Dairying enabled Early Bronze Age Yamnaya steppe expansions

. 2021 Oct ; 598 (7882) : 629-633. [epub] 20210915

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu historické články, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34526723
Odkazy

PubMed 34526723
PubMed Central PMC8550948
DOI 10.1038/s41586-021-03798-4
PII: 10.1038/s41586-021-03798-4
Knihovny.cz E-zdroje

During the Early Bronze Age, populations of the western Eurasian steppe expanded across an immense area of northern Eurasia. Combined archaeological and genetic evidence supports widespread Early Bronze Age population movements out of the Pontic-Caspian steppe that resulted in gene flow across vast distances, linking populations of Yamnaya pastoralists in Scandinavia with pastoral populations (known as the Afanasievo) far to the east in the Altai Mountains1,2 and Mongolia3. Although some models hold that this expansion was the outcome of a newly mobile pastoral economy characterized by horse traction, bulk wagon transport4-6 and regular dietary dependence on meat and milk5, hard evidence for these economic features has not been found. Here we draw on proteomic analysis of dental calculus from individuals from the western Eurasian steppe to demonstrate a major transition in dairying at the start of the Bronze Age. The rapid onset of ubiquitous dairying at a point in time when steppe populations are known to have begun dispersing offers critical insight into a key catalyst of steppe mobility. The identification of horse milk proteins also indicates horse domestication by the Early Bronze Age, which provides support for its role in steppe dispersals. Our results point to a potential epicentre for horse domestication in the Pontic-Caspian steppe by the third millennium BC, and offer strong support for the notion that the novel exploitation of secondary animal products was a key driver of the expansions of Eurasian steppe pastoralists by the Early Bronze Age.

Broad Institute of Harvard and MIT Cambridge MA USA

Center for Egyptological Studies Russian Academy of Sciences Moscow Russian Federation

Center of Human Ecology Institute of Ethnology and Anthropology Russian Academy of Sciences Moscow Russian Federation

Department of Anthropology and Archaeology University of Calgary Calgary Alberta Canada

Department of Anthropology Hartwick College Oneonta NY USA

Department of Anthropology National Museum of Natural History Smithsonian Institution Washington DC USA

Department of Anthropology University of California Santa Barbara CA USA

Department of Anthropology University of Colorado Museum of Natural History Boulder CO USA

Department of Anthropology University of Michigan Ann Arbor MI USA

Department of Archaeology Max Planck Institute for the Science of Human History Jena Germany

Department of Archaeology University of Exeter Exeter UK

Department of Genetics Harvard Medical School Boston MA USA

Department of Human Evolutionary Biology Harvard University Cambridge MA USA

Faculty of Arts Masaryk University Brno střed Czech Republic

Faculty of History Archaeology and Ethnology Al Farabi Kazakh National University Almaty Kazakhstan

Functional Genomics Centre Zürich University of Zürich ETH Zürich Switzerland

Howard Hughes Medical Institute Harvard Medical School Boston MA USA

Institute for Evolutionary Medicine Faculty of Medicine University of Zürich Zürich Switzerland

Institute of Archaeology and Steppe Civilizations Al Farabi Kazakh National University Almaty Kazakhstan

Institute of History and Archaeology Ural Branch of the Russian Academy of Sciences Yekaterinburg Russian Federation

Institutes of Energy and the Environment The Pennsylvania State University University Park PA USA

Samara State University of Social Sciences and Education Samara Russian Federation

School of Archaeology University of Oxford Oxford UK

School of Social Science The University of Queensland Brisbane Queensland Australia

South Ural State University Chelyabinsk Russian Federation

Zobrazit více v PubMed

Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. doi: 10.1038/nature14317. PubMed DOI PMC

Mathieson I, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. doi: 10.1038/nature16152. PubMed DOI PMC

Jeong C, et al. A dynamic 6,000-year genetic history of Eurasia’s eastern steppe. Cell. 2020;183:890–904. doi: 10.1016/j.cell.2020.10.015. PubMed DOI PMC

Anthony DW, Ringe D. The Indo-European homeland from linguistic and archaeological perspectives. Annu. Rev. Linguist. 2015;1:199–219. doi: 10.1146/annurev-linguist-030514-124812. DOI

Anthony DW, Brown DR. The secondary products revolution, horse-riding, and mounted warfare. J. World Prehist. 2011;24:131. doi: 10.1007/s10963-011-9051-9. DOI

Anthony, D. W. The Horse, the Wheel, and Language (Princeton Univ. Press, 2007).

Anthony, D. W. et al. The Eneolithic cemetery at Khvalynsk on the Volga River. Praehistorische Zeitschrift (in the press).

Wang C-C, et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 2019;10:590. doi: 10.1038/s41467-018-08220-8. PubMed DOI PMC

Allentoft ME, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–172. doi: 10.1038/nature14507. PubMed DOI

Reinhold, S. et al. in Appropriating Innovations: Entangled Knowledge in Eurasia 5000–1500BCE (eds Stockhammer, P. & Maran, J.) 78–97 (Oxbow Books, 2017).

Rassamakin, Y. in Late Prehistoric Exploration of the Eurasian Steppe (eds Levine, M. et al.) 59–182 (McDonald Institute for Archaeological Research, 1999).

Levine MA. Botai and the origins of horse domestication. J. Anthropol. Archaeol. 1999;18:29–78. doi: 10.1006/jaar.1998.0332. DOI

Outram AK, et al. The earliest horse harnessing and milking. Science. 2009;323:1332–1335. doi: 10.1126/science.1168594. PubMed DOI

Outram AK, et al. Patterns of pastoralism in later Bronze Age Kazakhstan: new evidence from faunal and lipid residue analyses. J. Archaeol. Sci. 2012;39:2424–2435. doi: 10.1016/j.jas.2012.02.009. DOI

Gaunitz C, et al. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science. 2018;360:111–114. doi: 10.1126/science.aao3297. PubMed DOI

Kohl, P. L. The Making of Bronze Age Eurasia (Cambridge Univ. Press, 2007).

de Barros Damgaard P, et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science. 2018;360:eaar7711. doi: 10.1126/science.aar7711. PubMed DOI PMC

Taylor WTT, et al. Early pastoral economies and herding transitions in eastern Eurasia. Sci. Rep. 2020;10:1001. doi: 10.1038/s41598-020-57735-y. PubMed DOI PMC

Wilkin S, et al. Dairy pastoralism sustained Eastern Eurasian steppe populations for 5000 years. Nat. Ecol. Evol. 2020;4:346–355. doi: 10.1038/s41559-020-1120-y. PubMed DOI PMC

Frachetti M, Benecke N. From sheep to (some) horses: 4500 years of herd structure at the pastoralist settlement of Begash (south-eastern Kazakhstan) Antiquity. 2009;83:1023–1037. doi: 10.1017/S0003598X00099324. DOI

Schulting, R. J. & Richards, M. P. in A Bronze Age Landscape in the Russian Steppes: The Samara Valley Project (eds Anthony, D. W. et al.) 127–148 (Cotsen Institute of Archaeology Press at UCLA, 2016).

Ventresca Miller, A. R. & Makarewicz, C. A. Intensification in pastoralist cereal use coincides with the expansion of trans-regional networks in the Eurasian Steppe. Sci. Rep.9, 8363 (2019). PubMed PMC

Gimbutas, M. The Kurgan Culture and the Indo-Europeanization of Europe: Selected Articles from 1952 to 1993 (Study of Man, 1997).

Gimbutas, M. in The Indo-Europeans in the Fourth and Third Millennium (ed. Polomé, E. C.) 1–60 (Karoma, 1982).

Mallory, J. P. In Search of the Indo-Europeans: Language, Archaeology, and Myth (Thames and Hudson, 1989).

Wang CC, et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 2019;10:590. doi: 10.1038/s41467-018-08220-8. PubMed DOI PMC

Shishlina NI, et al. Paleoecology, subsistence, and 14C chronology of the Eurasian Caspian steppe Bronze Age. Radiocarbon. 2009;51:481–499. doi: 10.1017/S0033822200055879. DOI

Gerling, C. Prehistoric Mobility and Diet in the West Eurasian Steppes 3500 to 300 BC: An Isotopic Approach (Walter de Gruyter, 2015).

Anthony, D. W. et al. (eds). A Bronze Age Landscape in the Russian Steppes: The Samara Valley Project (Cotsen Institute of Archaeology Press at UCLA, 2016).

Kuznetsov, P. F. & Mochalov, O. D. in A Bronze Age Landscape in the Russian Steppes: The Samara Valley Project (eds Anthony, D. W. et al.) 71–90 (Cotsen Institute of Archaeology Press at UCLA, 2016).

Hanks BK, Epimakhov AV, Renfrew AC. Towards a refined chronology for the Bronze Age of the southern Urals, Russia. Antiquity. 2007;81:353–367. doi: 10.1017/S0003598X00095235. DOI

Kosintsev, P. A. in Horses and Humans: The Evolution of Human–Equine Relationships (eds. Olsen, S. L. et al.) 127–135 (BAR, 2006).

Hanks, B. et al. Bronze Age diet and economy: new stable isotope data from the Central Eurasian steppes (2100–1700 BC). J. Archaeolog. Sci.97, 14–25 (2018).

Hendy J, et al. Ancient proteins from ceramic vessels at Çatalhöyük West reveal the hidden cuisine of early farmers. Nat. Commun. 2018;9:4064. doi: 10.1038/s41467-018-06335-6. PubMed DOI PMC

Jeong C, et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA. 2018;115:E11248–E11255. doi: 10.1073/pnas.1813608115. PubMed DOI PMC

Charlton S, et al. New insights into Neolithic milk consumption through proteomic analysis of dental calculus. Archaeol. Anthropol. Sci. 2019;11:6183–6196. doi: 10.1007/s12520-019-00911-7. DOI

Bleasdale M, et al. Ancient proteins provide evidence of dairy consumption in eastern Africa. Nat. Commun. 2021;12:632. doi: 10.1038/s41467-020-20682-3. PubMed DOI PMC

Ramsøe A, et al. Assessing the degradation of ancient milk proteins through site-specific deamidation patterns. Sci. Rep. 2021;11:7795. doi: 10.1038/s41598-021-87125-x. PubMed DOI PMC

Salque M, et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature. 2013;493:522–525. doi: 10.1038/nature11698. PubMed DOI

Knipper C, et al. Diet and subsistence in Bronze Age pastoral communities from the southern Russian steppes and the North Caucasus. PLoS ONE. 2020;15:e0239861. doi: 10.1371/journal.pone.0239861. PubMed DOI PMC

Frachetti MD. Multiregional emergence of mobile pastoralism and nonuniform institutional complexity across Eurasia. Curr. Anthropol. 2012;53:2–38. doi: 10.1086/663692. DOI

Bendrey R. Some like it hot: environmental determinism and the pastoral economies of the later prehistoric Eurasian steppe. Pastoralism: Research, Policy Pract. 2011;1:8. doi: 10.1186/2041-7136-1-8. DOI

Burger J, et al. Low prevalence of lactase persistence in Bronze Age Europe indicates ongoing strong selection over the last 3,000 years. Curr. Biol. 2020;30:4307–4315.e13. doi: 10.1016/j.cub.2020.08.033. PubMed DOI

Didier, J. C. In and Outside the Square: The Sky and the Power of Belief in Ancient China and the World, c. 4500 BC-AD 200 (Sino-Platonic Papers 192) (3 vols) (ed. Mair, V. H.) (2009).

Mileto S, Kaiser E, Rassamakin Y, Evershed RP. New insights into the subsistence economy of the Eneolithic Dereivka culture of the Ukrainian North-Pontic region through lipid residues analysis of pottery vessels. J. Archaeol. Sci. Rep. 2017;13:67–74.

Mileto S, Kaiser E, Rassamakin Y, Whelton H, Evershed RP. Differing modes of animal exploitation in North-Pontic Eneolithic and Bronze Age societies. Sci. Technol. Archaeol. Res. 2017;3:112–125.

Chechushkov IV, Epimakhov AV. Eurasian steppe chariots and social complexity during the Bronze Age. J. World Prehist. 2018;31:435–483. doi: 10.1007/s10963-018-9124-0. DOI

Sherratt A. The secondary exploitation of animals in the Old World. World Archaeol. 1983;15:90–104. doi: 10.1080/00438243.1983.9979887. DOI

Greenfield HJ. The secondary products revolution: the past, the present and the future. World Archaeol. 2010;42:29–54. doi: 10.1080/00438240903429722. DOI

Wang C-C, et al. Genomic insights into the formation of human populations in East Asia. Nature. 2021;591:413–419. doi: 10.1038/s41586-021-03336-2. PubMed DOI PMC

Türker, C. et al. B-Fabric: the Swiss Army Knife for life sciences. In Proc. 13th International Conference on Extending Database Technology (eds. Manolescu, I. et al.) 717–720 (Association for Computing Machinery, 2010).

Chambers MC, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012;30:918–920. doi: 10.1038/nbt.2377. PubMed DOI PMC

Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–3567. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2. PubMed DOI

Hagan, R. MS-MARGE. Mpi-Shh-mascot report generator, https://bitbucket.org/rwhagan/ms-marge/src/master/ (2018).

Bleasdale, M., Boivin, N. & Richter, K. K. Oral signature screening database for palaeoproteomic analyses of dental calculus, 10.5281/zenodo.3698271 (2020).

Fernandes R, Grootes P, Nadeau M-J, Nehlich O. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): the case study of Ostorf (Germany) Am. J. Phys. Anthropol. 2015;158:325–340. doi: 10.1002/ajpa.22788. PubMed DOI

Fernandes R. A simple (R) model to predict the source of dietary carbon in individual consumers. Archaeometry. 2016;58:500–512. doi: 10.1111/arcm.12193. DOI

Svyatko SV, Reimer PJ, Schulting R. Modern freshwater reservoir offsets in the Eurasian steppe: implications for archaeology. Radiocarbon. 2017;59:1597–1607. doi: 10.1017/RDC.2017.11. DOI

Fernandes R, Millard AR, Brabec M, Nadeau M-J, Grootes P. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE. 2014;9:e87436. doi: 10.1371/journal.pone.0087436. PubMed DOI PMC

Shishlina NI, van der Plicht J, Turetsky MA. The Lebyazhinka burial ground (Middle Volga Region, Russia): new 14C dates and the reservoir effect. Radiocarbon. 2018;60:681–690. doi: 10.1017/RDC.2017.94. DOI

Ramsey CB. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI

Reimer PJ, et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP) Radiocarbon. 2020;62:725–757. doi: 10.1017/RDC.2020.41. DOI

Narasimhan VM, et al. The formation of human populations in South and Central Asia. Science. 2019;365:eaat7487. doi: 10.1126/science.aat7487. PubMed DOI PMC

Stuiver M, Reimer PJ. Discussion: reporting of 14C data. Radiocarbon. 1977;19:355–363. doi: 10.1017/S0033822200003672. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...