Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dopisy, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
PubMed
27572831
DOI
10.1038/nmicrobiol.2016.33
PII: nmicrobiol201633
Knihovny.cz E-zdroje
- MeSH
- frekvence genu MeSH
- fungální geny pro párovací typ * MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom fungální * MeSH
- genomika MeSH
- molekulární evoluce * MeSH
- mykorhiza genetika fyziologie MeSH
- rekombinace genetická MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Sexual reproduction is ubiquitous among eukaryotes, and fully asexual lineages are extremely rare. Prominent among ancient asexual lineages are the arbuscular mycorrhizal fungi (AMF), a group of plant symbionts with a multinucleate cytoplasm. Genomic divergence among co-existing nuclei was proposed to drive the evolutionary success of AMF in the absence of sex(1), but this hypothesis has been contradicted by recent genome analyses that failed to find significant genetic diversity within an AMF isolate(2,3). Here, we set out to resolve issues surrounding the genome organization and sexual potential of AMF by exploring the genomes of five isolates of Rhizophagus irregularis, a model AMF. We find that genetic diversity in this species varies among isolates and is structured in a homo-dikaryon-like manner usually linked with the existence of a sexual life cycle. We also identify a putative AMF mating-type locus, containing two genes with structural and evolutionary similarities with the mating-type locus of some Dikarya. Our analyses suggest that this locus may be multi-allelic and that AMF could be heterothallic and bipolar. These findings reconcile opposing views on the genome organization of these ubiquitous plant symbionts and open avenues for strain improvement and environmental application of these organisms.
FASTERIS S A Ch du Pont du Centenaire 109 PO Box 28 CH 1228 Plan les Ouates Switzerland
Leibniz Institute of Plant Genetics and Crop Plant Research D 06466 Gatersleben Germany
LMU Munich Faculty of Biology Genetics D 82152 Planegg Martinsried Germany
Zobrazit více v PubMed
Nature. 2005 Mar 31;434(7033):636-40 PubMed
J Mol Evol. 1993 Jan;36(1):96-9 PubMed
Microbiol Mol Biol Rev. 1998 Mar;62(1):55-70 PubMed
Genome Biol Evol. 2014 Dec 19;7(1):218-27 PubMed
Science. 2001 Aug 10;293(5532):1129-33 PubMed
Bioinformatics. 2011 Nov 1;27(21):2987-93 PubMed
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22 PubMed
Bioinformatics. 2015 Oct 1;31(19):3210-2 PubMed
Plant Cell. 1995 Jun;7(6):773-83 PubMed
New Phytol. 2009;183(1):200-11 PubMed
Nature. 2001 Dec 13;414(6865):745-8 PubMed
PLoS One. 2015 Sep 10;10(9):e0137677 PubMed
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W540-3 PubMed
Genome Res. 2010 Sep;20(9):1297-303 PubMed
Annu Rev Genet. 2010;44:271-92 PubMed
Ann Bot. 2003 Apr;91(5):547-57 PubMed
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7 PubMed
Trends Ecol Evol. 2012 Mar;27(3):172-8 PubMed
Curr Genet. 1999 Mar;35(2):127-33 PubMed
New Phytol. 2011 Dec;192(4):794-7 PubMed
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 PubMed
New Phytol. 2009 Oct;184(2):412-23 PubMed
PLoS Genet. 2014 Jan;10(1):e1004078 PubMed
Syst Biol. 2003 Oct;52(5):696-704 PubMed
J Mol Biol. 2001 Nov 2;313(4):903-19 PubMed
BMC Evol Biol. 2006 Mar 10;6:21 PubMed
BMC Genomics. 2013 Apr 22;14:270 PubMed
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12 PubMed
Curr Opin Plant Biol. 2015 Aug;26:113-9 PubMed
Nat Biotechnol. 2011 Jan;29(1):24-6 PubMed
Nat Methods. 2012 Jun 28;9(7):676-82 PubMed
PLoS One. 2011 Jan 06;6(1):e15925 PubMed
Nat Rev Genet. 2002 Apr;3(4):311-7 PubMed
J Comput Biol. 2010 Nov;17(11):1519-33 PubMed
Microbiol Mol Biol Rev. 1997 Dec;61(4):411-28 PubMed
PLoS One. 2014 Aug 19;9(8):e105585 PubMed
Bioinformatics. 2000 Oct;16(10):944-5 PubMed
Appl Environ Microbiol. 2009 Apr;75(7):1970-8 PubMed
PLoS One. 2013 Nov 19;8(11):e80729 PubMed
Comput Appl Biosci. 1995 Dec;11(6):621-5 PubMed
Bioinformatics. 2009 Jul 15;25(14):1754-60 PubMed
Bioinformatics. 2014 Jan 1;30(1):31-7 PubMed
Curr Protoc Bioinformatics. 2010 Sep;Chapter 11:Unit 11.5 PubMed
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed
Bioinformatics. 2011 Feb 15;27(4):578-9 PubMed
Fungal Genet Biol. 2004 Nov;41(11):1037-45 PubMed
Genome Res. 2004 Jul;14(7):1394-403 PubMed
Appl Environ Microbiol. 2011 Mar;77(5):1888-91 PubMed
New Phytol. 2008;180(3):564-8 PubMed
J Comput Biol. 2012 May;19(5):455-77 PubMed
New Phytol. 2015 Nov;208(3):638-41 PubMed
Methods Mol Biol. 2011;760:223-37 PubMed
Bioinformatics. 2004 Jan 22;20(2):289-90 PubMed
Genetics. 2009 Jan;181(1):209-23 PubMed
Syst Biol. 2010 May;59(3):307-21 PubMed
Nat Methods. 2012 Jul 30;9(8):772 PubMed
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10171-6 PubMed
Science. 1991 May 24;252(5009):1162-4 PubMed
Genome Biol Evol. 2015 Jan 07;7(2):505-21 PubMed