• This record comes from PubMed

Ancient Plasmodium genomes shed light on the history of human malaria

. 2024 Jul ; 631 (8019) : 125-133. [epub] 20240612

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Historical Article

Links

PubMed 38867050
PubMed Central PMC11222158
DOI 10.1038/s41586-024-07546-2
PII: 10.1038/s41586-024-07546-2
Knihovny.cz E-resources

Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia BCE, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.

Adelaide Data Science Centre University of Adelaide Adelaide Australia

Anatomy Institute University of Leipzig Leipzig Germany

Anthropological Center Croatian Academy of Sciences and Arts Zagreb Croatia

Archaeo and Palaeogenetics Institute for Archaeological Sciences Department of Geosciences University of Tübingen Tübingen Germany

Austrian Archaeological Institute Austrian Academy of Sciences Vienna Austria

BioArch South Waitati New Zealand

Center for Archaeological Sciences University of Leuven Leuven Belgium

Centre Michel de Boüard Centre de recherches archéologiques et historiques anciennes et médiévales Université de Caen Normandie Caen France

Centre of Archaeological and Ethnographical Investigation Mari State University Yoshkar Ola Russia

Centro Mallqui Lima Peru

Centro Studi sulla Civiltà del Mare Stintino Italy

Departament de Prehistòria Arqueologia i Història Antiga Universitat de València Valencia Spain

Departamento de Biotecnología Universidad de Alicante San Vicente del Raspeig Spain

Departamento de Humanidades Historia Geografía y Arte Universidad Carlos 3 de Madrid Getafe Spain

Department of Anthropology and Heritage Studies University of California Merced Merced CA USA

Department of Anthropology Economics and Political Science MacEwan University Edmonton Alberta Canada

Department of Anthropology Harvard University Cambridge MA USA

Department of Anthropology Lakehead University Thunder Bay Ontario Canada

Department of Anthropology Natural History Museum Vienna Vienna Austria

Department of Anthropology University of Arkansas Fayetteville AR USA

Department of Anthropology University of North Carolina at Charlotte Charlotte NC USA

Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany

Department of Biology University of Turku Turku Finland

Department of Biomedical Sciences University of Sassari Sassari Italy

Department of Environmental Science Integrative Prehistory and Archaeological Science University of Basel Basel Switzerland

Department of Environmental Sciences University of Basel Basel Switzerland

Department of Evolutionary Anthropology University of Vienna Vienna Austria

Department of Forensic Medicine University of Helsinki Helsinki Finland

Department of Geological Sciences University of Cape Town Cape Town South Africa

Department of History Human Sciences and Education University of Sassari Sassari Italy

Department of History University of Alcalá Alcalá de Henares Spain

Department of Human Evolutionary Biology Harvard University Cambridge MA USA

Department of Legal Medicine Toxicology and Physical Anthropology University of Granada Granada Spain

Department of Medical Engineering and Biotechnology University of Applied Sciences Jena Jena Germany

Department of Microbiology and Immunology Dalhousie University Halifax Nova Scotia Canada

Department of Prehistoric Archaeology Institute of Archaeology of the Czech Academy of Sciences Prague Czech Republic

Department of Social and Cultural Anthropology University of Vienna Vienna Austria

Dienst Archeologie Stad Mechelen Mechelen Belgium

Division of Ancient Pathogens BioForge Canada Limited Halifax Nove Scotia Canada

Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland

Faculty of History Termez State University Termez Uzbekistan

Forensic Medicine Unit Finnish Institute for Health and Welfare Helsinki Finland

Griffith Centre for Social and Cultural Studies Griffith University Nathan Queensland Australia

Helsinki Collegium for Advanced Studies University of Helsinki Helsinki Finland

Heritage Department National Parks of Antigua and Barbuda St Paul's Parish Antigua and Barbuda

Human Evolution and Archaeological Sciences University of Vienna Vienna Austria

Independent consultant Cagliari Sardinia Italy

Initiative for the Science of the Human Past at Harvard Department of History Harvard University Cambridge MA USA

Inrap Institut national de recherches archéologiques préventives Paris France

Institut für Prähistorische Archäologie Freie Universität Berlin Berlin Germany

Institut für Ur und Frühgeschichte Heidelberg University Heidelberg Germany

Institut für Urgeschichte und Historische Archäologie University of Vienna Vienna Austria

Institute for Pre and Protohistoric Archaeology and Archaeology of the Roman Provinces Ludwig Maximilian University Munich Germany

Institute of Anthropology National Tsing Hua University Hsinchu Taiwan

Institute of Classical Archaeology Faculty of Arts Charles University Prague Czech Republic

Institute of Heritage Sciences Santiago de Compostela Spain

Instituto Internacional de Investigaciones Prehistóricas Universidad de Cantabria Santander Spain

Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico Universidad de Alicante San Vicente del Raspeig Spain

Instituto Universitario de Investigación en Ciencias Ambientales de Aragón IUCA Aragosaurus Universitity of Zaragoza Zaragoza Spain

Landesamt für Denkmalpflege und Archäologie Sachsen Anhalt Halle Germany

Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean

Microbial Palaeogenomics Unit Department of Genomes and Genetics Institut Pasteur Paris France

Mureș County Museum Târgu Mureş Romania

National Museum of Unification Alba Iulia Alba Iulia Romania

Royal Belgian Institute of Natural Sciences Brussels Belgium

Samara State University of Social Sciences and Education Samara Russia

School of Computer and Mathematical Sciences University of Adelaide Adelaide Australia

Sección de Antropología Sociedad de Ciencias Aranzadi Donostia San Sebastián Spain

Senckenberg Centre for Human Evolution and Palaeoenvironment University of Tübingen Tübingen Germany

Service d'archéologie préventive Bourges plus Bourges France

Servicio de Obstetricia Hospital Virgen de los Lirios Fisabio Alcoi Spain

Silva Nortica Archäologische Dienstleistungen Thunau am Kamp Austria

Sociology and Anthropology Department Farmingdale State College Farmingdale NY USA

TAR Arqueología Madrid Spain

Thuringian State Office for Heritage Management and Archaeology Weimar Germany

Transmission Infection Diversification and Evolution Group Max Planck Institute of Geoanthropology Jena Germany

UMR 5199 PACEA Université de Bordeaux Pessac Cedex France

UMR 8068 CNRS Nanterre France

University of Nebraska Lincoln Lincoln NE USA

See more in PubMed

Carter R, Mendis KN. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 2002;15:564–594. PubMed PMC

Gelabert P, Olalde I, de-Dios T, Civit S, Lalueza-Fox C. Malaria was a weak selective force in ancient Europeans. Sci. Rep. 2017;7:1377. PubMed PMC

Sallares R, Bouwman A, Anderung C. The spread of malaria to southern europe in antiquity: new approaches to old problems. Med. Hist. 2004;48:311–328. PubMed PMC

Ashley EA, Pyae Phyo A, Woodrow CJ. Malaria. Lancet. 2018;391:1608–1621. PubMed

World Health Organization. World Malaria Report 2021 (World Health Organization, 2021).

Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 2005;77:171–192. PubMed PMC

Liu W, et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature. 2010;467:420–425. PubMed PMC

Sundararaman SA, et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat. Commun. 2016;7:11078. PubMed PMC

Neafsey DE, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat. Genet. 2012;44:1046–1050. PubMed PMC

Loy DE, et al. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int. J. Parasitol. 2017;47:87–97. PubMed PMC

Mu J, et al. Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol. Biol. Evol. 2005;22:1686–1693. PubMed

Jongwutiwes S, et al. Mitochondrial genome sequences support ancient population expansion in Plasmodium vivax. Mol. Biol. Evol. 2005;22:1733–1739. PubMed PMC

Daron J, et al. Population genomic evidence of Plasmodium vivax Southeast Asian origin. Sci. Adv. 2021;7:eabc3713. PubMed PMC

Loy DE, et al. Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites. Proc. Natl Acad. Sci. USA. 2018;115:E8450–E8459. PubMed PMC

Liu W, et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 2014;5:3346. PubMed PMC

Twohig KA, et al. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl. Trop. Dis. 2019;13:e0007140. PubMed PMC

Zimmerman PA, et al. Emergence of FY*Anull in a Plasmodium vivax-endemic region of Papua New Guinea. Proc. Natl Acad. Sci. USA. 1999;96:13973–13977. PubMed PMC

Gething PW, et al. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit. Vectors. 2011;4:92. PubMed PMC

Mordecai EA, et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 2013;16:22–30. PubMed

Grauer, A. L. & Roberts, C. A. in Ortner’s Identification of Pathological Conditions in Human Skeletal Remains 3rd edn (ed. Buikstra, J. E.) 441–478 (Academic Press, 2019).

Wang T, et al. Paleoepidemiology of cribra orbitalia: insights from early seventh millennium BP Con Co Ngua, Vietnam. Am. J. Biol. Anthropol. 2023;181:250–261. PubMed

Smith-Guzmán NE. The skeletal manifestation of malaria: an epidemiological approach using documented skeletal collections. Am. J. Phys. Anthropol. 2015;158:624–635. PubMed

Marciniak S, Herring DA, Sperduti A, Poinar HN, Prowse TL. A multi-faceted anthropological and genomic approach to framing Plasmodium falciparum malaria in Imperial period central-southern Italy (1st–4th c. CE) J. Anthropol. Archaeol. 2018;49:210–224.

Rivera F, Mirazón Lahr M. New evidence suggesting a dissociated etiology for cribra orbitalia and porotic hyperostosis. Am. J. Phys. Anthropol. 2017;164:76–96. PubMed

Walker PL, Bathurst RR, Richman R, Gjerdrum T, Andrushko VA. The causes of porotic hyperostosis and cribra orbitalia: a reappraisal of the iron-deficiency-anemia hypothesis. Am. J. Phys. Anthropol. 2009;139:109–125. PubMed

Newfield TP. Malaria and malaria-like disease in the early Middle Ages. Early Mediev. Eur. 2017;25:251–300.

Rodrigues PT, et al. Human migration and the spread of malaria parasites to the New World. Sci. Rep. 2018;8:1993. PubMed PMC

Taylor JE, et al. The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas. Mol. Biol. Evol. 2013;30:2050–2064. PubMed PMC

Culleton R, et al. The origins of African Plasmodium vivax; insights from mitochondrial genome sequencing. PLoS One. 2011;6:e29137. PubMed PMC

van Dorp L, et al. Plasmodium vivax malaria viewed through the lens of an eradicated European strain. Mol. Biol. Evol. 2020;37:773–785. PubMed PMC

Hedrick PW. Population genetics of malaria resistance in humans. Heredity. 2011;107:283–304. PubMed PMC

Spyrou MA, Bos KI, Herbig A, Krause J. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 2019;20:323–340. PubMed PMC

Schats R. Developing an archaeology of malaria. A critical review of current approaches and a discussion on ways forward. Int. J. Paleopathol. 2023;41:32–42. PubMed

de-Dios T, et al. Genetic affinities of an eradicated European Plasmodium falciparum strain. Microb. Genom. 2019;5:e000289. PubMed PMC

Gelabert P, et al. Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. Proc. Natl Acad. Sci. USA. 2016;113:11495–11500. PubMed PMC

Marciniak S, et al. Plasmodium falciparum malaria in 1st –2nd century CE southern Italy. Curr. Biol. 2016;26:R1220–R1222. PubMed

MalariaGEN et al. An open dataset of Plasmodium vivax genome variation in 1,895 worldwide samples [version 1; peer review: 2 approved] Wellcome Open Res. 2022;7:136. PubMed PMC

MalariaGEN et al. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples [version 2; peer review: 2 approved] Wellcome Open Res. 2021;6:42. PubMed PMC

Simons A, Schön W, Shrestha SS. Preliminary report on the 1992 campaign of the team of the Institute of Prehistory, University of Cologne. Ancient Nepal. 1994;136:51–75.

Ramsl, P. C. in Iron Age Connectivity in the Carpathian Basin. Proc. Int. Colloquium from Târgu Mureș (eds Berecki, S. et al.) 39–50 (MEGA, 2018).

Collis, J. in The European Iron Age Ch. 5 (Routledge, 1997).

Villalba-Mouco V, et al. Genomic transformation and social organization during the Copper Age–Bronze Age transition in southern Iberia. Sci. Adv. 2021;7:eabi7038. PubMed PMC

Овчинникова НВ, Хохлов АА. Исследование грунтового могильника у с. Гундоровка в лесостепном Поволжье. Тверской археологический сборник. 1998;3:288–299.

Price RN, et al. Vivax malaria: neglected and not benign. Am. J. Trop. Med. Hyg. 2007;77:79–87. PubMed PMC

Kumar S, et al. Distinct genomic architecture of Plasmodium falciparum populations from South Asia. Mol. Biochem. Parasitol. 2016;210:1–4. PubMed PMC

Yalcindag E, et al. Multiple independent introductions of Plasmodium falciparum in South America. Proc. Natl Acad. Sci. USA. 2012;109:511–516. PubMed PMC

Siraj AS, et al. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science. 2014;343:1154–1158. PubMed

Aldenderfer M. Variation in mortuary practice on the early Tibetan plateau and the high Himalayas. J. Int. Ass. Bon Res. 2013;1:293–318.

Tiwari, D. N. Cave burials from western Nepal, Mustang. Ancient Nepal85, 1–12 (1984–1985).

Liu C-C, et al. Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nat. Commun. 2022;13:1203. PubMed PMC

Dhimal M, et al. Spatio-temporal distribution of malaria and its association with climatic factors and vector-control interventions in two high-risk districts of Nepal. Malar. J. 2014;13:457. PubMed PMC

Church, W. B. & von Hagen, A. C. in Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 903–926 (Springer, 2008).

Koch A, Brierley C, Maslin MM, Lewis SL. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quat. Sci. Rev. 2019;207:13–36.

Alchon, S. A. C. in A Pest in the Land: New World Epidemics in a Global Perspective 60–82 (Univ. New Mexico Press, 2003).

Guevara EK, et al. Genetic assessment reveals no population substructure and divergent regional and sex-specific histories in the Chachapoyas from northeast Peru. PLoS One. 2020;15:e0244497. PubMed PMC

Van de Vijver K. Past life and death in a Flemish town. An archaeo-anthropological study of burials from the medieval and post-medieval St. Rombout’s cemetery in Mechelen, Belgium (10th–18th centuries CE) J. Archaeol. Sci. Reports. 2018;20:524–555.

Van de Vijver, K., Kinnaer, F. & Depuydt, S. in The Urban Graveyard: Archaeological Perspectives (eds van Oosten, R. et al.) 239–287 (Sidestone Press, 2018).

Van de Vijver K. Unraveling the motives behind multiple burial in St. Rombout’s cemetery in Mechelen, Belgium, tenth–eighteenth centuries A.D. Bioarchaeol. Int. 2018;2:255–282.

Gretzinger J, et al. The Anglo-Saxon migration and the formation of the early English gene pool. Nature. 2022;610:112–119. PubMed PMC

Mayxay M, Pukrittayakamee S, Newton PN, White NJ. Mixed-species malaria infections in humans. Trends Parasitol. 2004;20:233–240. PubMed

Parker, G. The Army of Flanders and the Spanish Road, 1567–1659: The Logistics of Spanish Victory and Defeat in the Low Countries’ Wars. (Cambridge Univ. Press, 1972).

Piperaki ET, Daikos GL. Malaria in Europe: emerging threat or minor nuisance? Clin. Microbiol. Infect. 2016;22:487–493. PubMed

Hübler R, et al. HOPS: automated detection and authentication of pathogen DNA in archaeological remains. Genome Biol. 2019;20:280. PubMed PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC

Renaud G, Stenzel U, Kelso J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 2014;42:e141. PubMed PMC

Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC

Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–864. PubMed PMC

Vågene ÅJ, et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2018;2:520–528. PubMed

Huson DH, et al. MEGAN Community Edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 2016;12:e1004957. PubMed PMC

Preston MD, et al. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nat. Commun. 2014;5:4052. PubMed PMC

Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J. Comput. Biol. 2006;13:1028–1040. PubMed

Fu Q, et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA. 2013;110:2223–2227. PubMed PMC

Pinhasi R, et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS ONE. 2015;10:e0129102. PubMed PMC

Dabney J, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA. 2013;110:15758–15763. PubMed PMC

Rohland N, Glocke I, Aximu-Petri A, Meyer M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 2018;13:2447–2461. PubMed

Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015;370:20130624. PubMed PMC

Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc.10.1101/pdb.prot5448 (2010). PubMed

Gansauge M-T, et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 2017;45:e79. PubMed PMC

Gansauge M-T, Aximu-Petri A, Nagel S, Meyer M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 2020;15:2279–2300. PubMed

DeAngelis MM, Wang DG, Hawkins TL. Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res. 1995;23:4742–4743. PubMed PMC

Mathieson I, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. PubMed PMC

Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. PubMed PMC

Fellows Yates JA, et al. Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ. 2021;9:e10947. PubMed PMC

Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes. 2016;9:88. PubMed PMC

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. PubMed PMC

Fellows Yates JA, et al. Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir. Scientific Data. 2021;8:31. PubMed PMC

DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–498. PubMed PMC

Bos KI, et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514:494–497. PubMed PMC

Valtueña AA, et al. Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague. Proc. Natl Acad. Sci. USA. 2022;119:e2116722119. PubMed PMC

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. PubMed PMC

Gardner MJ, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498–511. PubMed PMC

Böhme U, Otto TD, Sanders M, Newbold CI, Berriman M. Progression of the canonical reference malaria parasite genome from 2002–2019 [version 2; peer review: 3 approved] Wellcome Open Res. 2019;4:58. PubMed PMC

Auburn S, et al. A new Plasmodium vivax reference sequence with improved assembly of the subtelomeres reveals an abundance of pir genes [version 1; peer review: 2 approved] Wellcome Open Res. 2016;1:4. PubMed PMC

Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 2015;25:918–925. PubMed PMC

Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38:904–909. PubMed

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:2074–2093. PubMed PMC

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. PubMed PMC

Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. PubMed PMC

Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. PubMed PMC

Kumar S, Stecher G, Peterson D, Tamura K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics. 2012;28:2685–2686. PubMed PMC

Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...