Arbuscular Mycorrhiza and Nitrification: Disentangling Processes and Players by Using Synthetic Nitrification Inhibitors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36190238
PubMed Central
PMC9599619
DOI
10.1128/aem.01369-22
Knihovny.cz E-zdroje
- Klíčová slova
- Rhizophagus irregularis, ammonia-oxidizing archaea, ammonia-oxidizing bacteria, amplicon sequencing, arbuscular mycorrhiza, isotopic (15N) labeling and tracing, quantitative real-time PCR, synthetic nitrification inhibitor,
- MeSH
- amoniak metabolismus MeSH
- amoniové sloučeniny * metabolismus MeSH
- Archaea metabolismus MeSH
- dusík metabolismus MeSH
- jodid dimethylfenylpiperazinia metabolismus farmakologie MeSH
- kořeny rostlin metabolismus MeSH
- mykorhiza * metabolismus MeSH
- nitrifikace MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH
- amoniové sloučeniny * MeSH
- dicyandiamido MeSH Prohlížeč
- dusík MeSH
- jodid dimethylfenylpiperazinia MeSH
- půda MeSH
Both plants and their associated arbuscular mycorrhizal (AM) fungi require nitrogen (N) for their metabolism and growth. This can result in both positive and negative effects of AM symbiosis on plant N nutrition. Either way, the demand for and efficiency of uptake of mineral N from the soil by mycorrhizal plants are often higher than those of nonmycorrhizal plants. In consequence, the symbiosis of plants with AM fungi exerts important feedbacks on soil processes in general and N cycling in particular. Here, we investigated the role of the AM symbiosis in N uptake by Andropogon gerardii from an organic source (15N-labeled plant litter) that was provided beyond the direct reach of roots. In addition, we tested if pathways of 15N uptake from litter by mycorrhizal hyphae were affected by amendment with different synthetic nitrification inhibitors (dicyandiamide [DCD], nitrapyrin, or 3,4-dimethylpyrazole phosphate [DMPP]). We observed efficient acquisition of 15N by mycorrhizal plants through the mycorrhizal pathway, independent of nitrification inhibitors. These results were in stark contrast to 15N uptake by nonmycorrhizal plants, which generally took up much less 15N, and the uptake was further suppressed by nitrapyrin or DMPP amendments. Quantitative real-time PCR analyses showed that bacteria involved in the rate-limiting step of nitrification, ammonia oxidation, were suppressed similarly by the presence of AM fungi and by nitrapyrin or DMPP (but not DCD) amendments. On the other hand, abundances of ammonia-oxidizing archaea were not strongly affected by either the AM fungi or the nitrification inhibitors. IMPORTANCE Nitrogen is one of the most important elements for all life on Earth. In soil, N is present in various chemical forms and is fiercely competed for by various microorganisms as well as plants. Here, we address competition for reduced N (ammonia) between ammonia-oxidizing prokaryotes and arbuscular mycorrhizal fungi. These two functionally important groups of soil microorganisms, participating in nitrification and plant mineral nutrient acquisition, respectively, have often been studied in separation in the past. Here, we showed, using various biochemical and molecular approaches, that the fungi systematically suppress ammonia-oxidizing bacteria to an extent similar to that of some widely used synthetic nitrification inhibitors, whereas they have only a limited impact on abundance of ammonia-oxidizing archaea. Competition for free ammonium is a plausible explanation here, but it is also possible that the fungi produce some compounds acting as so-called biological nitrification inhibitors.
Zobrazit více v PubMed
Bender SF, Conen F, van der Heijden MGA. 2015. Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biol Biochem 80:283–292. 10.1016/j.soilbio.2014.10.016. DOI
Corrêa A, Cruz C, Ferrol N. 2015. Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza 25:499–515. 10.1007/s00572-015-0627-6. PubMed DOI
Jansa J, Forczek ST, Rozmoš M, Püschel D, Bukovská P, Hršelová H. 2019. Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions. Chem Biol Technol Agric 6:10. 10.1186/s40538-019-0147-2. DOI
Smith SE, Read D. 2008. Mycorrhizal symbiosis, 3rd ed. Elsevier, London, United Kingdom.
Bolan N. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207. 10.1007/BF00012037. DOI
Bücking H, Shachar-Hill Y. 2005. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol 165:899–911. 10.1111/j.1469-8137.2004.01274.x. PubMed DOI
Bukovská P, Bonkowski M, Konvalinková T, Beskid O, Hujslová M, Püschel D, Řezáčová V, Gutiérrez-Núñez MS, Gryndler M, Jansa J. 2018. Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? Mycorrhiza 28:269–283. 10.1007/s00572-018-0825-0. PubMed DOI
Bukovská P, Gryndler M, Gryndlerová H, Püschel D, Jansa J. 2016. Organic nitrogen driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front Microbiol 7:711. 10.3389/fmicb.2016.00711. PubMed DOI PMC
Tanaka Y, Yano K. 2005. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254. 10.1111/j.1365-3040.2005.01360.x. DOI
Thirkell TJ, Cameron DD, Hodge A. 2016. Resolving the “nitrogen paradox” of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant Cell Environ 39:1683–1690. 10.1111/pce.12667. PubMed DOI PMC
Toussaint JP, St-Arnaud M, Charest C. 2004. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50:251–260. 10.1139/w04-009. PubMed DOI
Hawkins H-J, Johansen A, George E. 2000. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285. 10.1023/A:1026500810385. DOI
Johansen A, Jakobsen I, Jensen ES. 1993. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fertil Soils 16:66–70. 10.1007/BF00336518. DOI
Lanfranco L, Guether M, Bonfante P. 2011. Arbuscular mycorrhizas and N acquisition by plants, p 52–68. In Polacco JC, Todd CD (ed), Ecological aspects of nitrogen metabolism in plants. John Wiley & Sons, Ltd., Hoboken, NJ.
Ngwene B, Gabriel E, George E. 2013. Influence of different mineral nitrogen sources (NO3−-N vs. NH4+-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices–cowpea symbiosis. Mycorrhiza 23:107–117. 10.1007/s00572-012-0453-z. PubMed DOI PMC
Bukovská P, Rozmoš M, Kotianová M, Gančarčíková K, Dudáš M, Hršelová H, Jansa J. 2021. Arbuscular mycorrhiza mediates efficient recycling from soil to plants of nitrogen bound in chitin. Front Microbiol 12:574060. 10.3389/fmicb.2021.574060. PubMed DOI PMC
Veresoglou SD, Chen B, Rillig MC. 2012. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62. 10.1016/j.soilbio.2011.11.018. DOI
Marschner H. 1995. Mineral nutrition of higher plants, 2nd ed. Academic Press, New York, NY.
Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA. 2015. Mycorrhizal phenotypes and the Law of the minimum. New Phytol 205:1473–1484. 10.1111/nph.13172. PubMed DOI
Johnson NC. 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647. 10.1111/j.1469-8137.2009.03110.x. PubMed DOI
Püschel D, Janoušková M, Hujslová M, Slavíková R, Gryndlerová H, Jansa J. 2016. Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol Evol 6:4332–4346. 10.1002/ece3.2207. PubMed DOI PMC
Clark RB, Zeto SK. 2000. Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902. 10.1080/01904160009382068. DOI
Hodge A, Storer K. 2015. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19. 10.1007/s11104-014-2162-1. DOI
Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MGA. 2015. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20:283–290. 10.1016/j.tplants.2015.03.004. PubMed DOI
Storer K, Coggan A, Ineson P, Hodge A. 2018. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytol 220:1285–1295. 10.1111/nph.14931. PubMed DOI PMC
Hodge A. 2001. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol 151:725–734. 10.1046/j.0028-646x.2001.00200.x. PubMed DOI
Leigh J, Hodge A, Fitter AH. 2009. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207. 10.1111/j.1469-8137.2008.02630.x. PubMed DOI
Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A. 2000. Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161. 10.1046/j.1469-8137.2000.00615.x. DOI
Püschel D, Janoušková M, Voříšková A, Gryndlerová H, Vosátka M, Jansa J. 2017. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front Plant Sci 8:390. 10.3389/fpls.2017.00390. PubMed DOI PMC
Koide RT, Kabir Z. 2000. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517. 10.1046/j.1469-8137.2000.00776.x. PubMed DOI
Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK. 2013. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol 15:1870–1881. 10.1111/1462-2920.12081. PubMed DOI
Canfield DE, Glazer AN, Falkowski PG. 2010. The evolution and future of Earth’s nitrogen cycle. Science 330:192–196. 10.1126/science.1186120. PubMed DOI
Alves RJE, Wanek W, Zappe A, Richter A, Svenning MM, Schleper C, Urich T. 2013. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J 7:1620–1631. 10.1038/ismej.2013.35. PubMed DOI PMC
van der Heijden MVD, Bardgett R, van Straalen NV. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. 10.1111/J.1461-0248.2007.01139.X. PubMed DOI
Hodge A, Campbell CD, Fitter AH. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299. 10.1038/35095041. PubMed DOI
Bender SF, van der Heijden MGA. 2015. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J Appl Ecol 52:228–239. 10.1111/1365-2664.12351. DOI
Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L. 2019. A plant perspective on nitrogen cycling in the rhizosphere. Funct Ecol 33:540–552. 10.1111/1365-2435.13303. DOI
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P. 2020. Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 44:874–908. 10.1093/femsre/fuaa037. PubMed DOI
Yang M, Fang Y, Sun D, Shi Y. 2016. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Sci Rep 6:22075. 10.1038/srep22075. PubMed DOI PMC
Rozmoš M, Bukovská P, Hršelová H, Kotianová M, Dudáš M, Gančarčíková K, Jansa J. 2022. Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. ISME J 16:676–685. 10.1038/s41396-021-01112-8. PubMed DOI PMC
Veresoglou SD, Verbruggen E, Makarova O, Mansour I, Sen R, Rillig MC. 2019. Arbuscular mycorrhizal fungi alter the community structure of ammonia oxidizers at high fertility via competition for soil NH4+. Microb Ecol 78:147–158. 10.1007/s00248-018-1281-2. PubMed DOI
Sarr PS, Nakamura S, Ando Y, Iwasaki S, Subbarao GV. 2021. Sorgoleone production enhances mycorrhizal association and reduces soil nitrification in sorghum. Rhizosphere 17:100283. 10.1016/j.rhisph.2020.100283. DOI
George PBL, Creer S, Griffiths RI, Emmett BA, Robinson DA, Jones DL. 2019. Primer and database choice affect fungal functional but not biological diversity findings in a national soil survey. Front Environ Sci 7:173. 10.3389/fenvs.2019.00173. DOI
Kuzyakov Y, Blagodatskaya E. 2015. Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199. 10.1016/j.soilbio.2015.01.025. DOI
Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. 10.1007/s11104-008-9568-6. DOI
Wattenburger CJ, Gutknecht J, Zhang Q, Brutnell T, Hofmockel K, Halverson L. 2020. The rhizosphere and cropping system, but not arbuscular mycorrhizae, affect ammonia oxidizing archaea and bacteria abundances in two agricultural soils. Appl Soil Ecol 151:103540. 10.1016/j.apsoil.2020.103540. DOI
Li X-L, George E, Marschner H. 1991. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48. 10.1007/BF02465218. DOI
Morrison E, Lagos L, Al-Agely A, Glaab H, Johnson W, Jorquera MA, Ogram A. 2017. Mycorrhizal inoculation increases genes associated with nitrification and improved nutrient retention in soil. Biol Fertil Soils 53:275–279. 10.1007/s00374-017-1176-2. DOI
Teutscherova N, Vazquez E, Arango J, Arevalo A, Benito M, Pulleman M. 2019. Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria, but suppress nitrous oxide emissions shortly after urea application. Geoderma 338:493–501. 10.1016/j.geoderma.2018.09.023. DOI
Frey SD. 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu Rev Ecol Evol Syst 50:237–259. 10.1146/annurev-ecolsys-110617-062331. DOI
Shahzad T, Chenu C, Genet P, Barot S, Perveen N, Mougin C, Fontaine S. 2015. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol Biochem 80:146–155. 10.1016/j.soilbio.2014.09.023. DOI
Verbruggen E, Jansa J, Hammer EC, Rillig MC. 2016. Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? J Ecol 104:261–269. 10.1111/1365-2745.12496. DOI
Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M. 2016. The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem 94:10–18. 10.1016/j.soilbio.2015.11.010. DOI
Jiang Y, Luan L, Hu K, Liu M, Chen Z, Geisen S, Chen X, Li H, Xu Q, Bonkowski M, Sun B. 2020. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Microbiome 8:142. 10.1186/s40168-020-00918-6. PubMed DOI PMC
Jansa J, Hodge A. 2021. Swimming, gliding, or hyphal riding? On microbial migration along the arbuscular mycorrhizal hyphal highway and functional consequences thereof. New Phytol 230:14–16. 10.1111/nph.17244. PubMed DOI
Jiang F, Zhang L, Zhou J, George TS, Feng G. 2021. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol 230:304–315. 10.1111/nph.17081. PubMed DOI
Kleineidam K, Košmrlj K, Kublik S, Palmer I, Pfab H, Ruser R, Fiedler S, Schloter M. 2011. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere 84:182–186. 10.1016/j.chemosphere.2011.02.086. PubMed DOI
Zhou X, Wang S, Ma S, Zheng X, Wang Z, Lu C. 2020. Effects of commonly used nitrification inhibitors—dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin—on soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma 380:114637. 10.1016/j.geoderma.2020.114637. DOI
Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. 10.1038/nature04983. PubMed DOI
Schleper C, Nicol GW. 2010. Ammonia-oxidising archaea—physiology, ecology and evolution. Adv Microb Physiol 57:1–41. 10.1016/B978-0-12-381045-8.00001-1. PubMed DOI
Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ. 2009. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624. 10.1038/ngeo613. DOI
Nicol GW, Schleper C. 2006. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212. 10.1016/j.tim.2006.03.004. PubMed DOI
Prosser JI, Nicol GW. 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531. 10.1016/j.tim.2012.08.001. PubMed DOI
Alteio LV, Séneca J, Canarini A, Angel R, Jansa J, Guseva K, Kaiser C, Richter A, Schmidt H. 2021. A critical perspective on interpreting amplicon sequencing data in soil ecological research. Soil Biol Biochem 160:108357. 10.1016/j.soilbio.2021.108357. DOI
Norton JM, Alzerreca JJ, Suwa Y, Klotz MG. 2002. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol 177:139–149. 10.1007/s00203-001-0369-z. PubMed DOI
Di HJ, Cameron KC, Sherlock RR, Shen J-P, He J-Z, Winefield CS. 2010. Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia-oxidizing bacteria and archaea. J Soils Sediments 10:943–954. 10.1007/s11368-009-0174-x. DOI
Jia Z, Conrad R. 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671. 10.1111/j.1462-2920.2009.01891.x. PubMed DOI
Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D, Smolders E. 2009. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME J 3:916–923. 10.1038/ismej.2009.39. PubMed DOI
Li X, Zhang G, Xu H, Cai Z, Yagi K. 2009. Effect of timing of joint application of hydroquinone and dicyandiamide on nitrous oxide emission from irrigated lowland rice paddy field. Chemosphere 75:1417–1422. 10.1016/j.chemosphere.2009.02.006. PubMed DOI
Rodgers GA, Wickramasinghe KN, Jenkinson DS. 1985. Mineralization of dicyandiamide, labelled with 15N, in acid soils. Soil Biol Biochem 17:253–254. 10.1016/0038-0717(85)90124-5. DOI
Lan T, Han Y, Roelcke M, Nieder R, Cai Z. 2013. Effects of the nitrification inhibitor dicyandiamide (DCD) on gross N transformation rates and mitigating N2O emission in paddy soils. Soil Biol Biochem 67:174–182. 10.1016/j.soilbio.2013.08.021. DOI
Guardia G, Marsden KA, Vallejo A, Jones DL, Chadwick DR. 2018. Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil. Sci Total Environ 624:1202–1212. 10.1016/j.scitotenv.2017.12.250. PubMed DOI
Puttanna K, Nanje Gowda NM, Prakasa Rao EVS. 1999. Effect of concentration, temperature, moisture, liming and organic matter on the efficacy of the nitrification inhibitors benzotriazole, o-nitrophenol, m-nitroaniline and dicyandiamide. Nutr Cycl Agroecosys 54:251–257. 10.1023/A:1009826927579. DOI
Jansa J, Šmilauer P, Borovička J, Hršelová H, Forczek ST, Slámová K, Řezanka T, Rozmoš M, Bukovská P, Gryndler M. 2020. Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza 30:63–77. 10.1007/s00572-020-00937-z. PubMed DOI
Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, Sharma S, Wilke B-M, Matthies M, Smalla K, Munch JC, Amelung W, Kaupenjohann M, Schloter M, Schleper C. 2009. Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456. 10.1111/j.1462-2920.2008.01783.x. PubMed DOI
Alves RJE, Kerou M, Zappe A, Bittner R, Abby SS, Schmidt HA, Pfeifer K, Schleper C. 2019. Ammonia oxidation by the Arctic terrestrial thaumarchaeote Candidatus Nitrosocosmicus arcticus is stimulated by increasing temperatures. Front Microbiol 10:1571. 10.3389/fmicb.2019.01571. PubMed DOI PMC
Jung M-Y, Sedlacek CJ, Kits KD, Mueller AJ, Rhee S-K, Hink L, Nicol GW, Bayer B, Lehtovirta-Morley L, Wright C, de la Torre JR, Herbold CW, Pjevac P, Daims H, Wagner M. 2022. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. 1. ISME J 16:272–283. 10.1038/s41396-021-01064-z. PubMed DOI PMC
Oviatt P, Rillig MC. 2021. Mycorrhizal technologies for an agriculture of the middle. Plants People Planet 3:454–461. 10.1002/ppp3.10177. DOI
Prado-Tarango DE, Mata-González R, Hovland M, Schreiner RP. 2021. Assessing commercial and early-seral arbuscular mycorrhizal fungi inoculation to aid in restoring sagebrush steppe shrubs. Rangeland Ecol Manag 79:87–90. 10.1016/j.rama.2021.08.001. DOI
Salomon MJ, Demarmels R, Watts-Williams SJ, McLaughlin MJ, Kafle A, Ketelsen C, Soupir A, Bücking H, Cavagnaro TR, van der Heijden MGA. 2022. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl Soil Ecol 169:104225. 10.1016/j.apsoil.2021.104225. DOI
Qiu Q, Bender SF, Mgelwa AS, Hu Y. 2022. Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: a meta-analysis. Sci Total Environ 807:150857. 10.1016/j.scitotenv.2021.150857. PubMed DOI
Smith JM, Chavez FP, Francis CA. 2014. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean. PLoS One 9:e108173. 10.1371/journal.pone.0108173. PubMed DOI PMC
Wan XS, Sheng H-X, Dai M, Zhang Y, Shi D, Trull TW, Zhu Y, Lomas MW, Kao S-J. 2018. Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean. Nat Commun 9:915. 10.1038/s41467-018-03363-0. PubMed DOI PMC
Cheng Y, Elrys AS, Wang J, Xu C, Ni K, Zhang J, Wang S, Cai Z, Pacholski A. 2022. Application of enhanced-efficiency nitrogen fertilizers reduces mineral nitrogen usage and emissions of both N2O and NH3 while sustaining yields in a wheat-rice rotation system. Agr Ecosys Environ 324:107720. 10.1016/j.agee.2021.107720. DOI
Gurung RB, Ogle SM, Breidt FJ, Parton WJ, Del Grosso SJ, Zhang Y, Hartman MD, Williams SA, Venterea RT. 2021. Modeling nitrous oxide mitigation potential of enhanced efficiency nitrogen fertilizers from agricultural systems. Sci Total Environ 801:149342. 10.1016/j.scitotenv.2021.149342. PubMed DOI
Huérfano X, Estavillo JM, Torralbo F, Vega-Mas I, González-Murua C, Fuertes-Mendizábal T. 2022. Dimethylpyrazole-based nitrification inhibitors have a dual role in N2O emissions mitigation in forage systems under Atlantic climate conditions. Sci Total Environ 807:150670. 10.1016/j.scitotenv.2021.150670. PubMed DOI
Liu L, Li S, Han J, Lin W, Luo J. 2019. A two-step strategy for the rapid enrichment of Nitrosocosmicus-like ammonia-oxidizing Thaumarchaea. Front Microbiol 10:875. 10.3389/fmicb.2019.00875. PubMed DOI PMC
Řezáčová V, Gryndler M, Bukovská P, Šmilauer P, Jansa J. 2016. Molecular community analysis of arbuscular mycorrhizal fungi—contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia 59:179–187. 10.1016/j.pedobi.2016.04.002. DOI
Gryndler M, Šmilauer P, Püschel D, Bukovská P, Hršelová H, Hujslová M, Gryndlerová H, Beskid O, Konvalinková T, Jansa J. 2018. Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28:435–450. 10.1007/s00572-018-0844-x. PubMed DOI
Ohno T, Zibilske LM. 1991. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55:892–895. 10.2136/sssaj1991.03615995005500030046x. DOI
Thonar C, Erb A, Jansa J. 2012. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol Ecol Resour 12:219–232. 10.1111/j.1755-0998.2011.03086.x. PubMed DOI
Větrovský T, Baldrian P. 2013. Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037. 10.1007/s00374-013-0801-y. DOI
Kowalchuk GA, Stephen JR, Boer WD, Prosser JI, Embley TM, Woldendorp JW. 1997. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497. 10.1128/aem.63.4.1489-1497.1997. PubMed DOI PMC
Lane DJ. 1991. 16S/23S rRNA sequencing, p 115–147. In Nucleic acids techniques in bacterial systematics. John Wiley & Sons, Chichester, United Kingdom.
Muyzer G, de Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S RNA. Appl Environ Microbiol 59:695–700. 10.1128/aem.59.3.695-700.1993. PubMed DOI PMC
Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U. 2008. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490. 10.1111/j.1469-8137.2008.02561.x. PubMed DOI
Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246. 10.1128/jb.172.8.4238-4246.1990. PubMed DOI PMC
Couillerot O, Ramírez-Trujillo A, Walker V, von Felten A, Jansa J, Maurhofer M, Défago G, Prigent-Combaret C, Comte G, Caballero-Mellado J, Moënne-Loccoz Y. 2013. Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649. 10.1007/s00253-012-4249-z. PubMed DOI
Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, Richards TA. 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(Suppl 1):21–31. 10.1111/j.1365-294X.2009.04480.x. PubMed DOI
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522. 10.1073/pnas.1000080107. PubMed DOI PMC
Rotthauwe JH, Witzel KP, Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712. 10.1128/aem.63.12.4704-4712.1997. PubMed DOI PMC
Tourna M, Freitag TE, Nicol GW, Prosser JI. 2008. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364. 10.1111/j.1462-2920.2007.01563.x. PubMed DOI
Johnson AD. 2010. An extended IUPAC nomenclature code for polymorphic nucleic acids. Bioinformatics 26:1386–1389. 10.1093/bioinformatics/btq098. PubMed DOI PMC
Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes
Nutrient-dependent cross-kingdom interactions in the hyphosphere of an arbuscular mycorrhizal fungus