. et al.) 239–287 (Sidestone Press, 2018).
Van de Vijver K. Unraveling the motives behind multiple burial in St. Rombout’s cemetery in Mechelen, Belgium, tenth–eighteenth centuries A.D. Bioarchaeol. Int. 2018;2:255–282.
Gretzinger J, et al. The Anglo-Saxon migration and the formation of the early English gene pool. Nature. 2022;610:112–119. PubMed PMC
Mayxay M, Pukrittayakamee S, Newton PN, White NJ. Mixed-species malaria infections in humans. Trends Parasitol. 2004;20:233–240. PubMed
Parker, G. The Army of Flanders and the Spanish Road, 1567–1659: The Logistics of Spanish Victory and Defeat in the Low Countries’ Wars. (Cambridge Univ. Press, 1972).
Piperaki ET, Daikos GL. Malaria in Europe: emerging threat or minor nuisance? Clin. Microbiol. Infect. 2016;22:487–493. PubMed
Hübler R, et al. HOPS: automated detection and authentication of pathogen DNA in archaeological remains. Genome Biol. 2019;20:280. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
Renaud G, Stenzel U, Kelso J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 2014;42:e141. PubMed PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–864. PubMed PMC
Vågene ÅJ, et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2018;2:520–528. PubMed
Huson DH, et al. MEGAN Community Edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 2016;12:e1004957. PubMed PMC
Preston MD, et al. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nat. Commun. 2014;5:4052. PubMed PMC
Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput. Biol. 2006;13:1028–1040. PubMed
Fu Q, et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA. 2013;110:2223–2227. PubMed PMC
Pinhasi R, et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS ONE. 2015;10:e0129102. PubMed PMC
Dabney J, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA. 2013;110:15758–15763. PubMed PMC
Rohland N, Glocke I, Aximu-Petri A, Meyer M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 2018;13:2447–2461. PubMed
Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015;370:20130624. PubMed PMC
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc.10.1101/pdb.prot5448 (2010). PubMed
Gansauge M-T, et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 2017;45:e79. PubMed PMC
Gansauge M-T, Aximu-Petri A, Nagel S, Meyer M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 2020;15:2279–2300. PubMed
DeAngelis MM, Wang DG, Hawkins TL. Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res. 1995;23:4742–4743. PubMed PMC
Mathieson I, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. PubMed PMC
Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. PubMed PMC
Fellows Yates JA, et al. Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ. 2021;9:e10947. PubMed PMC
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes. 2016;9:88. PubMed PMC
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. PubMed PMC
Fellows Yates JA, et al. Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir. Scientific Data. 2021;8:31. PubMed PMC
DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–498. PubMed PMC
Bos KI, et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514:494–497. PubMed PMC
Valtueña AA, et al. Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague. Proc. Natl Acad. Sci. USA. 2022;119:e2116722119. PubMed PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. PubMed PMC
Gardner MJ, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498–511. PubMed PMC
Böhme U, Otto TD, Sanders M, Newbold CI, Berriman M. Progression of the canonical reference malaria parasite genome from 2002–2019 [version 2; peer review: 3 approved] Wellcome Open Res. 2019;4:58. PubMed PMC
Auburn S, et al. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes [version 1; peer review: 2 approved] Wellcome Open Res. 2016;1:4. PubMed PMC
Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 2015;25:918–925. PubMed PMC
Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38:904–909. PubMed
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:2074–2093. PubMed PMC
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. PubMed PMC
Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. PubMed PMC
Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. PubMed PMC
Kumar S, Stecher G, Peterson D, Tamura K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics. 2012;28:2685–2686. PubMed PMC
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. PubMed PMC