The Genetic Origin of the Indo-Europeans
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
R01 HG012287
NHGRI NIH HHS - United States
PubMed
38659893
PubMed Central
PMC11042377
DOI
10.1101/2024.04.17.589597
PII: 2024.04.17.589597
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The Yamnaya archaeological complex appeared around 3300BCE across the steppes north of the Black and Caspian Seas, and by 3000BCE reached its maximal extent from Hungary in the west to Kazakhstan in the east. To localize the ancestral and geographical origins of the Yamnaya among the diverse Eneolithic people that preceded them, we studied ancient DNA data from 428 individuals of which 299 are reported for the first time, demonstrating three previously unknown Eneolithic genetic clines. First, a "Caucasus-Lower Volga" (CLV) Cline suffused with Caucasus hunter-gatherer (CHG) ancestry extended between a Caucasus Neolithic southern end in Neolithic Armenia, and a steppe northern end in Berezhnovka in the Lower Volga. Bidirectional gene flow across the CLV cline created admixed intermediate populations in both the north Caucasus, such as the Maikop people, and on the steppe, such as those at the site of Remontnoye north of the Manych depression. CLV people also helped form two major riverine clines by admixing with distinct groups of European hunter-gatherers. A "Volga Cline" was formed as Lower Volga people mixed with upriver populations that had more Eastern hunter-gatherer (EHG) ancestry, creating genetically hyper-variable populations as at Khvalynsk in the Middle Volga. A "Dnipro Cline" was formed as CLV people bearing both Caucasus Neolithic and Lower Volga ancestry moved west and acquired Ukraine Neolithic hunter-gatherer (UNHG) ancestry to establish the population of the Serednii Stih culture from which the direct ancestors of the Yamnaya themselves were formed around 4000BCE. This population grew rapidly after 3750-3350BCE, precipitating the expansion of people of the Yamnaya culture who totally displaced previous groups on the Volga and further east, while admixing with more sedentary groups in the west. CLV cline people with Lower Volga ancestry contributed four fifths of the ancestry of the Yamnaya, but also, entering Anatolia from the east, contributed at least a tenth of the ancestry of Bronze Age Central Anatolians, where the Hittite language, related to the Indo-European languages spread by the Yamnaya, was spoken. We thus propose that the final unity of the speakers of the "Proto-Indo-Anatolian" ancestral language of both Anatolian and Indo-European languages can be traced to CLV cline people sometime between 4400-4000 BCE.
5 F Voino Yasenetsky Krasnoyarsk State Medical University Krasnoyarsk Russia
Azov History Archaeology and Palaeontology Museum Reserve Azov Russia
Broad Institute of Harvard and MIT Cambridge MA USA
Centre for Applied Bioanthropology Institute for Anthropological Research Zagreb Croatia
Damjanich János Museum Szolnok Hungary
Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Department of Archaeology and Heritage Faculty of Humanities University of Primorska Koper Slovenia
Department of Archaeology Ethnography and Museology Altai State University Barnaul Russia
Department of Archaeology University of Szeged Szeged Hungary
Department of Biological Anthropology Institute of Biology University of Szeged Szeged Hungary
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czechia
Department of Evolutionary Anthropology University of Vienna Vienna Austria
Department of Genetics Harvard Medical School Boston MA USA
Department of Geography Faculty of Humanities University Valahia of Târgoviște Târgovişte Romania
Department of History of the Institute of Humanities Ural Federal University Ekaterinburg Russia
Department of Human Evolutionary Biology Harvard University Cambridge MA USA
Department of Statistics University of Oxford Oxford UK
Déri Museum 4026 Debrecen Hungary
Fr 1 Rainer Institute of Anthropology University of Bucharest Bucharest Romania
Gavrilă Simion Eco Museum Research Institute Tulcea Romania
Hartwick College Dept of Anthropology USA
Howard Hughes Medical Institute Harvard Medical School Boston MA USA
Human Evolution and Archaeological Sciences University of Vienna Vienna Austria
Hungarian Natural History Museum Department of Anthropology Budapest Hungary
Ikerbasque Basque Foundation of Science Bilbao Spain
Independent Researcher 106 Federal Street Philadelphia PA USA
Institute for the History of Material Culture Russian Academy of Sciences St Petersburg Russia
Institute of Archaeogenomics HUN REN Research Centre for the Humanities Budapest Hungary
Institute of Archaeology HUN REN Research Centre for the Humanities Budapest Hungary
Institute of Archaeology named after A Kh Margulan Almaty Kazakhstan
Institute of Archeology named after A Kh Khalikov Tatarstan Academy of Sciences Kazan Russia
Institute of Parasitology Biology Centre of the Czech Academy of Sciences České Budějovice Czechia
Kalmyk Scientific Centre of the Russian Academy of Sciences Elista Republic of Kalmykia Russia
Laboratory of Ancient and Medieval Archaeology of Eurasia Altai State University Barnaul Russia
Museo delle Civiltà Italian Ministry of Culture Rome Italy
Museum of Vojvodina Novi Sad Serbia
National Agency for Archaeology Chișinău Republic of Moldova
National Research Tomsk State University Tomsk Russia
Olga Necrasov Centre for Anthropological Research Romanian Academy Iași Branch Iași Romania
Prahova County Museum of History and Archaeology Ploiești Romania
Research Institute and Museum of Anthropology Moscow Russia
Research Institute GAUK RO Don Heritage Rostov on Don Russia
Russian Academy of Sciences Institute of Ethnology and Anthropology Moscow Russia
Samara Regional Public Organization Historical ecological and cultural Association Povolzje
Samara State University of Social Sciences and Education Samara Russia
School of Archaeology University College Dublin Ireland
Slovak National Museum Archaeological Museum Bratislava Slovak Republic
Slovak National Museum Natural History Museum Bratislava Slovak Republic
State History Museum Department of Archaeology Moscow Russia
University of Oxford Faculty of History Oxford United Kingdom
Wellcome Centre for Human Genetics University of Oxford Oxford UK
Zobrazit více v PubMed
Anthony D. W. The horse, the wheel, and language : how bronze-age riders from the Eurasian steppes shaped the modern world. (Princeton University Press, 2007).
Haak W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211, doi:10.1038/nature14317 (2015). PubMed DOI PMC
Olalde I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196, doi:10.1038/nature25738 (2018). PubMed DOI PMC
Narasimhan Vagheesh M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487, doi:10.1126/science.aat7487 (2019). PubMed DOI PMC
Wang C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nature Communications 10, 590, doi:10.1038/s41467-018-08220-8 (2019). PubMed DOI PMC
Lazaridis I. et al. The genetic history of the Southern Arc: A bridge between West Asia and Europe. Science 377, eabm4247, doi:10.1126/science.abm4247 (2022). PubMed DOI PMC
Allentoft M. E. et al. Population genomics of post-glacial western Eurasia. Nature 625, 301–311, doi:10.1038/s41586-023-06865-0 (2024). PubMed DOI PMC
Jones E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat Commun 6, 8912, doi:10.1038/ncomms9912 (2015). PubMed DOI PMC
Lazaridis I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424, doi:10.1038/nature19310 (2016). PubMed DOI PMC
Lazaridis I. et al. Ancient DNA from Mesopotamia suggests distinct Pre-Pottery and Pottery Neolithic migrations into Anatolia. Science 377, 982–987, doi:10.1126/science.abq0762 (2022). PubMed DOI PMC
Skourtanioti E. et al. Genomic History of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158–1175 e1128, doi:10.1016/j.cell.2020.04.044 (2020). PubMed DOI
Lazaridis I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413, doi:10.1038/nature13673 (2014). PubMed DOI PMC
Mathieson I. et al. The genomic history of southeastern Europe. Nature 555, 197–203, doi:10.1038/nature25778 (2018). PubMed DOI PMC
Tian Chen Z. et al. Postglacial genomes from foragers across Northern Eurasia reveal prehistoric mobility associated with the spread of the Uralic and Yeniseian languages. bioRxiv, 2023.2010.2001.560332, doi:10.1101/2023.10.01.560332 (2023). DOI
Nikitin A. G., Lazaridis I. & others. A genomic history of the North Pontic Region from the Neolithic to the Bronze Age. In submission (2024). PubMed PMC
Gelabert P. et al. Genomes from Verteba cave suggest diversity within the Trypillians in Ukraine. Scientific Reports 12, 7242, doi:10.1038/s41598-022-11117-8 (2022). PubMed DOI PMC
Mathieson I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503, doi:10.1038/nature16152 (2015). PubMed DOI PMC
Mattila T. M. et al. Genetic continuity, isolation, and gene flow in Stone Age Central and Eastern Europe. Communications Biology 6, 793, doi:10.1038/s42003-023-05131-3 (2023). PubMed DOI PMC
Posth C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117–126, doi:10.1038/s41586-023-05726-0 (2023). PubMed DOI PMC
Saag L. et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Science Advances 7, eabd6535, doi:10.1126/sciadv.abd6535 (2021). PubMed DOI PMC
Allentoft M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172, doi:10.1038/nature14507 (2015). PubMed DOI
de Barros Damgaard P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, doi:10.1126/science.aar7711 (2018). PubMed DOI PMC
Järve M. et al. Shifts in the Genetic Landscape of the Western Eurasian Steppe Associated with the Beginning and End of the Scythian Dominance. Current Biology 29, 2430–2441.e2410, doi:10.1016/j.cub.2019.06.019 (2019). PubMed DOI
Jeong C. et al. A Dynamic 6,000-Year Genetic History of Eurasia's Eastern Steppe. Cell 183, 890–904.e829, doi:10.1016/j.cell.2020.10.015 (2020). PubMed DOI PMC
Kumar V. et al. Bronze and Iron Age population movements underlie Xinjiang population history. Science 376, 62–69, doi:10.1126/science.abk1534 (2022). PubMed DOI
Patterson N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594, doi:10.1038/s41586-021-04287-4 (2022). PubMed DOI PMC
Olalde I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230, doi:10.1126/science.aav4040 (2019). PubMed DOI PMC
Zhang F. et al. The genomic origins of the Bronze Age Tarim Basin mummies. Nature 599, 256–261, doi:10.1038/s41586-021-04052-7 (2021). PubMed DOI PMC
Wang C.-C. et al. Genomic insights into the formation of human populations in East Asia. Nature 591, 413–419, doi:10.1038/s41586-021-03336-2 (2021). PubMed DOI PMC
Reich D. et al. Reconstructing Native American population history. Nature 488, 370–374, doi:10.1038/nature11258 (2012). PubMed DOI PMC
Vybornov A. et al. Diet and Chronology of Neolithic-Eneolithic Cultures (from 6500 to 4700 cal BC) in the Lower Volga Basin. Radiocarbon 60, 1597–1610, doi:10.1017/RDC.2018.95 (2018). DOI
Gimbutas M. The prehistory of eastern Europe. (Peabody Museum, 1956).
Fu Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205, doi:10.1038/nature17993 (2016). PubMed DOI PMC
Anthony D. W. et al. The Eneolithic cemetery at Khvalynsk on the Volga River. Praehistorische Zeitschrift 97, 22–67, doi:doi:10.1515/pz-2022-2034 (2022). PubMed DOI PMC
Govedarica B. & Manzura I. The Giurgiulesti cemetery in chronological and cultural context of Southeastern and Eastern Europe. Eurasia Antiqua 22, 1–39 (2016).
Penske S. et al. Early contact between late farming and pastoralist societies in southeastern Europe. Nature 620, 358–365, doi:10.1038/s41586-023-06334-8 (2023). PubMed DOI PMC
Patterson N., Price A. L. & Reich D. Population Structure and Eigenanalysis. PLOS Genetics 2, e190, doi:10.1371/journal.pgen.0020190 (2006). PubMed DOI PMC
Nikitin A. G. I., S.; Culleton B.J.; Potekhina I.; Reich D. New radiocarbon and stable isotope data from the Usatove culture site of Mayaky in Ukraine. SSRN Electronic Journal, doi:doi:10.2139/ssrn.4236123 (2023). DOI
Skorobogatov A. M. Pamyatniki Neolita I Eneolita v Usťe Chernoi Kalitvy. Trudy Voronezhskogo Oblastnogo Kraevedcheskogo Muzeiya Vyp. 3, 47–53 (2019).
Skorobogatov A. M. & Smol'janinov R. V. Srednestogovskie materialy v bassejne Verhnego i Srednego Dona. Rossiyskaya arkheologiya 2013, 126–136 (2013).
Shishlina N. I. et al. Paleoecology, Subsistence, and 14C Chronology of the Eurasian Caspian Steppe Bronze Age. Radiocarbon 51, 481–499, doi:10.1017/S0033822200055879 (2009). DOI
Korenevskii S. Rozhdenie Kurgana [Origins of Kurgans] (2012).
Skourtanioti E. et al. Genomic History of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158–1175.e1128, doi:10.1016/j.cell.2020.04.044 (2020). PubMed DOI
Guarino-Vignon P. et al. Genome-wide analysis of a collective grave from Mentesh Tepe provides insight into the population structure of early neolithic population in the South Caucasus. Communications Biology 6, 319, doi:10.1038/s42003-023-04681-w (2023). PubMed DOI PMC
Lazaridis I. et al. The genetic history of the Southern Arc: A bridge between West Asia and Europe. Science 377, eabm4247, doi:10.1126/science.abm4247 (2022). PubMed DOI PMC
Altınışık N. E. et al. A genomic snapshot of demographic and cultural dynamism in Upper Mesopotamia during the Neolithic Transition. Science Advances 8, eabo3609, doi:10.1126/sciadv.abo3609. PubMed DOI PMC
Lazaridis I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218, doi:10.1038/nature23310 (2017). PubMed DOI PMC
Lazaridis I. The evolutionary history of human populations in Europe. Current Opinion in Genetics & Development 53, 21–27, doi:10.1016/j.gde.2018.06.007 (2018). PubMed DOI
Kloekhorst A. in The Indo-European Puzzle Revisited: Integrating Archaeology, Genetics, and Linguistics (eds Willerslev Eske, Kroonen Guus, & Kristiansen Kristian) 42–60 (Cambridge University Press, 2023).
Kroonen G., Barjamovic G. & Peyrot M. Linguistic supplement to Damgaard et al. 2018 : Early Indo-European languages, Anatolian, Tocharian and Indo-Iranian. (2018). <10.5281/zenodo.1240523>. DOI
Egfjord A. F.-H. et al. Genomic Steppe ancestry in skeletons from the Neolithic Single Grave Culture in Denmark. PLOS ONE 16, e0244872, doi:10.1371/journal.pone.0244872 (2021). PubMed DOI PMC
Chintalapati M., Patterson N. & Moorjani P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11, e77625, doi:10.7554/eLife.77625 (2022). PubMed DOI PMC
Fournier R., Tsangalidou Z., Reich D. & Palamara P. F. Haplotype-based inference of recent effective population size in modern and ancient DNA samples. Nature Communications 14, 7945, doi:10.1038/s41467-023-43522-6 (2023). PubMed DOI PMC
Ringbauer H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nature Genetics 56, 143–151, doi:10.1038/s41588-023-01582-w (2024). PubMed DOI PMC
Fowler C. et al. A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature 601, 584–587, doi:10.1038/s41586-021-04241-4 (2022). PubMed DOI PMC
Shishlina N. Reconstruction of the Bronze Age of the Caspian steppes: Life styles and life ways of pastoral nomads. Vol. 1876 (Archaeopress, 2008).
Cassidy L. M. et al. A dynastic elite in monumental Neolithic society. Nature 582, 384–388, doi:10.1038/s41586-020-2378-6 (2020). PubMed DOI PMC
Olander T. Indo-European cladistic nomenclature. 124, 231–244, doi:doi:10.1515/if-2019-0008 (2019). DOI
Anthony D. W. & Ringe D. The Indo-European Homeland from Linguistic and Archaeological Perspectives. Annual Review of Linguistics 1, 199–219, doi:10.1146/annurev-linguist-030514-124812 (2015). DOI
Pronk T. C. Indo-European secondary products terminology and the dating of Proto-Indo-Anatolian. Journal of Indo-European Studies 49, 141–170 (2022).
Kassian A. S. et al. Rapid radiation of the inner Indo-European languages: an advanced approach to Indo-European lexicostatistics. Linguistics 59, 949–979, doi:doi:10.1515/ling-2020-0060 (2021). DOI
Allentoft M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172, doi:10.1038/nature14507 (2015). PubMed DOI
Ringe D., Warnow T. & Taylor A. Indo-European and Computational Cladistics. Transactions of the Philological Society 100, 59–129, doi:10.1111/1467-968X.00091 (2002). DOI
Heggarty P. et al. Language trees with sampled ancestors support a hybrid model for the origin of Indo-European languages. Science 381, eabg0818, doi:10.1126/science.abg0818. PubMed DOI
Kroonen G., Jakob A., Palmér A. I., van Sluis P. & Wigman A. Indo-European cereal terminology suggests a Northwest Pontic homeland for the core Indo-European languages. PLOS ONE 17, e0275744, doi:10.1371/journal.pone.0275744 (2022). PubMed DOI PMC
Kristiansen K. in Dispersals and Diversification: Linguistic and Archaeological Perspectives on the Early Stages of Indo-European Vol. 19 Brill's Studies in Indo-European Languages & Linguistics (eds Serangeli M. & Olander Thomas) 157–165 (Brill, 2019).
Fernandes D. M. et al. The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nature Ecology & Evolution 4, 334–345, doi:10.1038/s41559-020-1102-0 (2020). PubMed DOI PMC
Pinhasi R., Fernandes D. M., Sirak K. & Cheronet O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat Protoc 14, 1194–1205, doi:10.1038/s41596-019-0137-7 (2019). PubMed DOI
Sirak K. A. et al. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. Biotechniques 62, 283–289, doi:10.2144/000114558 (2017). PubMed DOI
Damgaard P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci Rep 5, 11184, doi:10.1038/srep11184 (2015). PubMed DOI PMC
Sirak K. et al. Human auditory ossicles as an alternative optimal source of ancient DNA. Genome research 30, 427–436, doi:10.1101/gr.260141.119 (2020). PubMed DOI PMC
Dabney J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America 110, 15758–15763, doi:10.1073/pnas.1314445110 (2013). PubMed DOI PMC
Korlević P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93, doi:10.2144/000114320 (2015). PubMed DOI
Rohland N., Harney E., Mallick S., Nordenfelt S. & Reich D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos Trans R Soc Lond B Biol Sci 370, 20130624, doi:10.1098/rstb.2013.0624 (2015). PubMed DOI PMC
Rohland N., Glocke I., Aximu-Petri A. & Meyer M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat Protoc 13, 2447–2461, doi:10.1038/s41596-018-0050-5 (2018). PubMed DOI
Prendergast M. E. et al. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, doi:10.1126/science.aaw6275 (2019). PubMed DOI PMC
Gansauge M. T., Aximu-Petri A., Nagel S. & Meyer M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat Protoc 15, 2279–2300, doi:10.1038/s41596-020-0338-0 (2020). PubMed DOI
Maricic T., Whitten M. & Paabo S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PloS one 5, e14004, doi:10.1371/journal.pone.0014004 (2010). PubMed DOI PMC
Fu Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proceedings of the National Academy of Sciences of the United States of America 110, 2223–2227, doi:10.1073/pnas.1221359110 (2013). PubMed DOI PMC
Fu Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219, doi:10.1038/nature14558 (2015). PubMed DOI PMC
Rohland N. et al. Three assays for in-solution enrichment of ancient human DNA at more than a million SNPs. Genome research 32, 2068–2078, doi:10.1101/gr.276728.122 (2022). PubMed DOI PMC
Lipson M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372, doi:10.1038/nature24476 (2017). PubMed DOI PMC
Behar D. M. et al. A "Copernican" reassessment of the human mitochondrial DNA tree from its root. Am J Hum Genet 90, 675–684, doi:10.1016/j.ajhg.2012.03.002 (2012). PubMed DOI PMC
Li H. & Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760, doi:10.1093/bioinformatics/btp324 (2009). PubMed DOI PMC
Fu Q. et al. A Revised Timescale for Human Evolution Based on Ancient Mitochondrial Genomes. Current Biology 23, 553–559, doi:10.1016/j.cub.2013.02.044 (2013). PubMed DOI PMC
Korneliussen T. S., Albrechtsen A. & Nielsen R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356, doi:10.1186/s12859-014-0356-4 (2014). PubMed DOI PMC
Skoglund P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proceedings of the National Academy of Sciences 111, 2229, doi:10.1073/pnas.1318934111 (2014). PubMed DOI PMC
Li H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079, doi:10.1093/bioinformatics/btp352 (2009). PubMed DOI PMC
Weissensteiner H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res 44, W58–63, doi:10.1093/nar/gkw233 (2016). PubMed DOI PMC
van Oven M. & Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Human Mutation 30, E386–E394, doi:10.1002/humu.20921 (2009). PubMed DOI
Shinde V. et al. An Ancient Harappan Genome Lacks Ancestry from Steppe Pastoralists or Iranian Farmers. Cell 179, doi:10.1016/j.cell.2019.08.048 (2019). PubMed DOI PMC
Harney É. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nature Communications 9, 3336, doi:10.1038/s41467-018-05649-9 (2018). PubMed DOI PMC
Rivollat M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Science Advances 6, eaaz5344, doi:10.1126/sciadv.aaz5344 (2020). PubMed DOI PMC
Reich D., Thangaraj K., Patterson N., Price A. L. & Singh L. Reconstructing Indian population history. Nature 461, 489–494, doi:10.1038/nature08365 (2009). PubMed DOI PMC
Adamov D., Gurianov V. M., Karzhavin S., Tagankin V. & Urasin V. Defining a New Rate Constant for Y-Chromosome SNPs based on Full Sequencing Data. Russian Journal of Genetic Genealogy 7, 1920–2997 (2015).
Sinnott R. W. Virtues of the Haversine. Sky and telescope 68, 158 (1984).
Charlesworth B. Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics 10, 195–205, doi:10.1038/nrg2526 (2009). PubMed DOI
Fenner J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am J Phys Anthropol 128, 415–423, doi:10.1002/ajpa.20188 (2005). PubMed DOI