Polymorphic and Higher-Order G-Quadruplexes as Possible Transcription Regulators: Novel Perspectives for Future Anticancer Therapeutic Applications

. 2022 Mar 19 ; 15 (3) : . [epub] 20220319

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35337170

Grantová podpora
IG 2021 - ID. 26474 Italian Association for Cancer Research

In the past two decades, significant efforts have been put into designing small molecules to target selected genomic sites where DNA conformational rearrangements control gene expression. G-rich sequences at oncogene promoters are considered good points of intervention since, under specific environmental conditions, they can fold into non-canonical tetrahelical structures known as G-quadruplexes. However, emerging evidence points to a frequent lack of correlation between small molecule targeting of G-quadruplexes at gene promoters and the expression of the associated protein, which hampers pharmaceutical applications. The wide genomic localization of G-quadruplexes along with their highly polymorphic behavior may account for this scenario, suggesting the need for more focused drug design strategies. Here, we will summarize the G4 structural features that can be considered to fulfill this goal. In particular, by comparing a telomeric sequence with the well-characterized G-rich domain of the KIT promoter, we will address how multiple secondary structures might cooperate to control genome architecture at a higher level. If this holds true, the link between drug-DNA complex formation and the associated cellular effects will need to be revisited.

Zobrazit více v PubMed

Greider C.W., Blackburn E.H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987;51:887–898. doi: 10.1016/0092-8674(87)90576-9. PubMed DOI

Davis J.T. G-Quartets 40 Years Later: From 5′-GMP to Molecular Biology and Supramolecular Chemistry. Angew. Chem. Int. Ed. 2004;43:668–698. doi: 10.1002/anie.200300589. PubMed DOI

Neidle S. Human telomeric G-quadruplex: The current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J. 2010;277:1118–1125. doi: 10.1111/j.1742-4658.2009.07463.x. PubMed DOI

Banerjee N., Panda S., Chatterjee S. Frontiers in G-Quadruplex therapeutics in cancer: Selection of small molecules, peptides and aptamers. Chem. Biol. Drug Des. 2022;99:1–31. doi: 10.1111/cbdd.13910. PubMed DOI

Huppert J.L. Prevalence of Quadruplexes in the Human Genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC

Tu J., Duan M., Liu W., Lu N., Zhou Y., Sun X., Lu Z. Direct genome-wide identification of G-quadruplex structures by whole-genome resequencing. Nat. Commun. 2021;12:6014. doi: 10.1038/s41467-021-26312-w. PubMed DOI PMC

Hänsel-Hertsch R., Di Antonio M., Balasubramanian S. DNA G-quadruplexes in the human genome: Detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 2017;18:279–284. doi: 10.1038/nrm.2017.3. PubMed DOI

Lyu J., Shao R., Yung P.Y.K., Elsässer S.J. Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res. 2022;50:e13. PubMed PMC

Balasubramanian S., Hurley L.H., Neidle S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Discov. 2011;10:261–275. doi: 10.1038/nrd3428. PubMed DOI PMC

Rigo R., Palumbo M., Sissi C. G-quadruplexes in human promoters: A challenge for therapeutic applications. Biochim. Biophys. Acta Gen. Subj. 2017;1861:1399–1413. doi: 10.1016/j.bbagen.2016.12.024. PubMed DOI

Wang W., Hu S., Gu Y., Yan Y., Stovall D.B., Li D., Sui G. Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim. Biophys. Acta Rev. Cancer. 2020;1874:188410. doi: 10.1016/j.bbcan.2020.188410. PubMed DOI

Sun D., Guo K., Rusche J.J., Hurley L.H. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 2005;33:6070–6080. doi: 10.1093/nar/gki917. PubMed DOI PMC

Onel B., Carver M., Wu G., Timonina D., Kalarn S., Larriva M., Yang D. A New G-Quadruplex with Hairpin Loop Immediately Upstream of the Human BCL2 P1 Promoter Modulates Transcription. J. Am. Chem. Soc. 2016;138:2563–2570. doi: 10.1021/jacs.5b08596. PubMed DOI PMC

González V., Guo K., Hurley L., Sun D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J. Biol. Chem. 2009;284:23622–23635. doi: 10.1074/jbc.M109.018028. PubMed DOI PMC

Miranti C.K., Moore S., Kim Y., Chappeta V.R., Wu K., De B., Gokhale V., Hurley L.H., Reyes-Reyes E.M. Nucleolin represses transcription of the androgen receptor gene through a G-quadruplex. Oncotarget. 2020;11:1758–1776. doi: 10.18632/oncotarget.27589. PubMed DOI PMC

Zorzan E., Elgendy R., Giantin M., Dacasto M., Sissi C. Whole-Transcriptome Profiling of Canine and Human in Vitro Models Exposed to a G-Quadruplex Binding Small Molecule. Sci. Rep. 2018;8:17107. doi: 10.1038/s41598-018-35516-y. PubMed DOI PMC

Hänsel-Hertsch R., Beraldi D., Lensing S.V., Marsico G., Zyner K., Parry A., Di Antonio M., Pike J., Kimura H., Narita M., et al. G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 2016;48:1267–1272. doi: 10.1038/ng.3662. PubMed DOI

Zyner K.G., Simeone A., Flynn S.M., Doyle C., Marsico G., Adhikari S., Portella G., Tannahill D., Balasubramanian S. G-quadruplex DNA structures in human stem cells and differentiation. Nat. Commun. 2022;13:142. doi: 10.1038/s41467-021-27719-1. PubMed DOI PMC

Parkinson G.N., Lee M.P., Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature. 2002;417:876–880. doi: 10.1038/nature755. PubMed DOI

Wang Y., Patel D.J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993;1:263–282. doi: 10.1016/0969-2126(93)90015-9. PubMed DOI

Dai J., Punchihewa C., Ambrus A., Chen D., Jones R.A., Yang D. Structure of the intramolecular human telomeric G-quadruplex in potassium solution: A novel adenine triple formation. Nucleic Acids Res. 2007;35:2440–2445. doi: 10.1093/nar/gkm009. PubMed DOI PMC

Dai J., Carver M., Punchihewa C., Jones R.A., Yang D. Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: Insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res. 2007;35:4927–4940. doi: 10.1093/nar/gkm522. PubMed DOI PMC

Zhang Z., Dai J., Veliath E., Jones R.A., Yang D. Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: Insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res. 2010;38:1009–1021. doi: 10.1093/nar/gkp1029. PubMed DOI PMC

Bončina M., Vesnaver G., Chaires J.B., Lah J. Unraveling the thermodynamics of the folding and interconversion of human telomere G-quadruplexes. Angew. Chem. Int. Ed. Engl. 2016;55:10340–10344. doi: 10.1002/anie.201605350. PubMed DOI PMC

Matsumoto S., Sugimoto N. New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Top. Curr. Chem. 2021;379:17. doi: 10.1007/s41061-021-00329-7. PubMed DOI

Dai J., Carver M., Yang D. Polymorphism of human telomeric quadruplex structures. Biochimie. 2008;90:1172–1183. doi: 10.1016/j.biochi.2008.02.026. PubMed DOI PMC

Daniel Krafčík D., Ištvánková E., Džatko S., Víšková P., Foldynová-Trantírková S., Trantírek L. Towards Profiling of the G-Quadruplex Targeting Drugs in the Living Human Cells Using NMR Spectroscopy. Int. J. Mol. Sci. 2021;22:6042. doi: 10.3390/ijms22116042. PubMed DOI PMC

Liang J., Wu Y.L., Chen B.J., Zhang W., Tanaka Y., Sugiyama H. The C-kit receptor-mediated signal transduction and tumor-related diseases. Int. J. Biol. Sci. 2013;9:435–443. doi: 10.7150/ijbs.6087. PubMed DOI PMC

Phan A.T., Kuryavyi V., Burge S., Neidle S., Patel D.J. Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J. Am. Chem. Soc. 2007;129:4386–4392. doi: 10.1021/ja068739h. PubMed DOI PMC

Hsu S.T., Varnai P., Bugaut A., Reszka A.P., Neidle S., Balasubramanian S. A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J. Am. Chem. Soc. 2009;131:13399–13409. doi: 10.1021/ja904007p. PubMed DOI PMC

Kuryavyi V., Phan A.T., Patel D.J. Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res. 2010;38:6757–6773. doi: 10.1093/nar/gkq558. PubMed DOI PMC

Kotar A., Rigo R., Sissi C., Plavec J. Two-quartet kit* G-quadruplex is formed via double-stranded pre-folded structure. Nucleic Acids Res. 2019;47:2641–2653. doi: 10.1093/nar/gky1269. PubMed DOI PMC

Bejugam M., Gunaratnam M., Muller S., Sanders D.A., Sewitz S., Fletcher J.A., Neidle S., Balasubramanian S. Targeting the c-Kit Promoter G-quadruplexes with 6-Substituted Indenoisoquinolines. ACS Med. Chem. Lett. 2010;1:306–310. doi: 10.1021/ml100062z. PubMed DOI PMC

McLuckie K.I., Waller Z.A., Sanders D.A., Alves D., Rodriguez R., Dash J., McKenzie G.J., Venkitaraman A.R., Balasubramanian S. G-quadruplex-binding benzo[a]phenoxazines down-regulate c-KIT expression in human gastric carcinoma cells. J. Am. Chem. Soc. 2011;133:2658–2663. doi: 10.1021/ja109474c. PubMed DOI PMC

Castor K.J., Liu Z., Fakhoury J., Hancock M.A., Mittermaier A., Moitessier N., Sleiman H.F. A platinum(II) phenylphenanthroimidazole with an extended side-chain exhibits slow dissociation from a c-Kit G-quadruplex motif. Chemistry. 2013;19:17836–17845. doi: 10.1002/chem.201301590. PubMed DOI

Moghaddam K.G., de Vries A.H., Marrink S.J., Faraji S. Binding of quinazolinones to c-KIT G-quadruplex; an interplay between hydrogen bonding and pi-pi stacking. Biophys. Chem. 2019;253:106220. doi: 10.1016/j.bpc.2019.106220. PubMed DOI

Francisco A.P., Paulo A. Oncogene Expression Modulation in Cancer Cell Lines by DNA G-Quadruplex-Interactive Small Molecules. Curr. Med. Chem. 2017;24:4873–4904. doi: 10.2174/0929867323666160829145055. PubMed DOI

Rocca R., Moraca F., Costa G., Talarico C., Ortuso F., Da Ros S., Nicoletto G., Sissi C., Alcaro S., Artese A. In Silico Identification of Piperidinyl-amine Derivatives as Novel Dual Binders of Oncogene c-myc/c-Kit G-quadruplexes. ACS Med. Chem. Lett. 2018;9:848–853. doi: 10.1021/acsmedchemlett.8b00275. PubMed DOI PMC

Grün J.T., Schwalbe H. Folding dynamics of polymorphic G-quadruplex structures. Biopolymers. 2022;113:e23477. doi: 10.1002/bip.23477. PubMed DOI

Marchand A., Gabelica V. Folding and misfolding pathways of G-quadruplex DNA. Nucleic Acids Res. 2016;44:10999–11012. doi: 10.1093/nar/gkw970. PubMed DOI PMC

Bessi I., Jonker H.R.A., Richter C., Schwalbe H. Involvement of long-lived intermediate states in the complex folding pathway of the human telomeric G-quadruplex. Angew. Chem. Int. Ed. 2015;54:8444–8448. doi: 10.1002/anie.201502286. PubMed DOI

Gray R.D., Trent J.O., Chaires J.B. Folding and unfolding pathways of the human telomeric G-quadruplex. J. Mol. Biol. 2014;426:1629–1650. doi: 10.1016/j.jmb.2014.01.009. PubMed DOI PMC

Rigo R., Dean W.L., Gray R.D., Chaires J.B., Sissi C. Conformational profiling of a G-rich sequence within the c-KIT promoter. Nucleic Acids Res. 2017;45:13056–13067. doi: 10.1093/nar/gkx983. PubMed DOI PMC

Da Ros S., Zorzan E., Giantin M., Zorro Shahidian L., Palumbo M., Dacasto M., Sissi C. Sequencing and G-quadruplex folding of the canine proto-oncogene KIT promoter region: Might dog be used as a model for human disease? PLoS ONE. 2014;9:e103876. doi: 10.1371/journal.pone.0103876. PubMed DOI PMC

Vesco G., Lamperti M., Salerno D., Marrano C.A., Cassina V., Rigo R., Buglione E., Bondani M., Nicoletto G., Mantegazza F., et al. Double-stranded flanking ends affect the folding kinetics and conformational equilibrium of G-quadruplexes forming sequences within the promoter of KIT oncogene. Nucleic Acids Res. 2021;49:9724–9737. doi: 10.1093/nar/gkab674. PubMed DOI PMC

Tran P.L.T., Rieu M., Hodeib S., Joubert A., Ouellet J., Alberti P., Bugaut A., Allemand J.F., Boulé J.B., Croquette V. Folding and persistence times of intramolecular G-quadruplexes transiently embedded in a DNA duplex. Nucleic Acids Res. 2021;49:5189–5201. doi: 10.1093/nar/gkab306. PubMed DOI PMC

Wang Y., Li G., Meng T., Qi L., Yan H., Wang Z. Molecular insights into the selective binding mechanism targeting parallel human telomeric G-quadruplex. J. Mol. Graph. Model. 2022;110:108058. doi: 10.1016/j.jmgm.2021.108058. PubMed DOI

Hao X., Wang C., Wang Y., Li C., Hou J., Zhang F., Kang C., Gao L. Topological conversion of human telomeric G-quadruplexes from hybrid to parallel form induced by naphthalene diimide ligands. Int. J. Biol. Macromol. 2021;167:1048–1058. doi: 10.1016/j.ijbiomac.2020.11.059. PubMed DOI

Ceschi S., Largy E., Gabelica V., Sissi C. A two-quartet G-quadruplex topology of human KIT2 is conformationally selected by a perylene derivative. Biochimie. 2020;179:77–84. doi: 10.1016/j.biochi.2020.09.015. PubMed DOI

Pivetta C., Lucatello L., Krapcho A.P., Gatto B., Palumbo M., Sissi C. Perylene side chains modulate G-quadruplex conformation in biologically relevant DNA sequences. Bioorganic Med. Chem. 2008;16:9331–9339. doi: 10.1016/j.bmc.2008.08.068. PubMed DOI

Carrino S., Hennecker C.D., Murrieta A.C., Mittermaier A. Frustrated folding of guanine quadruplexes in telomeric DNA. Nucleic Acids Res. 2021;49:3063–3076. doi: 10.1093/nar/gkab140. PubMed DOI PMC

Monsen R.C., Chakravarthy S., Dean W.L., Chaires J.B., Trent J.O. The solution structures of higher-order human telomere G-quadruplex multimers. Nucleic Acids Res. 2021;49:1749–1768. doi: 10.1093/nar/gkaa1285. PubMed DOI PMC

Pirota V., Platella C., Musumeci D., Benassi A., Amato J., Pagano B., Colombo G., Freccero M., Doria F., Montesarchio D. On the binding of naphthalene diimides to a human, telomeric G-quadruplex multimer model. Int. J. Biol. Macromol. 2021;166:1320–1334. doi: 10.1016/j.ijbiomac.2020.11.013. PubMed DOI

Ma T.Z., Zhang M.J., Liao T.C., Li J.H., Zou M., Wang Z.M., Zhou C.Q. Dimers formed with the mixed-type G-quadruplex binder pyridostatin specifically recognize human telomere G-quadruplex dimers. Org. Biomol. Chem. 2020;18:920–930. doi: 10.1039/C9OB02470K. PubMed DOI

Schonhoff J.D., Bajracharya R., Dhakal S., Yu Z., Mao H., Basu S. Direct experimental evidence for quadruplex-quadruplex interaction within the human ILPR. Nucleic Acids Res. 2009;37:3310–3320. doi: 10.1093/nar/gkp181. PubMed DOI PMC

Monsen R.C., DeLeeu L., Gray R.D., Sabo T.M., Dean W.L., Chakravarthy S., Chaires J.B., Trent J.O. The hTERT core promoter forms three parallel G-quadruplexes. Nucleic Acids Res. 2020;48:5720–5734. doi: 10.1093/nar/gkaa107. PubMed DOI PMC

Palumbo S.L., Ebbinghaus S.W., Hurley L.H. Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands. J. Am. Chem. Soc. 2009;131:10878–10879. doi: 10.1021/ja902281d. PubMed DOI PMC

Varshney D., Spiegel J., Zyner K., Tannahill D., Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 2020;21:459–474. doi: 10.1038/s41580-020-0236-x. PubMed DOI PMC

Buglione E., Salerno D., Marrano C.A., Cassina V., Vesco G., Nardo L., Dacasto M., Rigo R., Sissi C., Mantegazza F. Nanomechanics of G-quadruplexes within the promoter of the KIT oncogene. Nucleic Acids Res. 2021;49:4564–4573. doi: 10.1093/nar/gkab079. PubMed DOI PMC

Rigo R., Sissi C. Characterization of G4-G4 Crosstalk in the c-KIT Promoter Region. Biochemistry. 2017;56:4309–4312. doi: 10.1021/acs.biochem.7b00660. PubMed DOI

Salsbury A.M., Dean T.J., Lemkul J.A. Polarizable Molecular Dynamics Simulations of Two c-kit Oncogene Promoter G-Quadruplexes: Effect of Primary and Secondary Structure on Loop and Ion Sampling. J. Chem. Theory Comput. 2020;16:3430–3444. doi: 10.1021/acs.jctc.0c00191. PubMed DOI PMC

Zhao J., Zhai Q. A highly selective switch-on fluorescence sensor targeting telomeric dimeric G-quadruplex. Bioorganic Med. Chem. Lett. 2021;40:127971. doi: 10.1016/j.bmcl.2021.127971. PubMed DOI

Gao Z., Williams P., Li L., Wang Y. A Quantitative Proteomic Approach for the Identification of DNA Guanine Quadruplex-Binding Proteins. J. Proteome Res. 2021;20:4919–4924. doi: 10.1021/acs.jproteome.1c00603. PubMed DOI PMC

McRae E.K.S., Booy E.P., Padilla-Meier G.P., McKenna S.A. On Characterizing the Interac-tions between Proteins and Guanine Quadruplex Structures of Nucleic Acids. J. Nucleic Acids. 2017;2017:9675348. doi: 10.1155/2017/9675348. PubMed DOI PMC

Li L., Williams P., Ren W., Wang M.Y., Gao Z., Miao W., Huang M., Song J., Wang Y. YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat. Chem. Biol. 2021;17:161–168. doi: 10.1038/s41589-020-00695-1. PubMed DOI PMC

Da Ros S., Nicoletto G., Rigo R., Ceschi S., Zorzan E., Dacasto M., Giantin M., Sissi C. G-Quadruplex Modulation of SP1Functional Binding Sites at the KIT Proximal Promoter. Int. J. Mol. Sci. 2021;22:4309–4312. PubMed PMC

Raiber E.A., Kranaster R., Lam E., Nikan M., Balasubramanian S. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res. 2012;40:1499–1508. doi: 10.1093/nar/gkr882. PubMed DOI PMC

Ceschi S., Berselli M., Cozzaglio M., Giantin M., Toppo S., Spolaore B., Sissi C. Vimentin binds to G-quadruplex repeats found at telomeres and gene promoters. Nucleic Acid Res. 2022;50:1370–1381. doi: 10.1093/nar/gkab1274. PubMed DOI PMC

Haeusler A.R., Donnelly C.J., Rothstein J.D. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci. 2016;17:383–395. doi: 10.1038/nrn.2016.38. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace