Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes

. 2024 Jul ; 34 (4) : 303-316. [epub] 20240603

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38829432

Grantová podpora
21-07275S Czech Science Foundation
RVO61388971 Akademie Věd České Republiky
CZ.02.01.01/00/22_008/0004597 Ministry of Education, Youth and Sports of the Czech Republic

Odkazy

PubMed 38829432
PubMed Central PMC11283409
DOI 10.1007/s00572-024-01154-8
PII: 10.1007/s00572-024-01154-8
Knihovny.cz E-zdroje

Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used 15N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of 15N to the plants than the passive transfer of 15N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater 15N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.

Erratum v

PubMed

Zobrazit více v PubMed

Aavik T, Träger S, Zobel M et al (2021) The joint effect of host plant genetic diversity and arbuscular mycorrhizal fungal communities on restoration success. Funct Ecol 35:2621–2634. 10.1111/1365-2435.13914

Angelard C, Colard A, Niculita-Hirzel H et al (2010) Segregation in a mycorrhizal fungus alters Rice Growth and Symbiosis-specific gene transcription. Curr Biol 20:1216–1221. 10.1016/j.cub.2010.05.031 PubMed

Avio L, Cristani C, Strani P, Giovannetti M (2009) Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae. Can J Microbiol 55:242–253. 10.1139/W08-129 PubMed

Behm JE, Kiers ET (2014) A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits. J Ecol 102:315–327. 10.1111/1365-2745.12194

Börstler B, Raab PA, Thiéry O et al (2008) Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol 180:452–465. 10.1111/j.1469-8137.2008.02574.x PubMed

Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. 10.1007/s11104-008-9877-9

Bukovská P, Gryndler M, Gryndlerová H et al (2016) Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front Microbiol 7:711. 10.3389/fmicb.2016.00711 PubMed PMC

Bukovská P, Bonkowski M, Konvalinková T et al (2018) Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? Mycorrhiza 28:269–283. 10.1007/s00572-018-0825-0 PubMed

Bukovská P, Rozmoš M, Kotianová M et al (2021) Arbuscular Mycorrhiza mediates efficient recycling from soil to plants of Nitrogen bound in chitin. Front Microbiol 12. 10.3389/fmicb.2021.574060 PubMed PMC

Castelli J, Casper B (2003) Intraspecific AM fungal variation contributes to plant-fungal feedback in a serpentine grassland. Ecology 84:323–336. 10.1890/0012-9658(2003)084

CAVAGNARO TR, SMITH FA, SMITH SE, JAKOBSEN I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650. 10.1111/j.1365-3040.2005.01310.x

Chaudhary VB, Holland EP, Charman-Anderson S et al (2022) What are mycorrhizal traits? Trends Ecol Evol 37:573–581. 10.1016/j.tree.2022.04.003 PubMed

Chen EC, Mathieu S, Hoffrichter A et al (2018) Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. Elife 7. 10.7554/eLife.39813 PubMed PMC

Cornell C, Kokkoris V, Turcu B et al (2022) The arbuscular mycorrhizal fungus Rhizophagus Irregularis harmonizes nuclear dynamics in the presence of distinct abiotic factors. Fungal Genet Biol 158:103639. 10.1016/j.fgb.2021.103639 PubMed

Corradi N, Croll D, Colard A et al (2007) Gene Copy Number polymorphisms in an Arbuscular Mycorrhizal Fungal Population. Appl Environ Microbiol 73:366–369. 10.1128/AEM.01574-06 PubMed PMC

Couillerot O, Ramírez-Trujillo A, Walker V et al (2013) Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649. 10.1007/s00253-012-4249-z PubMed

Cranenbrouck S, Voets L, Bivort C et al (2005) Methodologies for in Vitro Cultivation of Arbuscular Mycorrhizal Fungi with Root organs. pp 341–375

Croll D, Corradi N, Gamper HA, Sanders IR (2008) Multilocus genotyping of arbuscular mycorrhizal fungi and marker suitability for population genetics. New Phytol 180:564–568. 10.1111/j.1469-8137.2008.02602.x PubMed

Croll D, Giovannetti M, Koch AM et al (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937. 10.1111/j.1469-8137.2008.02726.x PubMed

Dudáš M, Pjevac P, Kotianová M et al (2022) Arbuscular Mycorrhiza and Nitrification: disentangling processes and players by using synthetic nitrification inhibitors. Appl Environ Microbiol 88. 10.1128/aem.01369-22 PubMed PMC

Ehinger M, Koch AM, Sanders IR (2009) Changes in arbuscular mycorrhizal fungal phenotypes and genotypes in response to plant species identity and phosphorus concentration. New Phytol 184:412–423. 10.1111/j.1469-8137.2009.02983.x PubMed

Emmett BD, Lévesque-Tremblay V, Harrison MJ (2021) Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J 15:2276–2288. 10.1038/s41396-021-00920-2 PubMed PMC

Faghihinia M, Halverson LJ, Hršelová H et al (2024) Nutrient-dependent cross-kingdom interactions in the hyphosphere of an arbuscular mycorrhizal fungus. Front Microbiol 14. 10.3389/fmicb.2023.1284648 PubMed PMC

Giovannini L, Sbrana C, Avio L, Turrini A (2020) Diversity of a phosphate transporter gene among species and isolates of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 367. 10.1093/femsle/fnaa024 PubMed

Gryndler M, Černá L, Bukovská P et al (2014) Tuber Aestivum association with non-host roots. Mycorrhiza 24:603–610. 10.1007/s00572-014-0580-9 PubMed

Gryndler M, Šmilauer P, Püschel D et al (2018) Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28:435–450. 10.1007/s00572-018-0844-x PubMed

Hahn PG, Bullington L, Larkin B et al (2018) Effects of short- and long-term variation in Resource conditions on Soil Fungal communities and Plant responses to Soil Biota. Front Plant Sci 9. 10.3389/fpls.2018.01605 PubMed PMC

Jansa J, Mozafar A, Banke S et al (2002) Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycol Res 106:670–681. 10.1017/S0953756202006032

Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789. 10.1111/j.1469-8137.2007.02294.x PubMed

Jansa J, Šmilauer P, Borovička J et al (2020) Dead Rhizophagus Irregularis biomass mysteriously stimulates plant growth. Mycorrhiza 30:63–77. 10.1007/s00572-020-00937-z PubMed

Johnson D, Martin F, Cairney JWG, Anderson IC (2012) The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytol 194:614–628. 10.1111/j.1469-8137.2012.04087.x PubMed

Jones EI, Afkhami ME, Akçay E et al (2015) Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. Ecol Lett 18:1270–1284. 10.1111/ele.12507 PubMed

Kiers ET, Duhamel M, Beesetty Y et al (2011) Reciprocal rewards stabilize Cooperation in the Mycorrhizal Symbiosis. Sci (80-) 333:880–882. 10.1126/science.1208473 PubMed

Koch AM, Kuhn G, Fontanillas P et al (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci 101:2369–2374. 10.1073/pnas.0306441101 PubMed PMC

Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110. 10.1111/j.1461-0248.2005.00853.x PubMed

Koch AM, Antunes PM, Maherali H et al (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol 214:1330–1337. 10.1111/nph.14465 PubMed

Kokkoris V, Hart M (2019) In vitro propagation of Arbuscular Mycorrhizal Fungi May Drive Fungal Evolution. Front Microbiol 10. 10.3389/fmicb.2019.02420 PubMed PMC

Kokkoris V, Chagnon P-L, Yildirir G et al (2021) Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Curr Biol 31:1531–1538e6. 10.1016/j.cub.2021.01.035 PubMed

Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488. 10.1016/S0953-7562(89)80195-9

Lekberg Y, Jansa J, McLeod M et al (2024) Carbon and phosphorus exchange rates in arbuscular mycorrhizas depend on environmental context and differ among co-occurring plants. New Phytol. 10.1111/nph.19501 PubMed

Lendenmann M, Thonar C, Barnard RL et al (2011) Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21:689–702. 10.1007/s00572-011-0371-5 PubMed

Martin FM, van der Heijden MGA (2024) The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytol 242:1486–1506. 10.1111/nph.19541 PubMed

Mathieu S, Cusant L, Roux C, Corradi N (2018) Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. New Phytol 220:1129–1134. 10.1111/nph.15275 PubMed

Mcgonigle TP, MILLER MH, EVANS DG et al (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501. 10.1111/j.1469-8137.1990.tb00476.x PubMed

Munkvold L, Kjøller R, Vestberg M et al (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364. 10.1111/j.1469-8137.2004.01169.x PubMed

Novais CB, Borges WL, Jesus E da C, et al (2014) Inter- and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Appl Soil Ecol 76:78–86. 10.1016/j.apsoil.2013.12.010

Ohno T, Zibilske LM (1991) Determination of low concentrations of Phosphorus in Soil extracts using Malachite Green. Soil Sci Soc Am J 55:892–895. 10.2136/sssaj1991.03615995005500030046x

Peña R, Robbins C, Corella JC et al (2020) Genetically different isolates of the Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis induce Differential responses to stress in Cassava. Front Plant Sci 11. 10.3389/fpls.2020.596929 PubMed PMC

Püschel D, Janoušková M, Hujslová M et al (2016) Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol Evol 6:4332–4346. 10.1002/ece3.2207 PubMed PMC

Püschel D, Janoušková M, Voříšková A et al (2017) Arbuscular Mycorrhiza Stimulates Biological Nitrogen Fixation in Two Medicago spp. through Improved Phosphorus Acquisition. Front Plant Sci 8. 10.3389/fpls.2017.00390 PubMed PMC

Rodríguez-Echeverría S, Teixeira H, Correia M et al (2017) Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol 213:380–390. 10.1111/nph.14122 PubMed

Ropars J, Toro KS, Noel J et al (2016) Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nat Microbiol 1:16033. 10.1038/nmicrobiol.2016.33 PubMed

Rozmoš M, Bukovská P, Hršelová H et al (2022) Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. ISME J 16:676–685. 10.1038/s41396-021-01112-8 PubMed PMC

Sanders IR, Rodriguez A (2016) Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. ISME J 10:2780–2786. 10.1038/ismej.2016.73 PubMed PMC

Sendek A, Karakoç C, Wagg C et al (2019) Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci Rep 9:9650. 10.1038/s41598-019-45702-1 PubMed PMC

Serghi EU, Kokkoris V, Cornell C et al (2021) Homo- and Dikaryons of the Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis Differ in Life History Strategy. Front Plant Sci 12. 10.3389/fpls.2021.715377 PubMed PMC

Sperschneider J, Yildirir G, Rizzi YS et al (2023) Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host–plant interactions. Nat Microbiol 8:2142–2153. 10.1038/s41564-023-01495-8 PubMed

Sun K, Jiang H-J, Pan Y-T et al (2023) Hyphosphere microorganisms facilitate hyphal spreading and root colonization of plant symbiotic fungus in ammonium-enriched soil. ISME J 17:1626–1638. 10.1038/s41396-023-01476-z PubMed PMC

Thonar C, Erb A, Jansa J (2012) Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol Ecol Resour 12:219–232. 10.1111/j.1755-0998.2011.03086.x PubMed

Tisserant E, Malbreil M, Kuo A et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci 110:20117–20122. 10.1073/pnas.1313452110 PubMed PMC

Větrovský T, Baldrian P, Morais D (2018) SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34:2292–2294. 10.1093/bioinformatics/bty071 PubMed PMC

Wen Z, Li H, Shen Q et al (2019) Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol 223:882–895. 10.1111/nph.15833 PubMed

Yildirir G, Sperschneider J, Malar CM et al (2022) Long reads and Hi-C sequencing illuminate the two‐compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus Irregularis. New Phytol 233:1097–1107. 10.1111/nph.17842 PubMed

Zhang L, Xu M, Liu Y et al (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032. 10.1111/nph.13838 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace