Population genomics of post-glacial western Eurasia
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
207492/Z/17/Z
Wellcome Trust - United Kingdom
U19 AG023122
NIA NIH HHS - United States
R35 GM142916
NIGMS NIH HHS - United States
UH2 AG064706
NIA NIH HHS - United States
U24 AG051129
NIA NIH HHS - United States
R01 GM138634
NIGMS NIH HHS - United States
Wellcome Trust - United Kingdom
PubMed
38200295
PubMed Central
PMC10781627
DOI
10.1038/s41586-023-06865-0
PII: 10.1038/s41586-023-06865-0
Knihovny.cz E-zdroje
- MeSH
- dějiny starověku MeSH
- diploidie MeSH
- genom lidský * MeSH
- genotyp MeSH
- ledový příkrov MeSH
- lidé MeSH
- lov dějiny MeSH
- metagenomika * MeSH
- migrace lidstva * dějiny MeSH
- populační genetika * MeSH
- zemědělství dějiny MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Černé moře MeSH
- Evropa etnologie MeSH
- západní Asie MeSH
Western Eurasia witnessed several large-scale human migrations during the Holocene1-5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
A Kh Margulan Institute of Archaeology Almaty Kazakhstan
Anthropology Department University of Utah Salt Lake City UT USA
Archaeology Institute University of Highlands and Islands Orkney UK
ArchaeoScience Globe Institute University of Copenhagen Copenhagen Denmark
ARGEA Consultores SL Madrid Spain
Cabinet of Anthropology Tomsk State University Tomsk Russian Federation
Center for Computational Biology University of California Berkeley CA USA
Center for Egyptological Studies Russian Academy of Sciences Moscow Russian Federation
Centre de Recherche en Archéologie Archeosciences Histoire UMR 6869 CNRS Rennes France
Centre for Archaeological Research Toraighyrov University Pavlodar Kazakhstan
Centre for Evolutionary Hologenomics University of Copenhagen Copenhagen Denmark
CIAS Department of Life Sciences University of Coimbra Coimbra Portugal
Collège de France Paris France
Departament de Prehistòria Arqueologia i Història Antiga Universitat de València València Spain
Departamento de Prehistoria y Arqueología Universidad Autónoma de Madrid Madrid Spain
Department of Anthropology Czech National Museum Prague Czech Republic
Department of Anthropology New York University New York NY USA
Department of Archaeology and Ancient History Lund University Lund Sweden
Department of Archaeology and Heritage Studies Aarhus University Aarhus Denmark
Department of Archaeology University of Cambridge Cambridge UK
Department of Archaeology University of Exeter Exeter UK
Department of Biology University of Rome Tor Vergata Rome Italy
Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
Department of Computational Biology University of Lausanne Lausanne Switzerland
Department of Environmental Biology Sapienza University of Rome Rome Italy
Department of Genetics University of Cambridge Cambridge UK
Department of Geological Sciences University of Cape Town Cape Town South Africa
Department of Geology Lund University Lund Sweden
Department of Health and Nature University of Greenland Nuuk Greenland
Department of Historical Studies University of Gothenburg Gothenburg Sweden
Department of History and Cultural Heritage University of Siena Siena Italy
Department of History Humanities and Society University of Rome Tor Vergata Rome Italy
Department of History University of Santiago de Compostela Santiago de Compostela Spain
Department of Integrative Biology University of California Berkeley CA USA
Faculty of Archaeology Adam Mickiewicz University in Poznań Poznań Poland
GeoGenetics Group Department of Zoology University of Cambridge Cambridge UK
Georgian National Museum Tbilisi Georgia
Grupo EvoAdapta Departamento de Ciencias Históricas Universidad de Cantabria Santander Spain
HistorieUdvikler Kalundborg Denmark
ICREA University of Barcelona Barcelona Spain
Institute for History of Medicine 1st Faculty of Medicine Charles University Prague Czech Republic
Institute of Archaeology and Ethnography National Academy of Sciences Yerevan Armenia
Institute of Archaeology and Ethnology Polish Academy of Sciences Kraków Poland
Institute of Archaeology Jagiellonian University Kraków Poland
Institute of Archaeology National Academy of Sciences of Ukraine Kyiv Ukraine
Institute of Ethnology and Anthropology Russian Academy of Sciences Moscow Russian Federation
Institute of Evolutionary Biology CSIC Universitat Pompeu Fabra Barcelona Spain
Institute of Humanities Ivanovo State University Ivanovo Russian Federation
Institute of Molecular Biology National Academy of Sciences Yerevan Armenia
Institute of Statistical Sciences School of Mathematics University of Bristol Bristol UK
Janus Pannonius Museum Pécs Hungary
Kostanay Regional University A Baitursynov Kostanay Kazakhstan
Langelands Museum Rudkøbing Denmark
Lipetsk Regional Scientific Public Organisation Archaeological Research Lipetsk Russian Federation
Lundbeck Foundation GeoGenetics Centre Globe Institute University of Copenhagen Copenhagen Denmark
Moesgaard Museum Højbjerg Denmark
Muséum National d'Histoire Naturelle CNRS Université de Paris Musée de l'Homme Paris France
Museum Nordsjælland Hillerød Denmark
Museum of Cultural History University of Oslo Oslo Norway
Museum Østjylland Randers Denmark
Museum Sydøstdanmark Vordingborg Denmark
Museum Vestsjælland Holbæk Denmark
National University of Kyiv Mohyla Academy Kyiv Ukraine
Natural Sciences Museum of Barcelona Barcelona Spain
Neurogenomics Division The Translational Genomics Research Institute Phoenix AZ USA
Nizhny Tagil State Socio Pedagogical Institute Nizhny Tagil Russia
Research Department of Genetics Evolution and Environment University College London London UK
Russian Armenian University Yerevan Armenia
Saryarka Archaeological Institute Buketov Karaganda University Karaganda Kazakhstan
Scientific Research Center Baikal region Irkutsk State University Irkutsk Russian Federation
Sealand Archaeology Kalundborg Denmark
Section for Evolutionary Genomics Globe Institute University of Copenhagen Copenhagen Denmark
Soprintendenza Archeologia Belle Arti e Paesaggio per la Città Metropolitana di Bari Bari Italy
Soprintendenza Archeologia Belle Arti e Paesaggio per la provincia di Cosenza Cosenza Italy
Soprintendenza per i Beni Archeologici delle Marche Ancona Italy
South Ural State University Chelyabinsk Russia
Svendborg Museum Svendborg Denmark
Swiss Institute of Bioinformatics University of Lausanne Lausanne Switzerland
Tårnby Gymnasium og HF Kastrup Denmark
Tbilisi State University Tbilisi Georgia
Terra Ltd Voronezh Russian Federation
The National Museum of Denmark Copenhagen Denmark
The Saxo Institute University of Copenhagen Copenhagen Denmark
The Viking Ship Museum Roskilde Denmark
UMR 5199 PACEA CNRS Université de Bordeaux Pessac France
UNIARQ University of Lisbon Lisbon Portugal
Västergötlands Museum Skara Sweden
Vendsyssel Historiske Museum Hjørring Denmark
Vesthimmerlands Museum Aars Denmark
Wellcome Sanger Institute Hinxton UK
Zoological Institute of Russian Academy of Sciences Saint Petersburg Russian Federation
Zobrazit více v PubMed
Allentoft ME, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–172. doi: 10.1038/nature14507. PubMed DOI
Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. doi: 10.1038/nature14317. PubMed DOI PMC
Lazaridis I, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014;513:409–413. doi: 10.1038/nature13673. PubMed DOI PMC
Lazaridis I, et al. Genomic insights into the origin of farming in the ancient Near East. Nature. 2016;536:419–24. doi: 10.1038/nature19310. PubMed DOI PMC
Mathieson I, et al. The genomic history of southeastern Europe. Nature. 2018;555:197–203. doi: 10.1038/nature25778. PubMed DOI PMC
Posth C, et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a late glacial population turnover in Europe. Curr. Biol. 2016;26:827–833. doi: 10.1016/j.cub.2016.01.037. PubMed DOI
Posth C, et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature. 2023;615:117–126. doi: 10.1038/s41586-023-05726-0. PubMed DOI PMC
Mathieson I, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. doi: 10.1038/nature16152. PubMed DOI PMC
Fu Q, et al. The genetic history of Ice Age Europe. Nature. 2016;534:200–205. doi: 10.1038/nature17993. PubMed DOI PMC
Raghavan M, et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature. 2014;505:87–91. doi: 10.1038/nature12736. PubMed DOI PMC
Villalba-Mouco V, et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 2019;29:1169–1177. doi: 10.1016/j.cub.2019.02.006. PubMed DOI
Brace S, et al. Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 2019;3:765–771. doi: 10.1038/s41559-019-0871-9. PubMed DOI PMC
de Barros Damgaard P, et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science. 2018;360:eaar7711. doi: 10.1126/science.aar7711. PubMed DOI PMC
Saag L, et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Sci. Adv. 2021;7:eabd6535. doi: 10.1126/sciadv.abd6535. PubMed DOI PMC
Günther T, et al. Population genomics of Mesolithic Scandinavia: investigating early postglacial migration routes and high-latitude adaptation. PLoS Biol. 2018;16:e2003703. doi: 10.1371/journal.pbio.2003703. PubMed DOI PMC
Kashuba N, et al. Ancient DNA from mastics solidifies connection between material culture and genetics of mesolithic hunter–gatherers in Scandinavia. Commun. Biol. 2019;2:185. doi: 10.1038/s42003-019-0399-1. PubMed DOI PMC
Zvelebil, M., Domanska, L. & Dennell, R. Harvesting the Sea, Farming the Forest: The Emergence of Neolithic Societies in the Baltic Region (Bloomsbury, 1998).
Jones ER, et al. The Neolithic transition in the Baltic was not driven by admixture with early European farmers. Curr. Biol. 2017;27:576–582. doi: 10.1016/j.cub.2016.12.060. PubMed DOI PMC
Mittnik A, et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 2018;9:442. doi: 10.1038/s41467-018-02825-9. PubMed DOI PMC
Kislenko, A. & Tatarintseva, N. in Late Prehistoric Exploitation of the Eurasian Steppe (eds Levine, M. et al.) 183–216 (McDonald Institute for Archaeological Research, 1999).
Furholt M. Mobility and social change: understanding the European Neolithic period after the archaeogenetic revolution. J. Archaeol. Res. 2021;29:481–535. doi: 10.1007/s10814-020-09153-x. DOI
Lipson M, et al. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science. 2018;361:92–95. doi: 10.1126/science.aat3188. PubMed DOI PMC
Fernandes DM, et al. A genomic Neolithic time transect of hunter-farmer admixture in central Poland. Sci. Rep. 2018;8:14879. doi: 10.1038/s41598-018-33067-w. PubMed DOI PMC
Immel, A. et al. Genome-wide study of a Neolithic Wartberg grave community reveals distinct HLA variation and hunter-gatherer ancestry. Commun. Biol.4, 113 (2021). PubMed PMC
Jeong C, et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 2019;3:966–976. doi: 10.1038/s41559-019-0878-2. PubMed DOI PMC
Nikitin AG, et al. Interactions between earliest Linearbandkeramik farmers and central European hunter gatherers at the dawn of European Neolithization. Sci. Rep. 2019;9:19544. doi: 10.1038/s41598-019-56029-2. PubMed DOI PMC
Gelabert, P. et al. Social and genetic diversity among the first farmers of Central Europe. Preprint at bioRxiv10.1101/2023.07.07.548126 (2023).
Cassidy LM, et al. Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl Acad. Sci. USA. 2016;113:368–373. doi: 10.1073/pnas.1518445113. PubMed DOI PMC
Penske, S. et al. Early contact between late farming and pastoralist societies in southeastern Europe. Nature620, 358–365 (2023). PubMed PMC
Lazaridis I, et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science. 2022;377:eabm4247. doi: 10.1126/science.abm4247. PubMed DOI PMC
Egfjord AF-H, et al. Genomic Steppe ancestry in skeletons from the Neolithic Single Grave Culture in Denmark. PLoS One. 2021;16:e0244872. doi: 10.1371/journal.pone.0244872. PubMed DOI PMC
Papac L, et al. Dynamic changes in genomic and social structures in third millennium BCE central Europe. Sci. Adv. 2021;7:eabi6941. doi: 10.1126/sciadv.abi6941. PubMed DOI PMC
Heyd, V. in Rethinking Migrations in Late Prehistoric Eurasia (eds Fernández-Götz, M. et al.) 41–62 (Oxford Univ. Press, 2023).
Allentoft, M. E. et al. 100 ancient genomes show repeated population turnovers in Neolithic Denmark. Nature10.1038/s41586-023-06862-3 (2024). PubMed PMC
Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 2021;53:412. doi: 10.1038/s41588-021-00788-0. PubMed DOI
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC
Leslie S, et al. The fine-scale genetic structure of the British population. Nature. 2015;519:309–314. doi: 10.1038/nature14230. PubMed DOI PMC
Hofmanová Z, et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA. 2016;113:6886–6891. doi: 10.1073/pnas.1523951113. PubMed DOI PMC
Busby GB, et al. Admixture into and within sub-Saharan Africa. eLife. 2016;5:e15266. doi: 10.7554/eLife.15266. PubMed DOI PMC
Schmitt T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 2007;4:11. doi: 10.1186/1742-9994-4-11. PubMed DOI PMC
Olalde I, et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science. 2019;363:1230–1234. doi: 10.1126/science.aav4040. PubMed DOI PMC
García-Escárzaga A, et al. Human forager response to abrupt climate change at 8.2 ka on the Atlantic coast of Europe. Sci. Rep. 2022;12:6481. doi: 10.1038/s41598-022-10135-w. PubMed DOI PMC
Narasimhan VM, et al. The formation of human populations in South and Central Asia. Science. 2019;365:eaat7487. doi: 10.1126/science.aat7487. PubMed DOI PMC
Wang C-C, et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 2019;10:590. doi: 10.1038/s41467-018-08220-8. PubMed DOI PMC
Lipson M, et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature. 2017;551:368. doi: 10.1038/nature24476. PubMed DOI PMC
Racimo F, et al. The spatiotemporal spread of human migrations during the European Holocene. Proc. Natl Acad. Sci. USA. 2020;117:8989–9000. doi: 10.1073/pnas.1920051117. PubMed DOI PMC
Martiniano R, et al. The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 2017;13:e1006852. doi: 10.1371/journal.pgen.1006852. PubMed DOI PMC
Isern N, Zilhão J, Fort J, Ammerman AJ. Modeling the role of voyaging in the coastal spread of the Early Neolithic in the West Mediterranean. Proc. Natl Acad. Sci. USA. 2017;114:897–902. doi: 10.1073/pnas.1613413114. PubMed DOI PMC
Betti L, et al. Climate shaped how Neolithic farmers and European hunter-gatherers interacted after a major slowdown from 6,100 BCE to 4,500 BCE. Nat. Hum. Behav. 2020;4:1004–1010. doi: 10.1038/s41562-020-0897-7. PubMed DOI
Saag L, et al. Extensive farming in Estonia started through a sex-biased migration from the Steppe. Curr. Biol. 2017;27:2185–2193. doi: 10.1016/j.cub.2017.06.022. PubMed DOI
Seguin-Orlando A, et al. Heterogeneous hunter-gatherer and Steppe-related ancestries in Late Neolithic and Bell Beaker genomes from present-day France. Curr. Biol. 2021;31:1072–1083. doi: 10.1016/j.cub.2020.12.015. PubMed DOI
Furholt M. Die Złota-Gruppe in Kleinpolen: Ein Beispiel für die Transformation eines Zeichensystems? Germania. 2008;86:1–28.
Szmyt, M. in A Turning of Ages (ed. Kadrow, S.) 443–466 (Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2000).
Tassi F, et al. Genome diversity in the Neolithic Globular Amphorae culture and the spread of Indo-European languages. Proc. R. Soc. B. 2017;284:20171540. doi: 10.1098/rspb.2017.1540. PubMed DOI PMC
Nordqvist K, Heyd V. The forgotten child of the wider Corded Ware family: Russian Fatyanovo Culture in context. Proc. Prehist. Soc. 2020;86:65–93. doi: 10.1017/ppr.2020.9. DOI
Kristiansen K, et al. Re-theorising mobility and the formation of culture and language among the Corded Ware Culture in Europe. Antiquity. 2017;91:334–347. doi: 10.15184/aqy.2017.17. DOI
Borzunov, V. A. The neolithic fortified settlements of the Western Siberia and Trans-Urals. Russ. Archaeol.4, 20–34 (2013).
Yu H, et al. Paleolithic to Bronze Age Siberians reveal connections with First Americans and across Eurasia. Cell. 2020;181:1232–1245. doi: 10.1016/j.cell.2020.04.037. PubMed DOI
Okladnikov, A. P. Neolit i Bronzovyi vek Pribaikaliya [Neolithic and Bronze Age of the Baikal region] (AS USSR Publications, 1950).
Merts, V. in Paleodemography and Migration Processes in Western Siberia in Antiquity and the Middle Ages (ed. Kiryushin, Y. F.) 39–42 (Altai State University, 1994).
Merts, V. Periodization of the Holocene Complexes of Northern and Central Kazakhstan Based on the Materials of the Multilayer Site Shiderty 3 (Thesis, Kemerovo State Univ., 2008).
Merts VK. Neolithization processes in the Northeast Kazakhstan. Herald Omsk Univ. Ser. Histor. Stud. 2018;3:99–109.
de Barros Damgaard P, et al. 137 ancient human genomes from across the Eurasian steppes. Nature. 2018;557:369–374. doi: 10.1038/s41586-018-0094-2. PubMed DOI
Librado P, et al. The origins and spread of domestic horses from the Western Eurasian steppes. Nature. 2021;598:634–640. doi: 10.1038/s41586-021-04018-9. PubMed DOI PMC
Huang, Y. et al. The early adoption of East Asian crops in West Asia: rice and broomcorn millet in northern Iran. Antiquity97, 674–689 (2023).
Palamara PF, Lencz T, Darvasi A, Pe’er I. Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 2012;91:809–822. doi: 10.1016/j.ajhg.2012.08.030. PubMed DOI PMC
Ringbauer H, Novembre J, Steinrücken M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 2021;12:5425. doi: 10.1038/s41467-021-25289-w. PubMed DOI PMC
Krzewińska M, et al. Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads. Sci. Adv. 2018;4:eaat4457. doi: 10.1126/sciadv.aat4457. PubMed DOI PMC
Matuzeviciute GM. The possible geographic margin effect on the delay of agriculture introduction in the East Baltic. Eston. J. Archaeol. 2018;22:149–162. doi: 10.3176/arch.2018.2.03. DOI
Piezonka, H. Jäger, Fischer, Töpfer: Wildbeutergruppen mit Früher Keramik in Nordosteuropa im 6. und 5. Jahrtausend v. Chr. (Habelt, 2015).
Oras E, et al. The adoption of pottery by north-east European hunter-gatherers: Evidence from lipid residue analysis. J. Archaeol. Sci. 2017;78:112–119. doi: 10.1016/j.jas.2016.11.010. DOI
Matuzeviciute GM, et al. Archaeobotanical investigations at the earliest horse herder site of Botai in Kazakhstan. Archaeol. Anthropol. Sci. 2019;11:6243–6258. doi: 10.1007/s12520-019-00924-2. DOI
Anthony, D. W. in The Black Sea Flood Question: Changes in Coastline, Climate and Human Settlement (eds Yanko-Hombach, V. et al.) 345–370 (Springer, 2007).
Trautmann M, et al. First bioanthropological evidence for Yamnaya horsemanship. Sci. Adv. 2023;9:eade2451. doi: 10.1126/sciadv.ade2451. PubMed DOI PMC
Anthony DW, et al. The Eneolithic cemetery at Khvalynsk on the Volga River. Praehistor. Zeitschr. 2022;97:22–67. doi: 10.1515/pz-2022-2034. DOI
Kristiansen, K., Kroonen, G. & Willerslev, E. The Indo-European Puzzle Revisited: Integrating Archaeology, Genetics, and Linguistics (Cambridge Univ. Press, 2023).
Damgaard PB, et al. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 2015;5:11184. doi: 10.1038/srep11184. PubMed DOI PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–1684. doi: 10.1093/bioinformatics/btt193. PubMed DOI PMC
Renaud G, Slon V, Duggan AT, Kelso J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 2015;16:224. doi: 10.1186/s13059-015-0776-0. PubMed DOI PMC
Fu Q, et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature. 2014;514:445–449. doi: 10.1038/nature13810. PubMed DOI PMC
Sousa da Mota B, et al. Imputation of ancient human genomes. Nat. Commun. 2023;14:3660. doi: 10.1038/s41467-023-39202-0. PubMed DOI PMC
Skoglund P, Storå J, Götherström A, Jakobsson M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 2013;40:4477–4482. doi: 10.1016/j.jas.2013.07.004. DOI
Barbera P, et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 2019;68:365–369. doi: 10.1093/sysbio/syy054. PubMed DOI PMC
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC
Czech L, Barbera P, Stamatakis A. Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics. 2020;36:3263–3265. doi: 10.1093/bioinformatics/btaa070. PubMed DOI PMC
Waples RK, Albrechtsen A, Moltke I. Allele frequency-free inference of close familial relationships from genotypes or low-depth sequencing data. Mol. Ecol. 2019;28:35–48. doi: 10.1111/mec.14954. PubMed DOI PMC
Manichaikul A, et al. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–2873. doi: 10.1093/bioinformatics/btq559. PubMed DOI PMC
Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J. SNP calling, genotype calling, and sample allele frequency estimation from New-Generation Sequencing data. PLoS One. 2012;7:e37558. doi: 10.1371/journal.pone.0037558. PubMed DOI PMC
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356. doi: 10.1186/s12859-014-0356-4. PubMed DOI PMC
Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. doi: 10.1534/genetics.112.145037. PubMed DOI PMC
Pickrell JK, et al. The genetic prehistory of southern Africa. Nat. Commun. 2012;3:1143. doi: 10.1038/ncomms2140. PubMed DOI PMC
Shringarpure SS, Bustamante CD, Lange K, Alexander DH. Efficient analysis of large datasets and sex bias with ADMIXTURE. BMC Bioinformatics. 2016;17:218. doi: 10.1186/s12859-016-1082-x. PubMed DOI PMC
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet.88, 76-82 (2011). PubMed PMC
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190. doi: 10.1371/journal.pgen.0020190. PubMed DOI PMC
Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38:904–909. doi: 10.1038/ng1847. PubMed DOI
Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Maier, R. et al. On the limits of fitting complex models of population history to f-statistics. eLife12, e85492 (2023). PubMed PMC
Browning BL, Browning SR. Detecting identity by descent and estimating genotype error rates in sequence data. Am. J. Hum. Genet. 2013;93:840–851. doi: 10.1016/j.ajhg.2013.09.014. PubMed DOI PMC
Browning SR, Browning BL. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am. J. Hum. Genet. 2015;97:404–418. doi: 10.1016/j.ajhg.2015.07.012. PubMed DOI PMC
Lawrence M, et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 2013;9:e1003118. doi: 10.1371/journal.pcbi.1003118. PubMed DOI PMC
Greenbaum G, Rubin A, Templeton AR, Rosenberg NA. Network-based hierarchical population structure analysis for large genomic data sets. Genome Res. 2019;29:2020–2033. doi: 10.1101/gr.250092.119. PubMed DOI PMC
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006;1695(5):1–9.
Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 2019;9:5233. doi: 10.1038/s41598-019-41695-z. PubMed DOI PMC
Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet. 2012;8:e1002453. doi: 10.1371/journal.pgen.1002453. PubMed DOI PMC
Hellenthal G, et al. A genetic atlas of human admixture history. Science. 2014;343:747–751. doi: 10.1126/science.1243518. PubMed DOI PMC
Soetaert, K., Van den Meersche, K. & van Oevelen, D. limSolve: solving linear inverse models. R version 1.5.7 https://cran.r-project.org/web/packages/limSolve (2009).
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC
Cressie, N. & Wikle, C. K. Statistics for Spatio-Temporal Data (John Wiley & Sons, 2015).
Gräler B, Pebesma E, Heuvelink G. Spatio-Temporal Interpolation using gstat. R J. 2016;8:204. doi: 10.32614/RJ-2016-014. DOI
Reimer, P. et al. Laboratory Protocols Used for AMS Radiocarbon Dating at the 14CHRONO Centre. Report No. 5-2015 (English Heritage, 2015).
Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon52, 103–112 (2010).
Beaumont W, Beverly R, Southon J, Taylor RE. Bone preparation at the KCCAMS laboratory. Nucl. Instrum. Methods Phys. Res. B. 2010;268:906–909. doi: 10.1016/j.nimb.2009.10.061. DOI
Reimer P, et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP) Radiocarbon. 2020;62:725–757. doi: 10.1017/RDC.2020.41. DOI