Polymorphic and Higher-Order G-Quadruplexes as Possible Transcription Regulators: Novel Perspectives for Future Anticancer Therapeutic Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IG 2021 - ID. 26474
Italian Association for Cancer Research
PubMed
35337170
PubMed Central
PMC8950063
DOI
10.3390/ph15030373
PII: ph15030373
Knihovny.cz E-zdroje
- Klíčová slova
- G-quadruplex, folding landscapes, gene promoters,
- Publikační typ
- časopisecké články MeSH
In the past two decades, significant efforts have been put into designing small molecules to target selected genomic sites where DNA conformational rearrangements control gene expression. G-rich sequences at oncogene promoters are considered good points of intervention since, under specific environmental conditions, they can fold into non-canonical tetrahelical structures known as G-quadruplexes. However, emerging evidence points to a frequent lack of correlation between small molecule targeting of G-quadruplexes at gene promoters and the expression of the associated protein, which hampers pharmaceutical applications. The wide genomic localization of G-quadruplexes along with their highly polymorphic behavior may account for this scenario, suggesting the need for more focused drug design strategies. Here, we will summarize the G4 structural features that can be considered to fulfill this goal. In particular, by comparing a telomeric sequence with the well-characterized G-rich domain of the KIT promoter, we will address how multiple secondary structures might cooperate to control genome architecture at a higher level. If this holds true, the link between drug-DNA complex formation and the associated cellular effects will need to be revisited.
Zobrazit více v PubMed
Greider C.W., Blackburn E.H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987;51:887–898. doi: 10.1016/0092-8674(87)90576-9. PubMed DOI
Davis J.T. G-Quartets 40 Years Later: From 5′-GMP to Molecular Biology and Supramolecular Chemistry. Angew. Chem. Int. Ed. 2004;43:668–698. doi: 10.1002/anie.200300589. PubMed DOI
Neidle S. Human telomeric G-quadruplex: The current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J. 2010;277:1118–1125. doi: 10.1111/j.1742-4658.2009.07463.x. PubMed DOI
Banerjee N., Panda S., Chatterjee S. Frontiers in G-Quadruplex therapeutics in cancer: Selection of small molecules, peptides and aptamers. Chem. Biol. Drug Des. 2022;99:1–31. doi: 10.1111/cbdd.13910. PubMed DOI
Huppert J.L. Prevalence of Quadruplexes in the Human Genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC
Tu J., Duan M., Liu W., Lu N., Zhou Y., Sun X., Lu Z. Direct genome-wide identification of G-quadruplex structures by whole-genome resequencing. Nat. Commun. 2021;12:6014. doi: 10.1038/s41467-021-26312-w. PubMed DOI PMC
Hänsel-Hertsch R., Di Antonio M., Balasubramanian S. DNA G-quadruplexes in the human genome: Detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 2017;18:279–284. doi: 10.1038/nrm.2017.3. PubMed DOI
Lyu J., Shao R., Yung P.Y.K., Elsässer S.J. Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res. 2022;50:e13. PubMed PMC
Balasubramanian S., Hurley L.H., Neidle S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Discov. 2011;10:261–275. doi: 10.1038/nrd3428. PubMed DOI PMC
Rigo R., Palumbo M., Sissi C. G-quadruplexes in human promoters: A challenge for therapeutic applications. Biochim. Biophys. Acta Gen. Subj. 2017;1861:1399–1413. doi: 10.1016/j.bbagen.2016.12.024. PubMed DOI
Wang W., Hu S., Gu Y., Yan Y., Stovall D.B., Li D., Sui G. Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim. Biophys. Acta Rev. Cancer. 2020;1874:188410. doi: 10.1016/j.bbcan.2020.188410. PubMed DOI
Sun D., Guo K., Rusche J.J., Hurley L.H. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 2005;33:6070–6080. doi: 10.1093/nar/gki917. PubMed DOI PMC
Onel B., Carver M., Wu G., Timonina D., Kalarn S., Larriva M., Yang D. A New G-Quadruplex with Hairpin Loop Immediately Upstream of the Human BCL2 P1 Promoter Modulates Transcription. J. Am. Chem. Soc. 2016;138:2563–2570. doi: 10.1021/jacs.5b08596. PubMed DOI PMC
González V., Guo K., Hurley L., Sun D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J. Biol. Chem. 2009;284:23622–23635. doi: 10.1074/jbc.M109.018028. PubMed DOI PMC
Miranti C.K., Moore S., Kim Y., Chappeta V.R., Wu K., De B., Gokhale V., Hurley L.H., Reyes-Reyes E.M. Nucleolin represses transcription of the androgen receptor gene through a G-quadruplex. Oncotarget. 2020;11:1758–1776. doi: 10.18632/oncotarget.27589. PubMed DOI PMC
Zorzan E., Elgendy R., Giantin M., Dacasto M., Sissi C. Whole-Transcriptome Profiling of Canine and Human in Vitro Models Exposed to a G-Quadruplex Binding Small Molecule. Sci. Rep. 2018;8:17107. doi: 10.1038/s41598-018-35516-y. PubMed DOI PMC
Hänsel-Hertsch R., Beraldi D., Lensing S.V., Marsico G., Zyner K., Parry A., Di Antonio M., Pike J., Kimura H., Narita M., et al. G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 2016;48:1267–1272. doi: 10.1038/ng.3662. PubMed DOI
Zyner K.G., Simeone A., Flynn S.M., Doyle C., Marsico G., Adhikari S., Portella G., Tannahill D., Balasubramanian S. G-quadruplex DNA structures in human stem cells and differentiation. Nat. Commun. 2022;13:142. doi: 10.1038/s41467-021-27719-1. PubMed DOI PMC
Parkinson G.N., Lee M.P., Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature. 2002;417:876–880. doi: 10.1038/nature755. PubMed DOI
Wang Y., Patel D.J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993;1:263–282. doi: 10.1016/0969-2126(93)90015-9. PubMed DOI
Dai J., Punchihewa C., Ambrus A., Chen D., Jones R.A., Yang D. Structure of the intramolecular human telomeric G-quadruplex in potassium solution: A novel adenine triple formation. Nucleic Acids Res. 2007;35:2440–2445. doi: 10.1093/nar/gkm009. PubMed DOI PMC
Dai J., Carver M., Punchihewa C., Jones R.A., Yang D. Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: Insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res. 2007;35:4927–4940. doi: 10.1093/nar/gkm522. PubMed DOI PMC
Zhang Z., Dai J., Veliath E., Jones R.A., Yang D. Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: Insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res. 2010;38:1009–1021. doi: 10.1093/nar/gkp1029. PubMed DOI PMC
Bončina M., Vesnaver G., Chaires J.B., Lah J. Unraveling the thermodynamics of the folding and interconversion of human telomere G-quadruplexes. Angew. Chem. Int. Ed. Engl. 2016;55:10340–10344. doi: 10.1002/anie.201605350. PubMed DOI PMC
Matsumoto S., Sugimoto N. New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Top. Curr. Chem. 2021;379:17. doi: 10.1007/s41061-021-00329-7. PubMed DOI
Dai J., Carver M., Yang D. Polymorphism of human telomeric quadruplex structures. Biochimie. 2008;90:1172–1183. doi: 10.1016/j.biochi.2008.02.026. PubMed DOI PMC
Daniel Krafčík D., Ištvánková E., Džatko S., Víšková P., Foldynová-Trantírková S., Trantírek L. Towards Profiling of the G-Quadruplex Targeting Drugs in the Living Human Cells Using NMR Spectroscopy. Int. J. Mol. Sci. 2021;22:6042. doi: 10.3390/ijms22116042. PubMed DOI PMC
Liang J., Wu Y.L., Chen B.J., Zhang W., Tanaka Y., Sugiyama H. The C-kit receptor-mediated signal transduction and tumor-related diseases. Int. J. Biol. Sci. 2013;9:435–443. doi: 10.7150/ijbs.6087. PubMed DOI PMC
Phan A.T., Kuryavyi V., Burge S., Neidle S., Patel D.J. Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J. Am. Chem. Soc. 2007;129:4386–4392. doi: 10.1021/ja068739h. PubMed DOI PMC
Hsu S.T., Varnai P., Bugaut A., Reszka A.P., Neidle S., Balasubramanian S. A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J. Am. Chem. Soc. 2009;131:13399–13409. doi: 10.1021/ja904007p. PubMed DOI PMC
Kuryavyi V., Phan A.T., Patel D.J. Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res. 2010;38:6757–6773. doi: 10.1093/nar/gkq558. PubMed DOI PMC
Kotar A., Rigo R., Sissi C., Plavec J. Two-quartet kit* G-quadruplex is formed via double-stranded pre-folded structure. Nucleic Acids Res. 2019;47:2641–2653. doi: 10.1093/nar/gky1269. PubMed DOI PMC
Bejugam M., Gunaratnam M., Muller S., Sanders D.A., Sewitz S., Fletcher J.A., Neidle S., Balasubramanian S. Targeting the c-Kit Promoter G-quadruplexes with 6-Substituted Indenoisoquinolines. ACS Med. Chem. Lett. 2010;1:306–310. doi: 10.1021/ml100062z. PubMed DOI PMC
McLuckie K.I., Waller Z.A., Sanders D.A., Alves D., Rodriguez R., Dash J., McKenzie G.J., Venkitaraman A.R., Balasubramanian S. G-quadruplex-binding benzo[a]phenoxazines down-regulate c-KIT expression in human gastric carcinoma cells. J. Am. Chem. Soc. 2011;133:2658–2663. doi: 10.1021/ja109474c. PubMed DOI PMC
Castor K.J., Liu Z., Fakhoury J., Hancock M.A., Mittermaier A., Moitessier N., Sleiman H.F. A platinum(II) phenylphenanthroimidazole with an extended side-chain exhibits slow dissociation from a c-Kit G-quadruplex motif. Chemistry. 2013;19:17836–17845. doi: 10.1002/chem.201301590. PubMed DOI
Moghaddam K.G., de Vries A.H., Marrink S.J., Faraji S. Binding of quinazolinones to c-KIT G-quadruplex; an interplay between hydrogen bonding and pi-pi stacking. Biophys. Chem. 2019;253:106220. doi: 10.1016/j.bpc.2019.106220. PubMed DOI
Francisco A.P., Paulo A. Oncogene Expression Modulation in Cancer Cell Lines by DNA G-Quadruplex-Interactive Small Molecules. Curr. Med. Chem. 2017;24:4873–4904. doi: 10.2174/0929867323666160829145055. PubMed DOI
Rocca R., Moraca F., Costa G., Talarico C., Ortuso F., Da Ros S., Nicoletto G., Sissi C., Alcaro S., Artese A. In Silico Identification of Piperidinyl-amine Derivatives as Novel Dual Binders of Oncogene c-myc/c-Kit G-quadruplexes. ACS Med. Chem. Lett. 2018;9:848–853. doi: 10.1021/acsmedchemlett.8b00275. PubMed DOI PMC
Grün J.T., Schwalbe H. Folding dynamics of polymorphic G-quadruplex structures. Biopolymers. 2022;113:e23477. doi: 10.1002/bip.23477. PubMed DOI
Marchand A., Gabelica V. Folding and misfolding pathways of G-quadruplex DNA. Nucleic Acids Res. 2016;44:10999–11012. doi: 10.1093/nar/gkw970. PubMed DOI PMC
Bessi I., Jonker H.R.A., Richter C., Schwalbe H. Involvement of long-lived intermediate states in the complex folding pathway of the human telomeric G-quadruplex. Angew. Chem. Int. Ed. 2015;54:8444–8448. doi: 10.1002/anie.201502286. PubMed DOI
Gray R.D., Trent J.O., Chaires J.B. Folding and unfolding pathways of the human telomeric G-quadruplex. J. Mol. Biol. 2014;426:1629–1650. doi: 10.1016/j.jmb.2014.01.009. PubMed DOI PMC
Rigo R., Dean W.L., Gray R.D., Chaires J.B., Sissi C. Conformational profiling of a G-rich sequence within the c-KIT promoter. Nucleic Acids Res. 2017;45:13056–13067. doi: 10.1093/nar/gkx983. PubMed DOI PMC
Da Ros S., Zorzan E., Giantin M., Zorro Shahidian L., Palumbo M., Dacasto M., Sissi C. Sequencing and G-quadruplex folding of the canine proto-oncogene KIT promoter region: Might dog be used as a model for human disease? PLoS ONE. 2014;9:e103876. doi: 10.1371/journal.pone.0103876. PubMed DOI PMC
Vesco G., Lamperti M., Salerno D., Marrano C.A., Cassina V., Rigo R., Buglione E., Bondani M., Nicoletto G., Mantegazza F., et al. Double-stranded flanking ends affect the folding kinetics and conformational equilibrium of G-quadruplexes forming sequences within the promoter of KIT oncogene. Nucleic Acids Res. 2021;49:9724–9737. doi: 10.1093/nar/gkab674. PubMed DOI PMC
Tran P.L.T., Rieu M., Hodeib S., Joubert A., Ouellet J., Alberti P., Bugaut A., Allemand J.F., Boulé J.B., Croquette V. Folding and persistence times of intramolecular G-quadruplexes transiently embedded in a DNA duplex. Nucleic Acids Res. 2021;49:5189–5201. doi: 10.1093/nar/gkab306. PubMed DOI PMC
Wang Y., Li G., Meng T., Qi L., Yan H., Wang Z. Molecular insights into the selective binding mechanism targeting parallel human telomeric G-quadruplex. J. Mol. Graph. Model. 2022;110:108058. doi: 10.1016/j.jmgm.2021.108058. PubMed DOI
Hao X., Wang C., Wang Y., Li C., Hou J., Zhang F., Kang C., Gao L. Topological conversion of human telomeric G-quadruplexes from hybrid to parallel form induced by naphthalene diimide ligands. Int. J. Biol. Macromol. 2021;167:1048–1058. doi: 10.1016/j.ijbiomac.2020.11.059. PubMed DOI
Ceschi S., Largy E., Gabelica V., Sissi C. A two-quartet G-quadruplex topology of human KIT2 is conformationally selected by a perylene derivative. Biochimie. 2020;179:77–84. doi: 10.1016/j.biochi.2020.09.015. PubMed DOI
Pivetta C., Lucatello L., Krapcho A.P., Gatto B., Palumbo M., Sissi C. Perylene side chains modulate G-quadruplex conformation in biologically relevant DNA sequences. Bioorganic Med. Chem. 2008;16:9331–9339. doi: 10.1016/j.bmc.2008.08.068. PubMed DOI
Carrino S., Hennecker C.D., Murrieta A.C., Mittermaier A. Frustrated folding of guanine quadruplexes in telomeric DNA. Nucleic Acids Res. 2021;49:3063–3076. doi: 10.1093/nar/gkab140. PubMed DOI PMC
Monsen R.C., Chakravarthy S., Dean W.L., Chaires J.B., Trent J.O. The solution structures of higher-order human telomere G-quadruplex multimers. Nucleic Acids Res. 2021;49:1749–1768. doi: 10.1093/nar/gkaa1285. PubMed DOI PMC
Pirota V., Platella C., Musumeci D., Benassi A., Amato J., Pagano B., Colombo G., Freccero M., Doria F., Montesarchio D. On the binding of naphthalene diimides to a human, telomeric G-quadruplex multimer model. Int. J. Biol. Macromol. 2021;166:1320–1334. doi: 10.1016/j.ijbiomac.2020.11.013. PubMed DOI
Ma T.Z., Zhang M.J., Liao T.C., Li J.H., Zou M., Wang Z.M., Zhou C.Q. Dimers formed with the mixed-type G-quadruplex binder pyridostatin specifically recognize human telomere G-quadruplex dimers. Org. Biomol. Chem. 2020;18:920–930. doi: 10.1039/C9OB02470K. PubMed DOI
Schonhoff J.D., Bajracharya R., Dhakal S., Yu Z., Mao H., Basu S. Direct experimental evidence for quadruplex-quadruplex interaction within the human ILPR. Nucleic Acids Res. 2009;37:3310–3320. doi: 10.1093/nar/gkp181. PubMed DOI PMC
Monsen R.C., DeLeeu L., Gray R.D., Sabo T.M., Dean W.L., Chakravarthy S., Chaires J.B., Trent J.O. The hTERT core promoter forms three parallel G-quadruplexes. Nucleic Acids Res. 2020;48:5720–5734. doi: 10.1093/nar/gkaa107. PubMed DOI PMC
Palumbo S.L., Ebbinghaus S.W., Hurley L.H. Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. J. Am. Chem. Soc. 2009;131:10878–10879. doi: 10.1021/ja902281d. PubMed DOI PMC
Varshney D., Spiegel J., Zyner K., Tannahill D., Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 2020;21:459–474. doi: 10.1038/s41580-020-0236-x. PubMed DOI PMC
Buglione E., Salerno D., Marrano C.A., Cassina V., Vesco G., Nardo L., Dacasto M., Rigo R., Sissi C., Mantegazza F. Nanomechanics of G-quadruplexes within the promoter of the KIT oncogene. Nucleic Acids Res. 2021;49:4564–4573. doi: 10.1093/nar/gkab079. PubMed DOI PMC
Rigo R., Sissi C. Characterization of G4-G4 Crosstalk in the c-KIT Promoter Region. Biochemistry. 2017;56:4309–4312. doi: 10.1021/acs.biochem.7b00660. PubMed DOI
Salsbury A.M., Dean T.J., Lemkul J.A. Polarizable Molecular Dynamics Simulations of Two c-kit Oncogene Promoter G-Quadruplexes: Effect of Primary and Secondary Structure on Loop and Ion Sampling. J. Chem. Theory Comput. 2020;16:3430–3444. doi: 10.1021/acs.jctc.0c00191. PubMed DOI PMC
Zhao J., Zhai Q. A highly selective switch-on fluorescence sensor targeting telomeric dimeric G-quadruplex. Bioorganic Med. Chem. Lett. 2021;40:127971. doi: 10.1016/j.bmcl.2021.127971. PubMed DOI
Gao Z., Williams P., Li L., Wang Y. A Quantitative Proteomic Approach for the Identification of DNA Guanine Quadruplex-Binding Proteins. J. Proteome Res. 2021;20:4919–4924. doi: 10.1021/acs.jproteome.1c00603. PubMed DOI PMC
McRae E.K.S., Booy E.P., Padilla-Meier G.P., McKenna S.A. On Characterizing the Interac-tions between Proteins and Guanine Quadruplex Structures of Nucleic Acids. J. Nucleic Acids. 2017;2017:9675348. doi: 10.1155/2017/9675348. PubMed DOI PMC
Li L., Williams P., Ren W., Wang M.Y., Gao Z., Miao W., Huang M., Song J., Wang Y. YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat. Chem. Biol. 2021;17:161–168. doi: 10.1038/s41589-020-00695-1. PubMed DOI PMC
Da Ros S., Nicoletto G., Rigo R., Ceschi S., Zorzan E., Dacasto M., Giantin M., Sissi C. G-Quadruplex Modulation of SP1Functional Binding Sites at the KIT Proximal Promoter. Int. J. Mol. Sci. 2021;22:4309–4312. PubMed PMC
Raiber E.A., Kranaster R., Lam E., Nikan M., Balasubramanian S. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res. 2012;40:1499–1508. doi: 10.1093/nar/gkr882. PubMed DOI PMC
Ceschi S., Berselli M., Cozzaglio M., Giantin M., Toppo S., Spolaore B., Sissi C. Vimentin binds to G-quadruplex repeats found at telomeres and gene promoters. Nucleic Acid Res. 2022;50:1370–1381. doi: 10.1093/nar/gkab1274. PubMed DOI PMC
Haeusler A.R., Donnelly C.J., Rothstein J.D. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci. 2016;17:383–395. doi: 10.1038/nrn.2016.38. PubMed DOI PMC