Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21-07275S
Czech Science Foundation
RVO61388971
Akademie Věd České Republiky
CZ.02.01.01/00/22_008/0004597
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
38829432
PubMed Central
PMC11283409
DOI
10.1007/s00572-024-01154-8
PII: 10.1007/s00572-024-01154-8
Knihovny.cz E-zdroje
- Klíčová slova
- Hyphosphere microbiome, Intraspecific differences, Mycorrhizal hyphal networks, Quantitative real-time PCR (qPCR), Soil nitrogen exploration, Stable isotopic labeling and tracing,
- MeSH
- chitin metabolismus MeSH
- dusík metabolismus MeSH
- genotyp * MeSH
- Glomeromycota fyziologie genetika MeSH
- houby MeSH
- hyfy * genetika růst a vývoj MeSH
- mykorhiza * fyziologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chitin MeSH
- dusík MeSH
Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used 15N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of 15N to the plants than the passive transfer of 15N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater 15N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.
Zobrazit více v PubMed
Aavik T, Träger S, Zobel M et al (2021) The joint effect of host plant genetic diversity and arbuscular mycorrhizal fungal communities on restoration success. Funct Ecol 35:2621–2634. 10.1111/1365-2435.13914
Angelard C, Colard A, Niculita-Hirzel H et al (2010) Segregation in a mycorrhizal fungus alters Rice Growth and Symbiosis-specific gene transcription. Curr Biol 20:1216–1221. 10.1016/j.cub.2010.05.031 PubMed
Avio L, Cristani C, Strani P, Giovannetti M (2009) Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae. Can J Microbiol 55:242–253. 10.1139/W08-129 PubMed
Behm JE, Kiers ET (2014) A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits. J Ecol 102:315–327. 10.1111/1365-2745.12194
Börstler B, Raab PA, Thiéry O et al (2008) Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol 180:452–465. 10.1111/j.1469-8137.2008.02574.x PubMed
Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. 10.1007/s11104-008-9877-9
Bukovská P, Gryndler M, Gryndlerová H et al (2016) Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front Microbiol 7:711. 10.3389/fmicb.2016.00711 PubMed PMC
Bukovská P, Bonkowski M, Konvalinková T et al (2018) Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers? Mycorrhiza 28:269–283. 10.1007/s00572-018-0825-0 PubMed
Bukovská P, Rozmoš M, Kotianová M et al (2021) Arbuscular Mycorrhiza mediates efficient recycling from soil to plants of Nitrogen bound in chitin. Front Microbiol 12. 10.3389/fmicb.2021.574060 PubMed PMC
Castelli J, Casper B (2003) Intraspecific AM fungal variation contributes to plant-fungal feedback in a serpentine grassland. Ecology 84:323–336. 10.1890/0012-9658(2003)084
CAVAGNARO TR, SMITH FA, SMITH SE, JAKOBSEN I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650. 10.1111/j.1365-3040.2005.01310.x
Chaudhary VB, Holland EP, Charman-Anderson S et al (2022) What are mycorrhizal traits? Trends Ecol Evol 37:573–581. 10.1016/j.tree.2022.04.003 PubMed
Chen EC, Mathieu S, Hoffrichter A et al (2018) Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. Elife 7. 10.7554/eLife.39813 PubMed PMC
Cornell C, Kokkoris V, Turcu B et al (2022) The arbuscular mycorrhizal fungus Rhizophagus Irregularis harmonizes nuclear dynamics in the presence of distinct abiotic factors. Fungal Genet Biol 158:103639. 10.1016/j.fgb.2021.103639 PubMed
Corradi N, Croll D, Colard A et al (2007) Gene Copy Number polymorphisms in an Arbuscular Mycorrhizal Fungal Population. Appl Environ Microbiol 73:366–369. 10.1128/AEM.01574-06 PubMed PMC
Couillerot O, Ramírez-Trujillo A, Walker V et al (2013) Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649. 10.1007/s00253-012-4249-z PubMed
Cranenbrouck S, Voets L, Bivort C et al (2005) Methodologies for in Vitro Cultivation of Arbuscular Mycorrhizal Fungi with Root organs. pp 341–375
Croll D, Corradi N, Gamper HA, Sanders IR (2008) Multilocus genotyping of arbuscular mycorrhizal fungi and marker suitability for population genetics. New Phytol 180:564–568. 10.1111/j.1469-8137.2008.02602.x PubMed
Croll D, Giovannetti M, Koch AM et al (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937. 10.1111/j.1469-8137.2008.02726.x PubMed
Dudáš M, Pjevac P, Kotianová M et al (2022) Arbuscular Mycorrhiza and Nitrification: disentangling processes and players by using synthetic nitrification inhibitors. Appl Environ Microbiol 88. 10.1128/aem.01369-22 PubMed PMC
Ehinger M, Koch AM, Sanders IR (2009) Changes in arbuscular mycorrhizal fungal phenotypes and genotypes in response to plant species identity and phosphorus concentration. New Phytol 184:412–423. 10.1111/j.1469-8137.2009.02983.x PubMed
Emmett BD, Lévesque-Tremblay V, Harrison MJ (2021) Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J 15:2276–2288. 10.1038/s41396-021-00920-2 PubMed PMC
Faghihinia M, Halverson LJ, Hršelová H et al (2024) Nutrient-dependent cross-kingdom interactions in the hyphosphere of an arbuscular mycorrhizal fungus. Front Microbiol 14. 10.3389/fmicb.2023.1284648 PubMed PMC
Giovannini L, Sbrana C, Avio L, Turrini A (2020) Diversity of a phosphate transporter gene among species and isolates of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 367. 10.1093/femsle/fnaa024 PubMed
Gryndler M, Černá L, Bukovská P et al (2014) Tuber Aestivum association with non-host roots. Mycorrhiza 24:603–610. 10.1007/s00572-014-0580-9 PubMed
Gryndler M, Šmilauer P, Püschel D et al (2018) Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28:435–450. 10.1007/s00572-018-0844-x PubMed
Hahn PG, Bullington L, Larkin B et al (2018) Effects of short- and long-term variation in Resource conditions on Soil Fungal communities and Plant responses to Soil Biota. Front Plant Sci 9. 10.3389/fpls.2018.01605 PubMed PMC
Jansa J, Mozafar A, Banke S et al (2002) Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycol Res 106:670–681. 10.1017/S0953756202006032
Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789. 10.1111/j.1469-8137.2007.02294.x PubMed
Jansa J, Šmilauer P, Borovička J et al (2020) Dead Rhizophagus Irregularis biomass mysteriously stimulates plant growth. Mycorrhiza 30:63–77. 10.1007/s00572-020-00937-z PubMed
Johnson D, Martin F, Cairney JWG, Anderson IC (2012) The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytol 194:614–628. 10.1111/j.1469-8137.2012.04087.x PubMed
Jones EI, Afkhami ME, Akçay E et al (2015) Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. Ecol Lett 18:1270–1284. 10.1111/ele.12507 PubMed
Kiers ET, Duhamel M, Beesetty Y et al (2011) Reciprocal rewards stabilize Cooperation in the Mycorrhizal Symbiosis. Sci (80-) 333:880–882. 10.1126/science.1208473 PubMed
Koch AM, Kuhn G, Fontanillas P et al (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci 101:2369–2374. 10.1073/pnas.0306441101 PubMed PMC
Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110. 10.1111/j.1461-0248.2005.00853.x PubMed
Koch AM, Antunes PM, Maherali H et al (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol 214:1330–1337. 10.1111/nph.14465 PubMed
Kokkoris V, Hart M (2019) In vitro propagation of Arbuscular Mycorrhizal Fungi May Drive Fungal Evolution. Front Microbiol 10. 10.3389/fmicb.2019.02420 PubMed PMC
Kokkoris V, Chagnon P-L, Yildirir G et al (2021) Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Curr Biol 31:1531–1538e6. 10.1016/j.cub.2021.01.035 PubMed
Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488. 10.1016/S0953-7562(89)80195-9
Lekberg Y, Jansa J, McLeod M et al (2024) Carbon and phosphorus exchange rates in arbuscular mycorrhizas depend on environmental context and differ among co-occurring plants. New Phytol. 10.1111/nph.19501 PubMed
Lendenmann M, Thonar C, Barnard RL et al (2011) Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21:689–702. 10.1007/s00572-011-0371-5 PubMed
Martin FM, van der Heijden MGA (2024) The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytol 242:1486–1506. 10.1111/nph.19541 PubMed
Mathieu S, Cusant L, Roux C, Corradi N (2018) Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. New Phytol 220:1129–1134. 10.1111/nph.15275 PubMed
Mcgonigle TP, MILLER MH, EVANS DG et al (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501. 10.1111/j.1469-8137.1990.tb00476.x PubMed
Munkvold L, Kjøller R, Vestberg M et al (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364. 10.1111/j.1469-8137.2004.01169.x PubMed
Novais CB, Borges WL, Jesus E da C, et al (2014) Inter- and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Appl Soil Ecol 76:78–86. 10.1016/j.apsoil.2013.12.010
Ohno T, Zibilske LM (1991) Determination of low concentrations of Phosphorus in Soil extracts using Malachite Green. Soil Sci Soc Am J 55:892–895. 10.2136/sssaj1991.03615995005500030046x
Peña R, Robbins C, Corella JC et al (2020) Genetically different isolates of the Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis induce Differential responses to stress in Cassava. Front Plant Sci 11. 10.3389/fpls.2020.596929 PubMed PMC
Püschel D, Janoušková M, Hujslová M et al (2016) Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol Evol 6:4332–4346. 10.1002/ece3.2207 PubMed PMC
Püschel D, Janoušková M, Voříšková A et al (2017) Arbuscular Mycorrhiza Stimulates Biological Nitrogen Fixation in Two Medicago spp. through Improved Phosphorus Acquisition. Front Plant Sci 8. 10.3389/fpls.2017.00390 PubMed PMC
Rodríguez-Echeverría S, Teixeira H, Correia M et al (2017) Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol 213:380–390. 10.1111/nph.14122 PubMed
Ropars J, Toro KS, Noel J et al (2016) Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nat Microbiol 1:16033. 10.1038/nmicrobiol.2016.33 PubMed
Rozmoš M, Bukovská P, Hršelová H et al (2022) Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. ISME J 16:676–685. 10.1038/s41396-021-01112-8 PubMed PMC
Sanders IR, Rodriguez A (2016) Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. ISME J 10:2780–2786. 10.1038/ismej.2016.73 PubMed PMC
Sendek A, Karakoç C, Wagg C et al (2019) Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci Rep 9:9650. 10.1038/s41598-019-45702-1 PubMed PMC
Serghi EU, Kokkoris V, Cornell C et al (2021) Homo- and Dikaryons of the Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis Differ in Life History Strategy. Front Plant Sci 12. 10.3389/fpls.2021.715377 PubMed PMC
Sperschneider J, Yildirir G, Rizzi YS et al (2023) Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host–plant interactions. Nat Microbiol 8:2142–2153. 10.1038/s41564-023-01495-8 PubMed
Sun K, Jiang H-J, Pan Y-T et al (2023) Hyphosphere microorganisms facilitate hyphal spreading and root colonization of plant symbiotic fungus in ammonium-enriched soil. ISME J 17:1626–1638. 10.1038/s41396-023-01476-z PubMed PMC
Thonar C, Erb A, Jansa J (2012) Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol Ecol Resour 12:219–232. 10.1111/j.1755-0998.2011.03086.x PubMed
Tisserant E, Malbreil M, Kuo A et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci 110:20117–20122. 10.1073/pnas.1313452110 PubMed PMC
Větrovský T, Baldrian P, Morais D (2018) SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34:2292–2294. 10.1093/bioinformatics/bty071 PubMed PMC
Wen Z, Li H, Shen Q et al (2019) Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol 223:882–895. 10.1111/nph.15833 PubMed
Yildirir G, Sperschneider J, Malar CM et al (2022) Long reads and Hi-C sequencing illuminate the two‐compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus Irregularis. New Phytol 233:1097–1107. 10.1111/nph.17842 PubMed
Zhang L, Xu M, Liu Y et al (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032. 10.1111/nph.13838 PubMed