Widespread horse-based mobility arose around 2200 BCE in Eurasia
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, historické články
PubMed
38843826
PubMed Central
PMC11269178
DOI
10.1038/s41586-024-07597-5
PII: 10.1038/s41586-024-07597-5
Knihovny.cz E-zdroje
- MeSH
- chov zvířat * dějiny MeSH
- dějiny starověku MeSH
- domestikace * MeSH
- doprava * dějiny metody MeSH
- fylogeneze MeSH
- genom genetika MeSH
- koně * klasifikace genetika MeSH
- rozmnožování MeSH
- zvířata MeSH
- Check Tag
- dějiny starověku MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
Horses revolutionized human history with fast mobility1. However, the timeline between their domestication and their widespread integration as a means of transport remains contentious2-4. Here we assemble a collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged around 2200 BCE, through close-kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than approximately 2700 BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe around 3000 BCE and earlier3,5. Finally, we detect significantly shortened generation times at Botai around 3500 BCE, a settlement from central Asia associated with corrals and a subsistence economy centred on horses6,7. This supports local horse husbandry before the rise of modern domestic bloodlines.
Ajuntament de Calafell Calafell Spain
Albrecht Daniel Thaer Institute Faculty of Life Sciences Humboldt University Berlin Berlin Germany
Archaeology Department Ankara University Ankara Türkiye
Archaeology of Social Dynamics Barcelona Spain
C Major 20 Norfeu Arqueologia Art i Patrimoni S C La Tallada d'Empordà Spain
Center for Animal Breeding and Genetics Department of Biosystems KU Leuven Leuven Belgium
Central Laboratory Bioarchaeology Laboratory Archaeozoology section University of Tehran Tehran Iran
Centre for Applied Bioanthropology Institute for Anthropological Research Zagreb Croatia
Consell Insular d'Eivissa Eivissa Spain
Department of Archaeological Monuments State Historical Museum Moscow Russian Federation
Department of Archaeological Science and Conservation Moesgaard Museum Højbjerg Denmark
Department of Archaeology and Heritage Studies Aarhus University Højbjerg Denmark
Department of Archaeology and History University of Exeter Exeter UK
Department of Archaeology Ethnography and Museology Altai State University Barnaul Russia
Department of Archaeology History Faculty Vilnius University Vilnius Lithuania
Department of Archaeology Moesgaard Museum Højbjerg Denmark
Department of Archaeology University of York York UK
Department of Biotechnology Abdul Wali Khan University Mardan Pakistan
Department of Earth System Science University of California Irvine CA USA
Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA
Department of Evolutionary Genetics Leibniz Institute for Zoo and Wildlife Research Berlin Germany
Department of Folk Studies and Anthropology Western Kentucky University Bowling Green KY USA
Department of History of the Institute of Humanities Ural Federal University Ekaterinburg Russia
Dipartimento di Beni Culturali e Ambientali Università degli Studi di Milano Milan Italy
Ecole Nationale Vétérinaire d'Alfort Maisons Alfort France
Ecole Tunisienne d'Histoire et d'Anthropologie Tunis Tunisia
Eurasia Department of the German Archaeological Institute Berlin Germany
Faculty of Archaeology Adam Mickiewicz University Poznań Poland
Faculty of Arts and Humanities University of Southampton Southampton UK
Faculty of History University of Oxford Oxford UK
ICArEHB Campus de Gambelas University of Algarve Faro Portugal
ICREA Catalan Institution for Research and Advanced Studies Barcelona Spain
IEC Institut d'Estudis Catalans Barcelona Spain
Independent researcher Prague Czechia
INRAE Division Ecology and Biodiversity Castanet Tolosan Cedex France
INRAE GeT PlaGe Genotoul Castanet Tolosan France
Institut d'Arqueologia de la Universitat de Barcelona Barcelona Spain
Institut de Biologia Evolutiva Barcelona Spain
Institute for Anthropological Research Zagreb Croatia
Institute for Caucasus Archaeology Nalchik Russian Federation
Institute for Humanities Research and Indigenous Studies of the North Yakutsk Russia
Institute of Archaeology Faculty of History Nicolaus Copernicus University Toruń Poland
Institute of Archaeology Maria Curie Skłodowska University Lublin Poland
Institute of Archaeology Mongolian Academy of Science Ulaanbaatar Mongolia
Institute of Archaeology National Academy of Sciences of Ukraine Kyiv Ukraine
Institute of Archaeology Russian Academy of Sciences Moscow Russia
Institute of the History of Material Culture Russian Academy of Sciences St Petersburg Russia
Kh Ibragimov Complex Institute of the Russian Academy of Sciences Grozny Russia
Kremenetsko Pochaivskii Derzhavnyi Istoriko arkhitekturnyi Zapovidnik Kremenets Ukraine
Leibniz Zentrum für Archäologie Mainz Germany
Lundbeck Foundation GeoGenetics Centre Globe Institute University of Copenhagen Copenhagen Denmark
Max Planck Institute of Geoanthropology Jena Germany
Mon IberRocs SCL Vilanova i la Geltrú Spain
Mosaïques Archéologie Espace d'activités de la Barthe Cournonterral France
Museu d'Arqueologia de Catalunya Ullastret Spain
Museum of Natural History Vienna Austria
Museum Østjylland Grenaa Denmark
Museum Vestsjælland Holbæk Denmark
Narodni muzej Slovenije Ljubljana Slovenia
Nasledie Cultural Heritage Unit Stavropol Russia
National Institute of Archaeology Hungarian National Museum Budapest Hungary
Östra Greda Research Group Borgholm Sweden
Research Institute and Museum of Anthropology Lomonosov Moscow State University Moscow Russia
School of Archaeology and Ancient History University of Leicester Leicester UK
School of Archaeology University College Dublin Dublin Ireland
Smurfit Institute of Genetics Trinity College Dublin Dublin Ireland
Taku Skan Skan Wasakliyapi Global Institute for Traditional Sciences Rapid City SD USA
The Royal Danish Academy Institute of Conservation Copenhagen Denmark
Toraighyrov University Joint Research Center for Archeological Studies Pavlodar Kazakhstan
UMR du CNRS 8215 Trajectoires Institut d'Art et Archéologie Paris France
UNIARQ Unidade de Arqueologia Universidade de Lisboa Alameda da Universidade Lisboa Portugal
Universidade Aberta Lisbon Portugal
Université Paris Saclay AgroParisTech INRAE GABI UMR1313 Jouy en Josas France
University of Tunis Institut National du Patrimoine Tunis Tunisia
Vinkovci Municipal Museum Vinkovci Croatia
Zoological institute Department of Environmental Sciences University of Basel Basel Switzerland
Zoological Institute Russian Academy of Sciences St Petersburg Russia
Zobrazit více v PubMed
Kelekna, P. The Horse in Human History (Cambridge Univ. Press, 2009).
Librado, P. et al. The origins and spread of domestic horses from the Western Eurasian steppes. Nature598, 634–640 (2021). PubMed PMC
Anthony, D. W. The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World (Princeton Univ. Press, 2007).
Maier, R. et al. On the limits of fitting complex models of population history to f-statistics. eLife12, e85492 (2023). PubMed PMC
Trautmann, M. et al. First bioanthropological evidence for Yamnaya horsemanship. Sci. Adv.10.1126/sciadv.ade2451 (2023). 10.1126/sciadv.ade2451 PubMed DOI PMC
Outram, A. K. et al. The earliest horse harnessing and milking. Science323, 1332–1335 (2009). PubMed
Gaunitz, C. et al. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science360, 111–114 (2018). PubMed
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature522, 207–211 (2015). PubMed PMC
Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature522, 167–172 (2015). PubMed
Penske, S. et al. Early contact between late farming and pastoralist societies in southeastern Europe. Nature620, 358–365 (2023). PubMed PMC
Wilkin, S. et al. Dairying enabled Early Bronze Age Yamnaya steppe expansions. Nature598, 629–633 (2021). PubMed PMC
Scott, A. et al. Emergence and intensification of dairying in the Caucasus and Eurasian steppes. Nat. Ecol. Evol.6, 813–822 (2022). PubMed PMC
Outram, A. K. Horse domestication as a multi-centered, multi-stage process: Botai and the role of specialized Eneolithic horse pastoralism in the development of human-equine relationships. Front. Environ. Archaeol.2, 1134068 (2023).
Casanova, E. et al. Direct 14 C dating of equine products preserved in archaeological pottery vessels from Botai and Bestamak, Kazakhstan. Archaeol. Anthropol. Sci.14, 175 (2022). PubMed PMC
Outram, A., Bendrey, R., Evershed, R. P., Orlando, L. & Zaibert, V. F. Rebuttal of Taylor and Barrón-Ortiz 2021: Rethinking the evidence for early horse domestication at Botai. Zenodo10.5281/zenodo.5142604 (2021).
Taylor, W. T. T. & Barrón-Ortiz, C. I. Rethinking the evidence for early horse domestication at Botai. Sci. Rep.11, 7440 (2021). PubMed PMC
Chechushkov, I. V. & Kosintsev, P. A. The Botai horse practices represent the neolithization process in the central Eurasian steppes: important findings from a new study on ancient horse DNA. J. Archaeol. Sci. Rep.32, 102426 (2020).
Fages, A., Seguin-Orlando, A., Germonpré, M. & Orlando, L. Horse males became over-represented in archaeological assemblages during the Bronze Age. J. Archaeol. Sci. Rep.31, 102364 (2020).
Heggarty, P. et al. Language trees with sampled ancestors support a hybrid model for the origin of Indo-European languages. Science381, eabg0818 (2023). PubMed
Kanne, K. Riding, ruling, and resistance: equestrianism and political authority in the Hungarian Bronze Age. Curr. Anthropol.63, 289–329 (2022).
Battey, C., Ralph, P. L. & Kern, A. D. Predicting geographic location from genetic variation with deep neural networks. eLife9, e54507 (2020). PubMed PMC
Kyselý, R. & Peške, L. New discoveries change existing views on the domestication of the horse and specify its role in human prehistory and history – a review. Archeologické rozhledy74, 299–345 (2022).
Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science377, eabm4247 (2022). PubMed PMC
Librado, P. & Orlando, L. Struct-f4: a Rcpp package for ancestry profile and population structure inference from f4-statistics. Bioinformatics38, 2070–2071 (2022). PubMed PMC
Clark, P. U. et al. The Last Glacial Maximum. Science325, 710–714 (2009). PubMed
Santiago, E. et al. Recent demographic history inferred by high-resolution analysis of linkage disequilibrium. Mol. Biol. Evol.37, 3642–3653 (2020). PubMed
Cozzi, B., Ballarin, C., Mantovani, R. & Rota, A. Aging and veterinary care of cats, dogs, and horses through the records of three university veterinary hospitals. Front. Vet. Sci.4, 14 (2017). PubMed PMC
Miller, M. A., Moore, G. E., Bertin, F. R. & Kritchevsky, J. E. What’s new in old horses? Postmortem diagnoses in mature and aged equids. Vet. Pathol.53, 390–398 (2016). PubMed
Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature499, 74–78 (2013). PubMed
Fages, A. et al. Tracking five millennia of horse management with extensive ancient genome time series. Cell177, 1419–1435.e31 (2019). PubMed PMC
Warmuth, V. et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proc. Natl Acad. Sci. USA109, 8202–8206 (2012). PubMed PMC
Thiruvenkadan, A. K., Kandasamy, N. & Panneerselvam, S. Inheritance of racing performance of Thoroughbred horses. Livest. Sci.121, 308–326 (2009).
Oates, J. in Prehistoric Steppe Adaptation and the Horse (eds Levine, M., Renfrew, C. & Boyle, K.) 115–138 (McDonald Institute for Archaeological Research, 2003).
Vila, E. Data on equids from late fourth and third millennium sites in northern Syria. In Proc. 9th Conference of the International Council of Archaeozoology (ed. Mashkour, M.) 101–123 (Oxbow Books, 2006).
Schwartz, G. M. & Nichols, J. J. After Collapse: The Regeneration of Complex Societies (Univ. of Arizona Press, 2010).
Butzer, K. W. in Third Millennium BC Climate Change and Old World Collapse (eds Dalfes, H. N., Kukla, G. & Weiss, H.) 245–296 (Springer, 1997).
Kristensen, T. N. & Sørensen, A. C. Inbreeding – lessons from animal breeding, evolutionary biology and conservation genetics. Anim. Sci.80, 121–133 (2005).
Zaibert, V. Botaiskaya Kultura (KazAkparat, 2009).
Outram, A. K. & Bogaard, A. Subsistence and Society in Prehistory: New Directions in Economic Archaeology (Cambridge Univ. Press, 2019).
Levine, M. Botai and the origins of horse domestication. J. Anthropol. Archaeol.18, 29–78 (1999).
Zeder, M. A. in Biodiversity in Agriculture: Domestication, Evolution, and Sustainability (eds Damania, A. B. et al.) 227–259 (Cambridge Univ. Press, 2012).
Kristiansen, K., Lindkvist, T. & Myrdal, J. Trade and Civilisation: Economic Networks and Cultural Ties, from Prehistory to the Early Modern Era (Cambridge Univ. Press, 2018).
Guimaraes, S. et al. Ancient DNA shows domestic horses were introduced in the southern Caucasus and Anatolia during the Bronze Age. Sci. Adv.6, eabb0030 (2020). PubMed PMC
Walker, M. et al. Formal subdivision of the Holocene series/epoch: a summary. J. Geol. Soc. India93, 135–141 (2019).
Felkel, S. et al. The horse Y chromosome as an informative marker for tracing sire lines. Sci. Rep.9, 6095 (2019). PubMed PMC
Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature615, 117–126 (2023). PubMed PMC
Nielsen, R. et al. Tracing the peopling of the world through genomics. Nature541, 302–310 (2017). PubMed PMC
Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E. M. L. & Skoglund, P. Origins of modern human ancestry. Nature590, 229–237 (2021). PubMed
Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon51, 337–360 (2009).
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon62, 725–757 (2020).
Gamba, C. et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol. Ecol. Resour.16, 459–469 (2016). PubMed
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes9, 88 (2016). PubMed PMC
Schubert, M. et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc.9, 1056–1082 (2014). PubMed
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). PubMed PMC
Kalbfleisch, T. S. et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun. Biol.1, 197 (2018). PubMed PMC
Xu, X. & Arnason, U. The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene148, 357–362 (1994). PubMed
Poullet, M. & Orlando, L. Assessing DNA sequence alignment methods for characterizing ancient genomes and methylomes. Front. Ecol. Evol.8, 105 (2020).
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics29, 1682–1684 (2013). PubMed PMC
Todd, E. T. et al. The genomic history and global expansion of domestic donkeys. Science377, 1172–1180 (2022). PubMed
Cai, D. et al. Radiocarbon and genomic evidence for the survival of Equus Sussemionus until the late Holocene. eLife11, e73346 (2022). PubMed PMC
Vershinina, A. O. et al. Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge. Mol. Ecol.30, 6144–6161 (2021). PubMed
Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA111, 2229–2234 (2014). PubMed PMC
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinf.15, 356 (2014). PubMed PMC
Nielsen, S. V. et al. Bayesian inference of admixture graphs on Native American and Arctic populations. PLoS Genet.19, e1010410 (2023). PubMed PMC
Harney, É., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics217, iyaa045 (2021). PubMed PMC
Beeson, S. K., Mickelson, J. R. & McCue, M. E. Equine recombination map updated to EquCab3.0. Anim. Genet. 51, 341–342 (2020). PubMed PMC
Excoffier, L. et al. fastsimcoal2: demographic inference under complex evolutionary scenarios. Bioinformatics37, 4882–4885 (2021). PubMed PMC
Todd, E. T. et al. Imputed genomes of historical horses provide insights into modern breeding. iScience26, 107104 (2023). PubMed PMC
Librado, P. GenerationTime. Zenodo10.5281/zenodo.10842666 (2024).