Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27242732
PubMed Central
PMC4863899
DOI
10.3389/fmicb.2016.00711
Knihovny.cz E-zdroje
- Klíčová slova
- 454-amplicon sequencing, ammonia oxidizers, arbuscular mycorrhizal (AM) fungi, microbial communities, organic amendments, quantitative real-time PCR (qPCR), soil heterogeneity, soil hyphae,
- Publikační typ
- časopisecké články MeSH
Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further research is warranted to ascertain the causality of these correlations and particularly which direct roles (if any) do these prokaryotes play in the observed AM hyphal responses to organic N amendment, organic N utilization by the AM fungus and its (N-unlimited) host plant. Further, possible trophic dependencies between the different players in the AM hyphosphere needs to be elucidated upon decomposing the organic N sources.
Zobrazit více v PubMed
Alberton O., Kuyper T. W., Gorissen A. (2005). Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO PubMed DOI
Bago B., Cano C., Azcón-Aguilar C., Samson J., Coughlan A. P., Piché Y. (2004). Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. PubMed DOI
Bago B., Vierheilig H., Piché Y., Azcón-Aguilar C. (1996). Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus PubMed DOI
Baldrian P., Kolařík M., Štursová M., Kopecký J., Valášková V., Větrovský T., et al. (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. PubMed DOI PMC
Baltruschat H. (1987). Field inoculation of maize with vesicular-arbuscular mycorrhizal fungi by using expanded clay as carrier material for mycorrhiza.
Beier S., Bertilsson S. (2013). Bacterial chitin degradation-mechanisms and ecophysiological strategies. PubMed DOI PMC
Bonkowski M. (2004). Protozoa and plant growth: the microbial loop in soil revisited. PubMed DOI
Calvet C., Camprubi A., Perez-Hernandez A., Lovato P. E. (2013). Plant growth stimulation and root colonization potential of in vivo versus in vitro arbuscular mycorrhizal inocula.
Cavagnaro T. R., Smith F. A., Smith S. E., Jakobsen I. (2005). Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. DOI
Cheng L., Booker F. L., Tu C., Burkey K. O., Zhou L. S., Shew H. D., et al. (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO PubMed DOI
Couillerot O., Ramirez-Trujillo A., Walker V., von Felten A., Jansa J., Maurhofer M., et al. (2013). Comparison of prominent Azospirillum strains in Azospirillum- PubMed DOI
Cox G., Tinker P. B. (1976). Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study. DOI
Cruz C., Egsgaard H., Trujillo C., Ambus P., Requena N., Martins-Loucao M. A., et al. (2007). Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. PubMed DOI PMC
Drigo B., Pijl A. S., Duyts H., Kielak A., Gamper H. A., Houtekamer M. J., et al. (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO PubMed DOI PMC
Facelli E., Facelli J. M. (2002). Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution. PubMed DOI
Felderer B., Jansa J., Schulin R. (2013). Interaction between root growth allocation and mycorrhizal fungi in soil with patchy P distribution. DOI
Feldmann F., Idczak E. (1992). “Inoculum production of vesicular-arbuscular mycorrhizal fungi for use in tropical nurseries,” in
Fellbaum C. R., Gachomo E. W., Beesetty Y., Choudhari S., Strahan G. D., Pfeffer P. E., et al. (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. PubMed DOI PMC
Feng G., Song Y. C., Li X. L., Christie P. (2003). Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. DOI
Feng H., Feng G., Wang J., Li X. (2004). Effect of sodium phytate on alkaline phosphatase (ALP) activity in intraradical hyphae of AM fungi and development of its extraradical hyphae. PubMed
Fitter A. H. (1991). Costs and benefits of mycorrhizas - Implications for functioning under natural conditions. DOI
Gavito M. E., Olsson P. A. (2003). Allocation of plant carbon to foraging and storage in arbuscular mycorrhizal fungi. PubMed DOI
Gavito M. E., Olsson P. A. (2008). Foraging strategies of the external mycelium of the arbuscular mycorrhizal fungi DOI
George T., Singleton P. W., Vankessel C. (1993). The use of 15N natural abundance and nitrogen yield of nonnodulating isolines to estimate nitrogen fixation by soybeans ( DOI
Govindarajulu M., Pfeffer P. E., Jin H. R., Abubaker J., Douds D. D., Allen J. W., et al. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. PubMed DOI
Gryndler M., Hršelová H., Stříteská D. (2000). Effect of soil bacteria on hyphal growth of the arbuscular mycorrhizal fungus PubMed DOI
Gryndler M., Jansa J., Hršelová H., Chvátalová I., Vosátka M. (2003). Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. DOI
Gryndler M., Vejsadová H., Vančura V. (1992). The effect of magnesium ions on the vesicular arbuscular mycorrhizal infection of maize roots. PubMed DOI
Gryndler M., Vosátka M., Hršelová H., Chvátalová I., Jansa J. (2002). Interaction between arbuscular mycorrhizal fungi and cellulose in growth substrate. DOI
Herman D. J., Firestone M. K., Nuccio E., Hodge A. (2012). Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. PubMed DOI
Hodge A. (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. DOI
Hodge A., Campbell C. D., Fitter A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. PubMed DOI
Hodge A., Fitter A. H. (2010). Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. PubMed DOI PMC
Hodge A., Robinson D., Fitter A. H. (2000). Arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. PubMed DOI
Hodge A., Storer K. (2015). Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. DOI
Jakobsen I., Abbott L. K., Robson A. D. (1992). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with DOI
Jansa J., Bukovská P., Gryndler M. (2013). Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts - or just soil free-riders? PubMed DOI PMC
Jansa J., Gryndler M. (2010). “Biotic environment of the arbuscular mycorrhizal fungi in soil,” in DOI
Jansa J., Mozafar A., Frossard E. (2003). Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. DOI
Jansa J., Mozafar A., Frossard E. (2005). Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. DOI
Johnson N. C., Wilson G. W. T., Wilson J. A., Miller R. M., Bowker M. A. (2015). Mycorrhizal phenotypes and the law of the minimum. PubMed DOI
Joner E. J., Jakobsen I. (1995). Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. DOI
Joner E. J., van Aarle I. M., Vosátka M. (2000). Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. DOI
Koide R. T., Kabir Z. (2000). Extraradical hyphae of the mycorrhizal fungus PubMed DOI
Koller R., Scheu S., Bonkowski M., Robin C. (2013). Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants. DOI
Konvalinková T., Püschel D., Janoušková M., Gryndler M., Jansa J. (2015). Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of PubMed DOI PMC
Koske R. E., Gemma J. N. (1989). A modified procedure for staining roots to detect VA mycorrhizas. DOI
Kowalchuk G. A., Stephen J. R., DeBoer W., Prosser J. I., Embley T. M., Woldendorp J. W. (1997). Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class PubMed PMC
Leigh J., Fitter A. H., Hodge A. (2011). Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. PubMed DOI
Leigh J., Hodge A., Fitter A. H. (2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. PubMed DOI
Li X. L., George E., Marschner H. (1991). Extension of the phosphorus depletion zone in VA mycorrhizal white clover in a calcareous soil. DOI
Mäder P., Vierheilig H., Streitwolf-Engel R., Boller T., Frey B., Christie P., et al. (2000). Transport of DOI
McGonigle T. P., Miller M. H., Evans D. G., Fairchild G. L., Swan J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. PubMed DOI
Nuccio E. E., Hodge A., Pett-Ridge J., Herman D. J., Weber P. K., Firestone M. K. (2013). An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. PubMed DOI
Ohno T., Zibilske L. M. (1991). Determination of low concentrations of phosphorus in soil extracts using Malachite green. DOI
Ravnskov S., Larsen J., Olsson P. A., Jakobsen I. (1999). Effects of various organic compounds growth and phosphorus uptake of an arbuscular mycorrhizal fungus. DOI
Robinson D. (1996). Resource capture by localized root proliferation: why do plants bother? DOI
Robson A. D., Longnecker N. E., Osborne L. D. (1992). Effects of heterogeneous nutrient supply on root growth and nutrient uptake in relation to nutrient supply on duplex soils. DOI
Rotthauwe J. H., Witzel K. P., Liesack W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. PubMed PMC
Scheublin T. R., Ridgway K. P., Young J. P. W., van der Heijden M. G. A. (2004). Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. PubMed DOI PMC
Šmilauer P., Lepš J. (2014).
Smith S. E., Smith F. A., Jakobsen I. (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. DOI
Somasegaran P., Hoben H. J. (1994).
St. John T., Coleman D., Reid C. (1983). Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. DOI
Sulieman S., Van Ha C., Schulze J., Tran L. S. P. (2013). Growth and nodulation of symbiotic PubMed DOI PMC
Sylvia D. M., Norris J. R. (1992). “Quantification of external hyphae of vesicular-arbuscular mycorrhizal fungi,” in
Tarafdar J. C., Marschner H. (1994). Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic Posphorus. DOI
Ter Braak C. J. F., Šmilauer P. (2002).
Thonar C., Erb A., Jansa J. (2012). Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities - marker design, verification, calibration and field validation. PubMed DOI
Thonar C., Schnepf A., Frossard E., Roose T., Jansa J. (2011). Traits related to differences in function among three arbuscular mycorrhizal fungi. DOI
Toljander J. F., Artursson V., Paul L. R., Jansson J. K., Finlay R. D. (2006). Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. PubMed DOI
Toljander J. F., Lindahl B. D., Paul L. R., Elfstrand M., Finlay R. D. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. PubMed DOI
van der Heijden M. G. A., Martin F. M., Selosse M. A., Sanders I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. PubMed DOI
Větrovský T., Baldrian P. (2013). Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. DOI
Wagg C., Bender S. F., Widmer F., van der Heijden M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. PubMed DOI PMC
Watt M., Silk W. K., Passioura J. B. (2006). Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. PubMed DOI PMC
Webster G., Embley T. M., Freitag T. E., Smith Z., Prosser J. I. (2005). Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils. PubMed DOI
White T., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in
Zhang L., Fan J. Q., Ding X. D., He X. H., Zhang F. S., Feng G. (2014). Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. DOI
Zheng C., Chai M., Jiang S., Zhang S., Christie P., Zhang J. (2015). Foraging capability of extraradical mycelium of arbuscular mycorrhizal fungi to soil phosphorus patches and evidence of carry-over effect on new host plant. DOI
Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes
Nutrient-dependent cross-kingdom interactions in the hyphosphere of an arbuscular mycorrhizal fungus
Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Chitin